
Foundations of factor 
analysis of medical image 

sequences: a unified 
approach and some practical 

implications 

H Benali, I Buvat, F Frouin, J P Bazin and R Di Paola 

Factor Analysis of Medical Image Sequences (FAME) is 
presently conducted either in the function space or in the 
image space. A unified approach jointly using these two spaces 
is presented. First, the solution of a statistical model for 
scintigraphic image sequences leads to the use of correspon- 
dence analysis which is the optimal orthogonal decomposition 
of this data. Then. two symmetrical hypotheses concerning 
either the underlying fundamental functions or the underlying 
fundamental spatial distributions are derived. These hypoth- 
eses are merged in an original method to solve FAMIS 
physical model. Using this unified approach. u priori knowl- 
edge about functions and images can be jointly taken into 
account to improve the estimation of the underlying struc- 
tures. Some practical applications of the method are illustrated 
on :simulated data. 
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Factor Analysis of Medical Image Sequences (FAMIS) 
aims at resolving a medical image sequence into its 
underlying fundamental structures, namely fundamental 
functions and fundamental spatial distributions having 
a physical or physiological meaning. It is particularly 

used in dynamic studies to estimate the variation of 
concentration of a tracer or a contrast medium within 
different physiological structures’ ‘. More recently, 
FAMIS has had a renewal of interest to separate 
scatter and photopeak photons from a sequence of 
energy-indexed scintigraphic images’ ‘. 

FAMIS is based on an additive linear model. This 
model assumes that the processed medical image 
sequence consists of a restricted number of overlapping 
or not overlapping fundamental spatial distributions, 
each one corresponding to a specific signal variation, 
called a ,fundumentul jimction (a kinetic for dynamic 
studies or a spectrum of photons for sequences of 
energy-indexed scintigraphic images). Such a model is 
solved by means of an orthogonal analysis followed by 
an oblique analysis, and numerous methods have been 
proposed to conduct these two steps: 

l The orthogonal analysis aims at determining a 
study space in which the data is properly repre- 
sented. whereas the noise is not restored. It always 
consists of a normalization of the data followed by 
a principal component analysis. However, various 
normalizations have been used without theoretical 
justification’ ‘, ‘. I” 13. 

l The oblique analysis estimates the fundamental 
structures (functions and spatial distributions). 
This analysis is always performed in the function 
space, except by Samal et ~l.“.‘~. Is, who considers 
the image space. The link between the underlying 
hypotheses of these two approaches has not been 
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stated yet. Different methods have also been 
described for using a priori knowledge other than 
the non-negativity of the fundamental structures to 
overcome the problem of non-uniqueness of the 
solution of oblique analysis. This knowledge is 
related either to the fundamental functions or to 
the fundamental spatial distributions, but there is 
presently no method using these two kinds of 
information. 

In this paper, a statistical model for medical image 
sequences is proposed. The solution to this model leads 
to the determination of the optimal metric (i.e. normal- 
ization) for the orthogonal analysis. When processing 
scintigraphic data, we show that the comparison of the 
result of the optimal orthogonal decomposition with the 
physical model of FAMIS suggests two symmetrical 
hypotheses, which can be merged in a single method to 
solve FAMIS model. This symmetrical approach unifies 
some different views proposed up to now: solution in 
the function space and in the image space is jointly 
carried out, and a priori knowledge related to both 
fundamental functions and fundamental spatial distri- 
butions can be taken into account within the same 
analysis. The practical applications of the method are 
illustrated on simulated data. We emphasize the interest 
of the joint use of a priori knowledge about functions 
and images to achieve a better qualitative and quantita- 
tive estimation of the underlying fundamental struc- 
tures. 

STATISTICAL MODEL FOR OPTIMAL 
ORTHOGONAL ANALYSIS IN FAMIS 

Fixed effect model 

A sequence of P images, each having N pixels, can be 
considered as a set of N vectors si (i = 1 . N) of P 
components .x;, (j = 1 . P). xi is called a rrid, and 
represents the variation of the signal within the pixel i in 
the image sequence indexed by the variable j. Let yi be a 
P dimensional vector obtained from a transformation g 
Of Xi, Jj = g(Xj). 

The fixed effect model is defined as follows’6: 

l vectors yi are N independent random vectors 
defined on a probability space and can be written: 
yi = ji + be;, 
where l;i is the fixed effect of 2’; and (~ei is the 
random error; 

l the expectation of yi is ji, 
E(yJ = yi, that is E(e,) = 0; 

l the variance of yi can be written 

(1) 

where I is a (P, P) symmetric positive definite matrix 
assumed to be known as well as the positive numbers Wi, 
wi is a weight associated to yj. 

l there exists a Q dimensional subspace 6 of lRp 
(Q < P) such that all jji belong to 8. 

The unknown uarameters are the subsvace S. the iV 
1 

vectors yi belonging to S and the parameter G. 

Solution to the fixed effect model 

The least square estimate of 9 is obtained by minimizing 

(2) 
i= 1 

where M is a (P, P) symmetric positive definite matrix, 
defining a metric of $8’. It has been shown that the 
minimum of equation (2) is reached for S such that’“: 

l 9 contains 7, defined by: 

l 6 is spanned by the Q eigenvectors q4y associated 
with the Q largest eigenvalues /1, of the matrix 
(Y - l,~)‘W (Y - lNY)M, where Y is the (N, P) 
matrix of the trixels yi, u is the (1, P) matrix of y, 1 N 
is a (N, 1) matrix of ones, W is the (N, N) diagonal 
matrix of the weights o, and t denotes the 
transpose. 

Consequently, S depends on the metric M. For 0 
small enough, the perturbation theory can be used to 
show that the leading term of equation (2) is minimized 
when M = I-’ r6. 

In FAMIS, when applying the fixed effect model to 
the transformed trixels yi, the effect J, represents the 
relevant part of the trixel I’;, while the noise is assumed 
to be the random error bei. S is the subs ace which 

p7. corresponds to the so called study subspace , m which 
the relevant part of the trixels is properly restored, 
without the noise. So, the optimal study space S can be 
computed if I is known or can be estimated. 

Application to scintigraphic data 

When processing radionuclide image sequences, a trixel 
.Y; is the realization of P Poisson distributed variables of 
parameters ‘vii. The best first order approximation of 

V,,1’., 1s 
P ,X 

\jji IS \‘,i = - where 1’;. = 
\‘.. c \‘;,, 1’., = c I’,, and 

;= , i= I 
:v 

v._ = x $: v;i, Vi,, 1J.i and ~1.. are unknown, but can be 
!=I j=l 

replaced by their maximum likelihood estimators 

J-i. 7 .Y.[ and s.. with .yi. = 2 .~;i, .y,i = 2 _y;i and 
I= I i=l 

.Y.. = 9 $y S!,. 
i=l ]=I 
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To analyse the shape of the trixels, we consider in 

FAMIS the transformation yi = g(x;) = L .‘c,. It follows 
that: .xi. 

E(y,) = : E(s;) = ( F I , 2, . . . ) 3 > and: 
1. . f. . . 

Var(j,i) = -& Var(s,) = diag 
.y. I -y.i 

- ,..., -, 
I. .yi.-y.. .y,:y., 

-K.P 
t.9 -1 _Y,, .Y . . 

In comparison with expression (1) of the variance given 
by the fixed effect model, and for cr’ to be small, the 
following identifications are performed: 

I 
g=-. yi. 

(0; = -- and 
MY.. -y.. 

Then, according to the solution of the fixed effect 
model. S contains Jo with: 

S is spanned by the Q eigenvectors qy associated with 
the Q largest eigenvalues 2, of the matrix: 

(Y - 1 \Y)‘W (Y - IsY)M, 

M=r ‘=diag . . . . . 5 ,,... I?L 
.K.i S.P 

The eigendecomposition of this matrix corresponds to 
the eigendecomposition of correspondence analysis 
(CA)‘“. Consequently, the optimal orthogonal decom- 
position to determine the study space for scintigraphic 
data is the one of correspondence analysi?. 

In CA, the relevant part of the trixels, .V;, can be 
reconstituted 
formula”: 

using the following reconstitution 

DN’XDF’ =: IN l;+tj/bijoi”“o +/ilj-‘=qn (3) 

where X is the (N. P) matrix of elements 3, DN is the 
“Y.. 

(N, N) diagonal matrix of 2, Dn is the (P, P) diagonal 
. . 

matrix of li. and: \. 
‘.. 

qo is the (Q.P) matrix of 

is the (Q, N) matrix of 
,.. 

the eigenvectors cp,,. $o 

vectors tj,, such that 

$o = AQ”Lqo X’ Di’. ho is the (Q. Q) diagonal 

matrix whose diagonal elements are equal to 
the eigenvalues &. Furthermore. we have 

$o DN I& = Ro: 

lifpDK ly -0 (4) 

and IL DN 1N = I (5) 

hence: 

$ DN IJ?’ = h (6) 

Symmetrically, we also have (po Dt> (po = Ao: 

~yDPIP=O (7) 

and: 

cp DP 9’ = il (8) 

Thus: 

y Dt. 9’ = ;\ (9) 

In what follows, we deal with the case of the study space 
obtained by CA. 

FAMIS PHYSICAL MODEL IN A UNIFIED 
METHOD OF OBLIQUE ANALYSIS 

The relevant part of trixels obtained by the solution of 
the statistical model is assumed to follow a physical 
model. 

Physical model 

The physical model of FAMES states that the relevant 
part of each trixel s, can be expressed as a linear 
combination of a limited number K of fundamental 
fLlnctions,~, weighted by coefficients ai; depending on 
i. We write this model as: 

1 _ 
s .v,, - - 2 f ~(i),f;( j). i.e. X = f A’ F (10) 

h-l 

where F is the (RP) matrix of the fund~~~nental 
functions and A is the (I(. N) matrix of the fundamental 
spatial distributions. 

This model can be read symmetrically: the relevant 
part of each image x, of the sequence is a linear 
combination of the fundamental spatial distributions 
uk, weighted by coef~cients,~(,~). 

FAMES assumes that the number K of fundamental 
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structures is equal to the dimension of the study space, 
i.e. K = Q + 1 (j and Q eigenvectors). 

Two symmetrical hypotheses can be considered for 
solving the physical model: 

0 on the one hand, a hypothesis related to the 
fundamental functions, deduced from the conven- 
tional hypothesis’; 

l on the other hand, a hypothesis related to the 
fundamental spatial distributions. 

The fundamental functions and spatial distributions 
are estimated by factors and factor images, respectively. 

Hypothesis related to the fundamental functions 

The orthogonal analysis states that the relevant part of 
x; 

any trixel - 1s represented in the study space S, 
Xi. 

including 7 and spanned by the vectors ‘py (equation 

(3)): 

X;j ’ tiq(4 -x.j 
-_= 2+x-- 
+x,. . . y=, & x.. (pq(J) 

Hypothesis 1 considers that the fundamental functions 
belong to S: 

i.e. in matrix notation: 

F= ~&DP+B~v~DP=P(PDP 

where & is the (K, Q) matrix of elements PI, and: 

(11) 

1 

B= : Pa ( 1 1 

A factor fk is so determined by the point {Pky}q= ,, ,p, 
also called pole k. 

By multiplying equation (11) on the right by (p’, then 
using equation (9), we obtain: 

F~‘=~~DP~‘=PA 

Therefore, if F is known, p can be deduced from F by: 

fl= F(p’K’ (12) 

By multiplying equation (11) on the right by lp, we get 
Flp=lKIPDPlp+/?~~aDPlp=lK,duetoequations 
(7) and (8). 

Consequently, hypothesis 1 combined with CA 
decomposition leads to the factor normalization: 

F lP = lK (13) 

This normalization yields a normalization for the factor 
images. Indeed: 

D,‘XD;‘D& =D;‘X(D;‘D& 

= DN’ (X lP) = lN 

that is, using equation (10): 

~D,'A'FI~= iN 

By substituting 1K for F lP, the normalization for the 
factor images follows: 

; DN’ A’ lK = lN (14) 

Let us introduce hypothesis 1 into the physical decom- 
position of FAMIS. From equations (10) and (11) we 
get: 

DN’ XD,’ = i K D;’ A’FD,’ 

=~~~lA’[l~l~~~+/j~(~~~plDp’ 

=~D~‘A~~~I~+~DN’A~~~o)~ 

Using equation (14), this can be written as: 

D,‘XD,’ = lN l;+;Di’A’/l,wQ (15) 

By identifying equations (3) and (15), it follows that: 

’ D;’ A’ /ja = $b A;“’ 
22 

(16) 

Equations (14) and (16) can be rewritten in a single 
equation: 

f DN’ A’/j = $‘A-‘/? 

To summarize: 

l CA and hypothesis 1 imply the factor normalization 
F 1~ = lo, which is no longer an arbitrary one’,3. 

l CA, physical model and hypothesis 1 give the image 

factor normalization f DN’ A’ lK = lN and the 

relationship i DN’ At /j = ,/,’ A-‘/?, 

Hypothesis related to the fundamental spatial 
distributions 

In dual fashion, the orthogonal analysis states that the 

relevant part of any normalized image, -y/, is repre- 
X., 

sented in a space S*, containing 5 and spanned by the 
x.. 

$, (equation (3)): 
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Hypothesis 2 considers that the fundamental spatial 
distributions belong to S*: 

i.e. in matrix notation: 

A =m I ,, I; D, + y. A, “$,$\ x;‘:j-“‘$Du (17) 

where ;sv is the (K. Q) matrix of elements ;‘A(, and: 

A factor image (I,, is thus defined by the location of its 
image pole ;‘,, in the image space S*. 

By multiplying equation (17) on the right by I/I’. then 
using equation (6). we get: 

A$’ -;‘.I “,p)\,+;& 2 

When .4 i4 known , ;’ c:ln then be deduced from A by: 

_’ .\ l//’ .I ’ 2 I - (18) 

Multiplyin g equation ( 17) on the right by II\ and using 
equations (4) and (5) yields: 

Al, = I,, IjD, lh +;+o 
? 

’ -I//~ D, I, = lli 

In other v.ords. hypothesis 2 and CA decomposition 
invollzc the I’:tctor image normaliration: 

,A I \ I h (Ic)) 

As I),,’ X’D,’ D, I\ = D,,’ X’(D,’ D\) 

I, m= D,,’ (X’ I\) = I,,. by introducing the physical 

model ( IO) into this relationship. WC get: 

If we replace 4 1, by I K ( 19). we obtain the following 
normaliz~ition for the factors: 

; D,,’ F’ I,, I,> (30) 

Let us non combine physical model ( IO) and hypothesis 

2 (I 7). This yields: 

D,’ XD,,’ :=; D,’ A’FD,,’ 

Using the tr.tnsposc of the relationship (30). ~‘c hate: 

I 
D,‘XD,,’ = I, I;, $ - I//’ :I 

I 1 
K v v ;$ F D;’ 

By identif!,ing this expression with CA decomposition 
(3). \vc gcr: 

I 
vy=+ ,’ FD,,’ (71) 

Equations (20) and (121 1 arc aaociatcd in a sin& 
equation: 

C/I : ; ;,’ F D,,’ (22) 

To sum up: 

l CA and hypothesis 2 impl\ Ihc !‘actor imogc 
normalirarion A 1, ~~ I ,,. 

l CA. physical model :~nd hypc’lhcsis 3 gicc the I‘:icloi 

normalization :, D,,’ F’ I,, II, and the rckttion- 

Mixture of the two hypotheses 

( 14) By multi- 

on the l-14’ I!, D\ on the by WC 

obtain I!, A’ Ij\. 1.t‘. the ( 19) 

C‘onvcrsely. the 

) and hypothe\i\ 

~;7~> D,> t> = ~ ; F I),, ’ D,> 

from C‘A 
I ( wc oht:iin: 

1 I’ 

then: 

;,I I k 0 (24) 

B) combining hypothesis I (I I) and the result 

issued from hypothesis 2 (22). it follows that 

FD,,’ /itn :~ ; /j;,‘FD,,‘. Consqucntly: 

I; /I ;.’ Id (75) 

v, here Id is the idcntitb matris. Prom this relationship. 

the coefficients /j,,r, leading to the l‘xtors can he 

ccjmputed from the coefficients ;‘,\,,. and con\wsely. 
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Solution to the physical model by joint use of the place in the function space S can be adapted to the 

hypotheses initialization of 1’ in the image space S* as follows: 

The physical model is solved by means of an iterative 
procedure (F&W I), which runs using: 

l the first image pole is the point {cp,(j)}q = 1,. . . , Q 
which is the most distant from the origin; 

(i) relationships deduced from hypothesis 1, hypoth- 
esis 2, and mixture of both hypotheses; 

(ii) constraints derived from n priori knowledge: 

l the second image pole is the point 
{ip,(,j)} q = 1,. . , Q furthest from the first image 
pole; 

l in all cases, non-negativity constraints derived 
from the non-negativity of the fundamental 
functions and spatial distributions, which is 
essential for them to have a physical or 
physiological meaning; 
optionally, tixed pole and/or fixed image pole 
constraints. They result from the known loca- 
tions in 9 or S* of some fundamental functions 
and/or spatial distributions. These locations 
are determined before the iterative procedure, 
for instance by means of a target apex 
seeking2’. 

l 

l &k Kth image pole is the point {~&j)}~ = I,. . . , Q 
for which the sum of the distances to the (I(- 1) 
other image poles is maximum. 

l 

The iterative procedure then runs according to the 
algorithm in Figure I: for instance, when starting with a 
first estimate of the matrix fl, such that fib 1~ = 0 (23), 
the corresponding factors are computed from equation 
(I 1). Non-negativity constraints related to the funda- 
mental functions are applied to modify the values of,& 
The resulting F is normalized to verify F 1~ = 1K (13), 
and the corresponding j3 is computed using equation 
(12). The CI priori known poles are replaced by their 
fixed values. The new value of 7 is computed from 
equation (25), as the associated factor images using 
equation (17). Non-negativity constraints related to the 
fundamental spatial distributions are then applied to the 
I. A is normalized, such that A IN = 1~ (19), and the 
corresponding ;’ is computed by equation (18). Fixed 
image poles are restored. The corresponding p is 
calculated from equation (25), and this value of b is 
used to start a new iteration. 

The iterative procedure is initialized from a first 
estimate of fi (step 1 of the algorithm in Figure I) or 
from a first estimate of 7. In this latter case, it begins at 
step 8. The commonly used initiaIization~ which takes 

1 Estimation of the poles 8. 

2 Computation of the associated factors F from F = 
/j cp DP (equation (11)). 

3 Modi~cation of the factors F using non-negativity 
constraints: 

if,fi(j) < 0,./i(j) is replaced by 0. 

4 No~alization of the factors F. such that F ip = iK 
(equation (13)). 

5 Computation of the associated poles /I by p = F ($ A-’ 
(equation (12)). 

6 Restoration of some fixed poles. 

7 Computation of the corresponding image poles 7 by 
j.’ = K/K’ (equation (25)). 

8 Computation of the associated factor images A from 
A = ;‘A-‘/’ @ Dir; (equation (17)). 

9 Modi~cation of the factor images A using non- 
negativity constraints: 

if ok(i) < 0, ak(i) is replaced by 0. 

10 Normalization of the factor images A such that 
A 1~ = 1K (equation (19)). 

11 Computation of the corresponding image poles 1’ by 
7 = A $’ AY’/’ (equation (18)). 

12 Restoration of some fixed image poles. 

13 Computation of the corresponding poles p by 
0’ = X1;-’ (equation (25)). 

14 Return to step 2. 

Figure I Al~orithnl of oblique analysis 

The iterative procedure is repeated until one stopping 
criterion is satisfied, for instance, when the number of 
negative values of &(,-(.i) or ak(i) is low enough. The 
stopping criteria are assessed at the end of steps 7 and 
13 and, when a stopping criterion is satisfied, b and :: 
are known. 

FAME can be performed on data issued from a 
spatial sampling different from the initial spatial 
sampling of the image sequence’. The factor images in 
the initial spatial sampling are then computed by an 
oblique projection of the image sequence onto the 
factors corresponding to b3. 

EXAMPLES 

Importance of oblique analysis initialization 

Method 
A computer-simulated phantom is used to compare 
FAME results according to the space in which the first 
estimation of the fundamental structures is performed. 
It consists of three rectangular overlapping spatial 
distributions (I~, u2 and n3 associated with three funda- 
mental functions ,f;, .f; and f3 (Figure 2). The contribu- 
tions Contr(k) of each fundamental structure k, defined 
by: 
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Figure 2 Three fundamental structures of the computer-simulated 
phantom and aswciated contrlhutions 

with 
1 

C,(W) = c/,,(i) and M=NifFlp= lK 

(a,\(~~~) = f;,(i) and M = P if A lh = II( 

a1.e 50”,0. i5”/0 and 15”’ ,o, respectively. A sequence of 30 
images 64 x 64 is computed from: 

and Poisson noise is added. 
The resulting sequence is first preprocessed: the 

contents of neighbouring trixels are summed according 
to a 4 x 4 pattern. All the trixels different from zero are 
submitted to the orthogonal decomposition of CA. 
followed by the oblique analysis (as has been 
previously described) using only the non-negativity 
constraints related to the fundamental functions and 
spatial distributions. In the oblique analysis. two 
initializations are tested: 

l initialization of the poles in the function space S: a 
first estimate of [j is obtained from the location of 
the trixcls in this space. The iterative procedure 
starts from step 3 of the algorithm; 

a initialization of the image poles in the image space 
3* : ;a is first estimated using the location of the images 
in this space. The iterations then begin from step 8. 

Results 
Initialization in 3: Figurr 3 shows the distribution of the 
121 trixels in 3 and that of the 30 images in S*. The 
locations of final poles and image poles within each of 
these spaces are also displayed. As the initialization 
takes place in 3, the final poles (i.e. p) satisfying the 
non-negativity constraints are the apices of the tightest 
triangle including all the trixels projections in C’. In G*, 
the apices of the corresponding triangle are the image 
poles (i.e. y), which define a large triangle. since 
IK [jy’ = Id (equation (25)). Apex 3 of the pole triangle 
corresponds to a trixel described by several fundamental 
functions. since there is no trixel described by only 
fundamental function,f; in the simulated data. 7; is thus 
a poor estimation of .fi. Apex I is also at a wrong 
position in 3. Consequently, factors. factor images and 
estimated contributions arc erroneous (E?gclrc~ 4). 

Initialization in S*: in ;I dual fashion, when the 
initialization is performed in Y*. the l‘inal image poles 
(i.e. ;‘) satisfying the non-negativity constraints are the 
apices of the smallest triangle containing all the 
projections of the images (Fi,~urr~ C). The corresponding 
triangle in S is ;I large one, far from the cloud of trixel 
projections. Due to the initialization procedure, the 
apices of the image pole triangle correspond to images 
in which only one fundamental structure is present 
(irnagch I. 7 and 30). C’onsequentlq. the final factor 
images are quite correct, as are the associated factors 
and contributions (F&r~c, 6). 

Joint use of a priori knowledge related to the 
fundamental functions and spatial distributions 

Method 
We illustrate the interest of the joint USC of (I priori 
knowledge related to both fundamental functions and 

Figure 3 After initialization in the function space 9. (Left) Trlxcl projections (0) in 3 and final locatlon of the pole\ /j, (I 1. /iA (7) and /jT 13): (right) 
imapc projectIon\ (0) In S* and final location of the poles ;‘, I I ). y2 (2) and ;‘: (3) 
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Figure 4 After initialization in the function space 9: final estimation 
of the fundamental structures and associated contributions. a (top 
left): (Q..~). h (top right): (&,,&), C’ (bottom left): (ir,, A), ti (bottom 
right): superimposition of the three factors 

spatial distributions for FAMIS to give a good estimate 
of the fundamental structures. A computer-simulated 
phantom is made up of three rectangular spatial 
distributions associated with three functions, with 
contributions equal to 20%, 40% and 40%, respec- 
tively (Figure 7). An image sequence is computed from 
these structures and Poisson noise is added. The 
resulting sequence is submitted to three FAMIS. Each 
one processes all the trixels different from zero (i.e. 121 
trixels) obtained after 4 x 4 spatial sampling, and begins 
with the orthogonal decomposition of CA. The three 
FAMIS differ by the a priovi knowledge taken into 
account besides the non-negativity, and by the space 
used for the initialization: 

l FAMIS 1: a factor ^i is determined by a target apex 
seeking procedure* (’ knowing that one fundamental 

function becomes zero from image 17. The criterion 
minimized during the search is defined by: 

h(s) = 5 s*(j) 
,= 17 

where s is the curve associated with any point 
(/?I, jj2) of the function space S: 

s(j) = 2 + -& & 2 q,(j) 

. . y=, . 

The other factors are initialized in S using the 
conventional procedure3, 
sponding to ,fi. 

with the first pole corre- 

This fixed factor fi is restored at each iteration 
(step 6 of the algorithm) of the oblique analysis. 
FAMIS 2: an homogeneous background factor 
image, corresponding to u2, is searched for in the 
image space S by a target apex seeking procedure, 
similar to the one used when seeking for factors*‘. 
The criterion to minimize is now: 

h(r)=f?(r(i)-A)* 

where 12 1 is the number of processed trixels and Y is 
the image associated with any point (~1, yz) of S*: 

Xi * (i> 
r(j) = > + 2 7, L Y 

f/=l s.. & 

Other a priori knowledge is that the 30th image 
corresponds to one fundamental spatial distribu- 
tion, us, and is therefore taken as a factor image. 
The third factor image is initialized in S*, as 
described earlier, after the localization of the two 
other image poles. 

Two factor images (62 and &) are restored at 
each iteration (step 12 of the algorithm) during the 
oblique analysis. 

Figure 5 After initialization in the image space S*. (Left) Trixel projections (0) in 9 and final location of the poles p, (I), & (2) and p (3); (rtght) 
image projections (0) in 8* and final location of the poles y, (I), y2 (2) and 7, (3) 
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Figure 6 After initialiration tn the image space $: final estimation of 
the <undament~tl structure? and aaaociated contriputions. N (top left): 
(G, I;). h (top right): (ir!, fr). c (bottom left): (21. 11). (/(bottom nght): 
v;uperimpo\lrion 01‘ the three factors 

Figure 7 Three fundamental btructurec of the computer-simulated 

phantom and :wociated contriburions 

a FAMIS 3: the initialization is performed as in 
FAMIS I. that is the first factor ,f\ is searched for 
by the target apex seeking procedure, and the first 
estimation of the two others takes place in 8. & and 
r^r; arc determined as in FAMIS 2. At each iteration 
of the oblique analysis. ii. 22 and ii? are restored. 

Results 
FAMIS I and FAMIS 2 lead to poor estimate of the 
fundamental structures and contributions (Figwes 8 
and Y): II! FAMIS I. the target apex seeking correctly 
finds 1;. ,fl is a suitable estimate of ,f, since there are 
some trixels described by the single function ,fl among 
the set of trixels. However. there is no trixel described 
by the only function 13 and FAMIS fails at estimating 
this function (Fi,ywc~ 8). In FAMIS 2, ~1~ and II are 
properly estimated thanks to the N priori knowledge. Li, 
deviates substantially from clI (Figure Y), in particular 
because of the lack of images including the single spatial 
distribution LI, in the initial image sequence. 

Figure 9 I-AMIS 2 result\: (I (top left)~ ((I,. I~). h (top nght): (LI,, 1,). 

c (bottom left): (01, /?). L/ (bottom right): supcrimpovtion of the three 
I;lctor\ 

FAMIS 3 provides a satisfactory solution (Fi,yzm /O) 
by combining a relevant initialization (in “, including 
trlxels described by the only function /i) with powerful 
constraints related to factors (fixed factor,/,) and facto1 
images (fixed factor images & and II;). Notice that the 
same powerful constraints used after an initialiration in 
E* do not lead to a correct solution. since /J is not 
initially properly estimated. 

DISCUSSION 

The conventional model underlying factor analysis ot 
medical image sequences is rcviscd and split up into ;I 
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Figure 10 FAMIS 3 results: a (top left): (ci~,,~~), b (top right): (s,.h), 
c (bottom left): (&,i3), d (bottom right): superimposition of the three 
factors 

statistical model and a physical one. The introduction of 
a statistical model for medical image sequences, the 
fixed effect model, provides a theoretical basis for the 
choice of the metric to be used for the orthogonal 
analysis of FAMIS. When applying this model to 
scintigraphic data, it is shown that the optimal ortho- 
gonal decomposition is obtained by a correspondence 
analysis*‘. The interesting property of CA for our 
present purpose is that this decomposition treats the 
rows (i.e. trixels) and the columns (i.e. images) of the 
data matrix in the same way: a symmetrical role is given 
to trixels and images. To keep this symmetry, two 
hypotheses must be written to solve the physical model 
of FAMIS: the first one is related to the fundamental 
functions, while the second concerns the fundamental 
spatial distributions. Each of these hypotheses yields 
specific normalizations for factors and factor images. 
However, the hypotheses and induced normalizations 
can be mixed to derive a single solution for oblique 
analysis. This iterative method does not give any 
advantage to trixels or images. Up to now, all authors 
solved the physical model in the function space exce 

P 
t 

for Samal et al., who consider the image space’1”43 ‘. 
No connection between these two approaches has been 
stated yet. The symmetrical model and solution unify 
these two formulations of FAMIS. 

The only remaining asymmetry results from the 
initialization of the iterative procedure. It can begin by 
first estimating either the fundamental functions or the 
fundamental spatial distributions. The choice of the 
space in which the initialization is performed (function 
space or image space) strongly affects the final results of 
FAMIS. Indeed, the non-negativity constraints alone do 
not guarantee a unique solution for oblique analysis. 
The solution found in the study space then corresponds 
to the apices of the polytope which is closest to the 
starting polytope, and such that the non-negativity 
constraints are satisfied. As the apices of the starting 
polytope correspond to trixels (in the function space) or 
images (in the image space) of the processed image 
sequence, the better space to carry out the initialization 

step depends upon the processed data: when they 
include some trixels described by one single function, 
this function is properly estimated during the initializa- 
tion step if it is performed in the function space. 
Conversely, if some images in the sequence contain 
only one fundamental spatial distribution, the most 
appropriate space for the initialization is the image 
space (see the first example discussed above). This result 
shows that a prior examination of the data before 
FAMIS is essential for a relevant choice of the 
initialization space. 

It is well known that, in most studies, some a priori 
knowledge other than the non-negativity must be taken 
into account to improve FAMIS performances’2322. 
Numerous methods have been proposed to find the 
unique fundamental decomposition2’. Some of them use 
knowledge about functions as constraints in the 
function space8-‘03’7323. Others use knowledge about 
spatia,l, ,$$ributions as constraints in the image 
space 1 3 . Lastly, other methods are based on 
knowledge related to the fundamental spatial distribu- 
tions but expressed as constraints in the function 
space2426. However, no method uses knowledge 
related to both fundamental functions and spatial 
distributions. The unified approach we propose deals 
with these two kinds of knowledge by means of the 
target apex seeking and the restoration of fixed poles 
and/or fixed image poles. As the introduction of these 
two types of constraints is sometimes necessary to 
achieve the accurate solution (see the second example 
discussed above), their simultaneous control should 
allow FAMIS to properly solve an increasing number 
of studies. 

CONCLUSION 

We have proposed a unified formulation and solution 
for FAMIS applied to scintigraphic data. It merges the 
solution in the function space and in the image space, 
and manages not only non-negativity constraints, but 
also a priori knowledge related to both fundamental 
functions and spatial distributions. The interest and the 
potentialities of this approach have been illustrated on 
simulated data. Its application to real studies is under 
investigation, particularly for problems in which a priori 
knowledge about functions and images is available. For 
instance, for scatter correction by FAMIS, some 
information related to the photopeak is known2’. and 
the image sequence can be acquired in a spectral domain 
such that some images correspond to one fundamental 
spatial distribution alone. 
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