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formance that can be achieved, and the challenges that remain to be solved.
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1. Introduction

In Single Photon Emission Computed Tomography (SPECT) and
Positron Emission Tomography (PET) molecular imaging, images
are obtained by solving an inverse problem, that is by estimating
the unknown y or f+ radiotracer activity distribution that is best
compatible with the measured data, given a model of the imaging
system response function. In a discrete formalism, this corre-
sponds to solving the following equation:

p=Rf M

where p represents the projections or the sinograms arranged as a
1D vector, f is the activity distribution to be reconstructed also
arranged as a 1D vector and R is a 2D matrix, called the system
matrix (SM), that describes how f, in the so-called “image space”, is
transformed into p in the projection space. Each entry R;; represents
the probability that a y photon or a B+ particle emitted in voxel j of
the object be detected in projection bin i. The quality of the
reconstructed images is directly affected by the ability of the SM to
accurately describe the response of the imaging system. For a long
time, the entries of this SM have been calculated using a line
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integral model accounting for a simplified description of the
detection geometry [1,2]. Yet, this is an idealized model for emis-
sion tomography (ET), both from the geometric and the physics
points of view. Indeed, the line integral model assumes that the
observed flux of photons arriving in one bin of the detector is only
due to activity along an infinitesimally narrow line, which is
obviously a crude assumption in SPECT since this would assume a
perfect collimation (no divergence, no spatial spread, no collimator
penetration). This is approximate in PET as well since the line of
response (LOR) defined by two crystals is actually a tube of response
including many possible narrow LOR. Some more sophisticated
geometrical analytical models have been proposed [3,4]. The sim-
plified line integral or more sophisticated geometrical approxima-
tions also neglect some important physics aspects that are inherent
to ET, including scatter and attenuation in the object under inves-
tigation, interactions within the collimator in SPECT, positron range
in PET, or particle interactions within the detector crystals. For the
reconstructed f activity distribution to accurately estimate the
actual activity distribution, the SM should precisely reflect the real
probability controlling the physical experiment, ideally including all
physics and geometrical effects.

As soon as 1985, Floyd et al [5,6] suggested that a more realistic
model of a SPECT acquisition be used for SM calculation and pro-
posed to have that model established using Monte Carlo simula-
tions. Indeed, at that time, Monte Carlo (MC) simulations were
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already shown to accurately reproduce SPECT acquisitions and
offered the possibility to account for many physical characteristics
of the acquisition system (energy window setting, energy and
spatial resolutions, radius of rotation defining the solid angles
through which a given point in the object is seen by the detector)
and for the object-dependent scattering medium in which the
photons propagate and undergo scatter and attenuation. The
implementation as proposed by Floyd et al was only in 2D, ie
reconstruction of a 2D image including 1,026 voxels, from a tomo-
graphic acquisition of 180 views of 64 measurements, for compu-
tation time reasons. The same idea of MC-based SM calculation was
proposed for PET in 1988 [7] with a complete modeling of Compton
scattering, detection efficiency, attenuation, positron range and
non-collinearity of the annihilation photons, still in 2D. The exten-
sion to fully 3D reconstruction was introduced in 2004 for Tc-99m
SPECT by Lazaro et al. [8,9], with MC calculation of the SM modeling
scatter and attenuation in the object and accounting for the
detector response function (DRF). This initial report showed a
definite advantage of iterative reconstruction using the MC-based
SM compared to iterative reconstruction accounting for attenuation,
scatter and DRF using an analytical SM model (Fig. 1). In PET, the use
of a MC-calculated SM in fully 3D was reported first for small ani-
mal imaging [10], modeling the geometric response of the system
and photon scattering within the detector. Based on these seminal
studies that demonstrated the feasibility of accurate SM calculation
based on comprehensive 3D MC modeling of object and/or detector
features, many investigators have extended the original ideas,
evaluating the benefit of making the SM more accurate, and pro-
posing solutions to overcome the hurdles associated with the
practical implementation of this approach.

To give an overview of the importance of simulations for
accurate image reconstruction in PET and SPECT, the outline of the
paper will be as follows. Section 2 will explain how the simulation
of the detector performance and of the whole imaging settings can
offer an elegant approach for quantitative image reconstruction in
ET. Section 3 will present the challenges associated with this
approach, while Section 4 will discuss the applications investi-
gated so far and associated performance, before drawing some
conclusions.

2. How can simulations contribute to accurate image
reconstruction?

2.1. Deriving SM using simulations

SM calculation requires each Rjj entry of the SM to be esti-
mated. This probability that a y photon or a positron emitted in
voxel j of the object be detected in projection bin i depends not
only on the type of particle, and on the detector features, but also
on the object properties, which impact the interactions that
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Fig. 1. Very first study demonstrating the feasibility of 3D SPECT reconstruction
using a system matrix (SM) calculated using Monte Carlo (MC) simulations. Qua-
litative comparison between a simulated SPECT image reconstructed using MLEM
involving either an analytical SM including attenuation and point spread function
correction applied on scatter corrected projections (MLEM-C) or using a SM esti-
mated using MC simulation (F3DMC). The cylindrical inserts are less distorted using
the Monte Carlo SM. Adapted from ref [9] in which all reconstruction details can
be found.

particles emitted in the object will undergo. Therefore, for a given
acquisition protocol involving a specific radiotracer and detector, a
different R should ideally be calculated for each patient (or ani-
mal). The major advantage of using a simulation approach to cal-
culate R is that every phenomenon involved in the image forma-
tion process can a priori be accounted for in the reconstruction as
long as it can be modeled using simulations. The simulation-based
SM calculation is especially appealing for modeling phenomena
for which there is no simple analytical model, such as those gov-
erned by a succession of probability laws, or by specific detector or
patient features. Simulations can also be extremely useful for
determining the parameters of an analytical model that is then
used to produce the SM. In that latter case, SM entries are not
directly derived from simulations, but they are set via a model that
is itself parameterized using simulations. To distinguish between
these two approaches, we will call these latter SM as MC-driven-
SM, while MC-SM will refer to matrices for which each entry is
directly derived from simulations.

A SM can also be factorized into a product of independent
submatrices, each describing an aspect of image formation
(detector geometrical component, particle interactions within the
object, particle interactions within the detector, positron range in
PET, etc) [11]. This reduces the size of the matrices to be stored and
allows for an independent computation of each contribution using
the most appropriate model. In that approach, only one or some
components can be calculated using MC simulations, while oth-
ers can be accurately set analytically [12]. This decomposition of
the SM will be called factorized SM in the following.

2.2. Effects modeled in simulation-based SM matrices

Simulations are used either to comprehensively model the
detector response function (DRF), or to model the probability of
particle interactions within the patient, or both.

In SPECT, Floyd et al initially modeled the scatter and attenua-
tion occurring in the object or patient to derive an MC-SM (2D
approach), already demonstrating the qualitative and quantitative
gain brought by the method [5,6] in 2D. Then, the same group
included the DRF in their model. In SPECT, the DRF depends on the
distance between the source and the collimator. This distance
dependence is due to solid angles defined by the collimator holes
and results in a position dependent non-symmetry in the recon-
structed image point response. Modeling this effect in the MC-SM
led to an impressive improvement in the spatial resolution of the
reconstructed images (FWHM of a line spread function reduced by a
factor of ~2, [13]). This effect is now almost systematically com-
pensated for in SPECT iterative reconstruction using an analytical
(as opposed to a MC) model [14] but this early work demonstrated
the importance of accounting for the DRF in SPECT reconstruction.
The DRF consists of a geometric component, a septal penetration
component and a collimator scatter component. The geometric
response can be easily modeled analytically based on the detailed
geometric specifications of the hole and septa of the collimator and
is the dominating component for low energy radionuclides. The
septal penetration and collimator scatter response are more difficult
to model and should not be neglected for radionuclides emitting
medium or high-energy photons, such as I-123, In-111, Ga-67 and I-
131. Simulations are then extremely helpful to account for these
components. They can be used to generate a table of DRF as a
function of the distance between the source and the detector for a
MC-driven-SM approach (eg, [15-18]) or to directly calculate the
MC-SM entries (eg, [19]).

In PET, the very first attempts of MC-SM calculation included the
detailed modeling of photon interactions within the detector
(Compton scattering, detection efficiency, attenuation), the positron
range and the non-collinearity of the annihilation photons, in 2D
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brain PET [7], but did not model the interactions within the object.
The MC modeling of the detector response was described in small
animal imaging [10,20,21] in 3D, but again, the interactions within
the object were not accounted for. A complete MC modeling
including the interactions both in the various components of the
detector and in object was described in Shokouhi et al [22] for small
animal PET, using a simplified model for the attenuation medium
(homogenous water cylinder 35.5 mm in diameter and 20.23 mm in
length) in C-11 imaging. A few studies also modeled the positron
range (eg, [23-25]). Although the modeling of the positron range
can be ignored for standard radionuclides in clinical scans (such as
F-18, C-11), it becomes especially important for emitters with a
large positron maximum energy, such as Rb-82 (Eax=3.15 MeV,
positron range ~ 2.6 mm in water), Ga-68 (Eyax=1.9 MeV, positron
range ~ 1.35 mm in water), Cu-60 (E;ax=3.77 MeV, positron range
~3.1 mm in water), and Cu-61 (Eya.x=1.21 MeV, positron range
~13 mm in water), in small animal imaging where a submilli-
metric spatial resolution is targeted. It can be modeled either in a
MC-SM approach, or MC simulations can be used to determine the
blurring effect due to positron range for a given radionuclide that is
then incorporated in a factorized MC-driven-SM in which other
components are modeled analytically [23,24]. To avoid the com-
putational burden associated with an MC-SM estimate (see Section
3.1), an MC-driven-SM was also used to accurately model the inter-
crystal scattering and penetration and the intra-crystal count dis-
tribution in small animal PET [26] and in human PET [27] (Fig. 2). A
factorized SM involving a MC simulated component for describing
the detector response was also reported for clinical PET [28] and for
a small animal PET scanner involving planar rotating detector
heads [12].

In ET, the classical use of a grid of voxels to describe the
reconstructed image is not the only possible representation. In
particular this description does not fully exploit the symmetrical
arrangement of PET detectors along a ring. Alternative repre-
sentations include the use of polar voxels [29,30], spherically
symmetric basis functions also known as blobs [31-34] or natural
pixels [35]. In the spherically symmetric basis functions and nat-
ural pixel representations, the object is represented by a sum of
smoothed functions. The SM corresponding to these various
representations is not necessarily easy to calculate for a realistic
detector geometry. MC simulations alleviate this problem, as the
SM elements can be easily determined for any pixel representa-
tion. In PET, natural pixels values have been calculated using MC
simulations [35] in 2D, and Cabello et al presented a detailed
comparison of the reconstructed image properties as a function of
whether the MC-SM calculation was based on cubic voxels, polar
voxels and spherically symmetric basis functions [36].

3. Challenges for simulation-based tomographic
reconstruction

Although theoretically extremely appealing, the SM calculation
based on MC simulations faces significant challenges: the com-
putational time required to obtain a statistically robust estimate of
each Ry entry, the storage of the SM, and the computational time
needed for reconstructing data based on a large and non-sparse
SM matrix. Several strategies have been suggested to address
these challenges and make MC-based calculation of SM tractable.

3.1. Computational time issues for SM calculation and SM statistical
quality

When calculating each Ry entry using MC simulations, the
statistical quality of Ry will depend on how many events were
used to estimate its value. The greater the number of events, the
better the statistical quality of R; and the more accurate the
reconstructed image (Fig. 3). Obtaining an R estimate with a
satisfactory statistical quality might not be an issue when there are
many events emitted in voxel j that are detected in detector bin i,
but when rare particle histories link i and j, then numerous par-
ticles will have to be simulated to accurately estimate Rjj. Simu-
lations involving a large number of particle histories are thus
needed to get a robust estimate of the many Ry, including entries
with a low probability.

A first approach that can be used to alleviate the computational
burden associated with MC-based calculation of the SM is to
develop faster and dedicated MC simulators. The MC simulation
codes classically used in ET, such as, for instance, Geant4 [37], GATE
[38,39], Simset [40], SIMIND [41], or PeneloPET [42], are not opti-
mized for SM calculation in terms of computational efficiency.
When the only purpose of a MC simulation code is to calculate the
SM, simplifications can be made and the code can become far more
efficient. Examples have been described in SPECT (eg [43-45] and in
PET (eg, [21,46,47]).

Another approach is to take advantage of the scanner sym-
metries to increase the statistical quality of each entry, and reduce
the storage space needed [10,36]. Indeed, due to the scanner
symmetries, if omitting the object-related effects (that are not
symmetrical in general), several Ry are theoretically identical. In
PET, the detector presents axial and in-plane reflection symme-
tries (eg, [21,46,48,49]). Ignoring edge and block effects, one can
also assume some translational symmetry [46]. Accounting for
these symmetries, the number of SM entries can be reduced by
one or two orders of magnitude (eg, [46,48,49]). Using the same
idea, it has also been proposed to use so-called quasi-symmetries,
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Fig. 2. Impact of modeling the intra-crystal count distribution (intraC: B), or the inter-crystal scattering and penetration (interC: C), or both (CRF: D) in the SM used for PET
reconstruction instead of using a geometric model linking the center of two crystals to define the LOR (GEOM: A). The most accurate SM (D) yields the highest contrast
recovery (CR) as illustrated in the graph corresponding to measures performed in the smallest sphere of this simulated phantom. Adapted from Ref. [27] in which all

reconstruction details can be found.
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Fig. 3. Impact of the number of events simulated to estimate the SM on the per-
centage of events located at a wrong position in the reconstructed images of a
simulated phantom. The impact of filtering the SM using a Principal Component
Analysis is also shown (10+PCA). Phantom and reconstruction details are given in
ref [9].

ie to assume that SM elements that are not strictly identical can be
set to the same value [46]. The reduction in the number of SM
entries to be estimated then depends on the definition of “nearly
identical” and on the desired accuracy in the final reconstructed
images.

The number of scanner symmetries that can be taken advan-
tage of is limited by the shape of the voxel and the reconstruction
grid definition. The conventional cubic voxel (ie a Cartesian grid)
discretization limits the number of symmetries that can be used.
Other discretizations, such as the use of polar voxels or blobs
discussed above, increase the number of possible symmetries
([50,51] in SPECT, [36] in PET), thus reducing the number of Rj
matrix to be estimated, hence the computational cost.

The main limitation of this approach is that symmetries or
quasi-symmetries only apply to detector-related effects. The object
under investigation (animal or patient) does not present symme-
tries. As a result, the object-related effects have to be dealt with
before reconstruction, or using a factorized SM in which the
components involving symmetries and the others are separated.

The SM can be filtered in some way, to reduce the noise
affecting each Ry entry. Several filtering methods have been sug-
gested. One consists in using a threshold in probability so that
each Ry lower than that threshold is set to zero, ie the corre-
sponding probability of occurrence of that event is neglected. A
single threshold can be set for the entire SM (|12,52-54]), or for
each LOR and associated channel of response [46], and the level of
filtering can be tuned by changing the threshold. Another
approach consists in using a Principal Component Analysis for SM
filtering [9], where the number of principal components deter-
mines the strength of the noise removal (Fig. 3).

Last, approximations can be made to speed up the SM calcu-
lation using a simplified model of activity distribution within each
voxel (for instance, a point source at the center of a voxel instead
of a uniform activity distribution) [55].

3.2. Matrix storage

In 3D imaging, the number of matrix elements is extremely
high, as it is equal to the number of detector elements over all
projection lines (or LOR in PET) times the number of voxels to be
reconstructed. As an examples, in the eXplore Vista-DR (GE) small
animal PET scanner with an axial field of view (FOV) of 4.6 cm and
a transaxial FOV of 6.8 cm, the number of LOR is greater than 10
millions. When reconstructing a 175 x 175 x 62 voxel volume in
that scanner, the number of entries in the SM will be greater than
10'3 [46]. The resulting SM would therefore require several TBytes

to be stored, which is practically not feasible on a conventional
workstation. In clinical PET and SPECT, the number of entries in
the SM is of the same order. Yet, many of the SM entries are
actually null. Indeed, every LOR in PET can detect coincidences
from only a small portion of the FOV. The voxels “feeding” a given
LOR are sometimes called channel of response (CHORD) [56] for
that LOR. Similarly, in SPECT, a projection bin only detects events
coming from a small region of the gamma camera FOV. Therefore,
the SM is extremely sparse and the number of non-null matrix
elements to be stored is considerably reduced. Accounting for the
detector geometry only, typically less than 10% of SM elements are
non-zero. Sparse matrix techniques can then be used to store the
SM [57]. However, this high sparsity is only observed when
ignoring scatter events. Indeed, because of scatter, a particle
emitted in any voxel of the FOV can be detected in almost any
detector element. Accounting for object scatter in the SM therefore
considerably decreases the sparseness of the SM, making matrix
storage and computation time severe hurdles. Other solutions
have then to be found to make the use of MC-based SM tractable,
one of these being the setting of low Ry values to zero, as
explained in Section 3.1.

When the SM is small enough (up to several GBytes, [58]), it
can be computed once for a detector geometry and stored on disk
in a sparse matrix format to be subsequently used for any recon-
struction involving the same detector set-up. Yet, this precalcula-
tion is only appropriate for object-independent SM, hence redu-
cing the potential of the MC-based SM approach. Various strate-
gies can be used to handle the storage burden, including using a
database for gathering all values needed to derive SM entries [10],
taking advantage of the detector symmetries [36,46,54], or
adjusting the sampling as a function of the SM component [48].
The factorization of the matrix into independent components also
helps in handling the large amount of data [12]. Some SM can even
be kept in the computer random access memory (RAM) for
increasing the reconstruction speed [46].

Alternatively, some MC-SM components can be calculated on
the fly, avoiding the need for storing the whole SM matrix on disk
(e.g., [24,59,60]), based on realistic approximations, such as the
low frequency nature of the spatial distribution of scatter events
for instance.

3.3. Reconstruction time

As discussed above, SM incorporating a detailed description of
all detector and object effects are no longer sparse. In addition,
these intricate SM are often poorly conditioned, ie difficult to
invert. This has two consequences: the ill-conditioning leads to a
slower convergence rate, and the low-sparsity yields long com-
putation time at each iteration of the iterative reconstruction
algorithm. All together, this increases the reconstruction time [12].
An elegant approach to deal with the increased computation time
produced by complex SM is a two-level reconstruction algorithm,
in which both a simplified SM and an accurate SM are used
alternatively [24]. The simplified SM ensures efficient computation
while the accurate SM retains the accuracy of the final solution.
The algorithm consists in compensating for the error introduced
by the simplified SM by introducing a correction term. In that
approach, the accurate SM is not used at each iteration, so that
computation time is saved. The resulting images are still very close
to those obtained when always using the complex SM, but the
reconstruction time is reduced by an order of magnitude.

During reconstruction, any entry of the SM needs to be acces-
sed repeatedly. From that point of view, it is thus advantageous to
have the SM stored in the RAM, instead of calculating the SM
elements on the fly.
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4. Applications

The use of MC-based SM has been reported in SPECT and PET,
both for preclinical and clinical applications. The robustness of the
approach with respect to the number of events used to produce
the SM and to possible errors in SM modeling has also been
investigated and the main results are summarized here.

4.1. Performance achieved with reconstruction involving an MC-
based SM

In pinhole Tc-99m SPECT, the MC-SM reconstruction led to
results very similar to those obtained with an SM estimated using
an analytical approach combined with experimental measurements
of the intrinsic detector response using a pencil beam [58]. This
latter SM was faster to create and handled the projection noise
better than the MC-SM, but the MC-SM avoided the tedious
experimental characterization of the camera response, so each
approach had its own advantages/drawbacks with similar perfor-
mance. In parallel hole Tc-99m SPECT, the use of an MC-SM in
which all detector and object-dependent effects were accurately
modeled was also shown to significantly improve absolute activity
quantitation and spatial resolution with respect to an MLEM
reconstruction approach with associated scatter correction,
attenuation correction, and compensation for the depth-dependent
point spread function [9].

In I-131 SPECT, the importance of accounting for septal pene-
tration by modeling it in a MC-SM was clearly demonstrated in Liu
et al. [19].

In F-18-FDG small animal PET, the use of an MC-SM modeling
the positron range, crystal penetration and inter-crystal scatter led
to only slight improvement in terms of spatial resolution and
contrast with respect to SM calculated using geometrical models
only [47].

In F-18-FDG whole body PET, the MC-SM significantly
improved the contrast recovery in hot and small spheres with
respect to a multiray Siddon projector [54], but these results were
obtained without any scattering |/ attenuation in the object. A
detailed MC-based modeling of crystal photon interactions in the
SM significantly improved the stationarity of the spatial resolution
in the reconstructed image [27] (Fig. 4), as well as the contrast
(Fig. 5).

Based on the literature, the applications that benefit the most
from MC-based SM are those for which simplified SM are coarse
approximations of the real imaging system response. These
include all SPECT applications involving isotopes that significantly
interact with the collimator through scatter and undergo septal
penetration such as [-123 or [-131 (e.g., [ 19]). In PET, so-called dirty

A
1M1+ 11 -+

isotopes, involving a complex decay scheme, such as 1-124 [25],
and isotopes for which the mean free-path in water is high with
respect to F-18, also benefit the most from MC or MC-driven SM.

Yet, the gain in accuracy due to the thoroughly computed MC-
based SM can be mitigated by the statistical noise affecting the SM
matrix and a trade-off has to be found between the level of
complexity modeled in the SM and the statistical robustness of its
entries [25]. For instance, in I-124 PET mice imaging, quantitative
accuracy was easier to achieve by modeling a uniform object
attenuation medium, instead of accounting for its true hetero-
geneity, as this would require a huge computational effort to
soundly estimate each SM entry [25].

4.2. Impact of the noise present in the SM

The impact of the noise affecting the SM entries has been
studied in several reports. It has been shown that the convergence
rate of the reconstruction algorithm towards the true activity
values is significantly faster when the number of events used to
produce the SM is increased [22], ie when the SM entries are less
noisy. It was also found that the impact of noise in the SM
depended on the iterative reconstruction scheme and on the
number of iterations: the greater the number of iterations, the
higher the effect of noise in the SM [52]. As expected, SM gener-
ated using a higher number of events produce images with less
artifacts and higher signal to noise ratios than those obtained with
an SM derived from less simulated events [9,12,52,53] (Fig. 3). PCA
filtering of the SM also improved the reconstructed image accu-
racy (Fig. 3) and the signal to noise ratio (SNR) [9] while the
impact of a threshold applied on the SM to prune low probability
values was not easily predictable: some thresholding can actually
improve the SNR in the reconstructed images [50]| but can also
reduce image accuracy [12].

The statistical quality of the SM can be estimated using a
Relative Mean Error (RME) defined as follows:

RME = (Zn;;~'/%)/N 2

where nj; is the number of events originating from voxel j and
detected in detector bin i used for the SM calculation and N is the
number of non-zero entries in the SM [10]. RME is a global figure of
merit however and fails to reflect local inaccuracies in the SM [53].

A theoretical study [61] actually established a link between the
errors present in the SM and the errors in the reconstructed images,
making it possible to predict how many events should be simulated
for SM calculation to ensure that the artefacts in the reconstructed
images caused by statistical errors in the SM are small compared to
the statistical Poisson noise in the measured projections. They
showed that the total number of detected events in the forward
projection should be more than 1/a times the total number of
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Fig. 4. Impact of modeling the intra-crystal count distribution (intraC), or the inter-crystal scattering and penetration (interC), or both (CRF) in the SM used for PET
reconstruction instead of using a geometric model linking the centers of two crystals to define the LOR (GEOM) on the stationarity of the spatial resolution in the recon-
structed images. The most accurate SM (CRF) yields a stationary spatial resolution in all directions (A: Radial, B: Tangential and C: Axial). Adapted from Ref. [27] in which all

reconstruction details can be found.
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Fig. 5. Impact of modeling the intra-crystal count distribution and the inter-crystal scattering and penetration (C: CRF) in the SM used for PET Ordinary Poisson -OSEM
reconstruction instead of using a geometric model linking the centers of two crystals to define the LOR (B: GEOM) shown on clinical images. The image provided by the
manufacturer using a RAMLA algorithm without any detailed modeling of interactions in the detector crystal is also shown (A). The benefit of refined modeling of the
interactions in the crystal clearly appears along the spine through which profiles have been drawn (right). Adapted from Ref. [27] in which all reconstruction details can

be found.

detected events in the data set, where a is a user-defined tolerance
factor, typically 0.01. This rule appears appropriate when the noise
level is low enough in the projection data, but at high noise level,
this theoretical derivation does not apply, as it is based on a linear
approximation (first-order Taylor series) that does not match well
the nonlinear properties of iterative reconstruction.

4.3. Impact of modeling errors in the SM

Although the MC approach has the potential to produce a
highly accurate description of the imaging system response for a
given object, the quality of this description will depend on how
well the detector and the object specifications are modeled. For
instance, in SPECT, even small discrepancies between the colli-
mator specifications provided by the manufacturer and the actual
collimator features can yield significant differences between
measured and simulated data. Although several articles deal with
the impact of statistical errors in the system matrices (cf Section
4.2), to the best of our knowledge, few reports extensively studied
the impact of systematic errors in the SM model. For instance, the
voxel grid used for the SM calculation can be slightly misaligned
with respect to that corresponding to the measured activity and
attenuation maps. In human SPECT, small misalignments (~2 mm)
did not impact the reconstructed images much, but misalignments
greater than 5 mm would produce strong artifacts [9].

5. Conclusion

MC-based SM allows for a very accurate modeling of the ima-
ging response system, possibly accounting for most detector and
object-related effects. Yet, the computational burden associated
with this approach has limited its widespread application so far. A
convenient approach to make it tractable is to factorize the SM
into different detector and object-related components, and to limit
the MC calculations only to those effects that cannot be precisely
modeled analytically. Another practical approach is to para-
meterize an analytical description of the SM based on MC calcu-
lations. Using different SM along the iterative reconstruction
process to retain the accuracy of MC-SM in acceptable computa-
tion time is also an option. MC-based SM might be the only
method to achieve accurate quantification for radiotracers invol-
ving radionuclides with a complex decay scheme, for detectors
with a complicated geometry, or for making the most of what
SPECT and PET can offer. Efforts should then be pursued to facil-
itate its implementation and take full advantage of its high
potential. The rapid evolution of computational resource will cer-
tainly contribute to the more systematic implementation of MC-
based reconstruction, in which both the object and the detector
particularities will be more systematically introduced. When

object-dependent effects are modeled in the MC-based recon-
struction, it can even be viewed as a component of personalized
medicine, as image reconstruction then fully incorporates the
specific patient characteristics.
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