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Iterative Reconstruction of SPECT Data
With Adaptive Regularization

Cyril Riddell, Irène Buvat, Annarita Savi, Maria-Carla Gilardi, and Ferruccio Fazio

Abstract—A nonlinear regularizing least-square reconstruction
criterion is proposed for simultaneously estimating a single-photon
emission computed tomography (SPECT) emission distribution
corrected for attenuation together with its degree of regulariza-
tion. Only a regularization trend has to be defined and tuned once
for all on a reference study. Given this regularization trend, the
precise regularization weight, which is usually fixeda priori, is
automatically computed for each data set to adapt to the noise
content of the data. We demonstrate that this adaptive process
yields better results when the noise conditions change than when
the regularization weight is kept constant. This adaptation is
illustrated on simulated cardiac data for noise variations due to
changes in the acquisition duration, background intensity, and
attenuation map.

Index Terms—Attenuation, biomedical image processing, image
reconstruction, inverse problems, regularization, single photon
emission computed tomography (SPECT).

I. INTRODUCTION

T ODAY’S single photon emission computed tomography
(SPECT) tomographs are multiheaded devices equipped

with a transmission source that allow for the measurement of
the emission distribution of a patient together with its attenua-
tion characteristics [1]–[3]. Attenuation correction can thus be
performed, which is essential to the quantification of SPECT
studies [4]–[6]. Iterative algorithms are compulsory for recon-
structing images from SPECT data with the aim of quantifica-
tion using attenuation correction [7]. Iterative methods present
some drawbacks such as the noise amplification as the number
of iterations increases. To prevent large noise amplification, reg-
ularization is often used, and the resulting solution is then a
tradeoff between fidelity to the measured data and bias due to
the regularity of the solution constrained through the regulariza-
tion term [8]. This implies that a regularization parameter is set
a priori, in a way that optimizes this tradeoff for a given situa-
tion. This regularization parameter may then be kept unchanged
for all the patients enrolled in a given protocol, considering that
conditions do not differ much from one study to another. This
is only partially true, since activity distribution and noise char-
acteristics do vary amongst patients. According to the size and
physiology of the patient, the tracer uptake will vary in the target
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organ, as well as in the peripheral organ (such as the liver in car-
diac studies), which may generate additional background noise
for constant acquisition conditions. The total duration of a scan
can be adjusted to compensate for change in patient size, but this
results in variation of the acquisition conditions themselves.

In the following study, we describe a technique for simul-
taneously estimating the regularized least-square solution of a
SPECT reconstruction problem together with its degree of regu-
larization to automatically find an appropriate tradeoff between
noise and bias as the noise in the data changes. This adaptation
is illustrated on simulated cardiac data for noise variations due
to changes in the acquisition duration, background intensity, and
attenuation map, as can be encountered in clinical practice.

II. THEORY

An image is estimated from a finite set of SPECT attenuated
measurements by solving a linear system such as

(1)

where is the unknown activity distribution, is the attenuated
SPECT sinogram, and is a matrix that models a SPECT
tomographic acquisition with nonuniform attenuation. In
this work, we propose anonlinear regularizing least-square
approach that builds upon the following normal equations:

(2)

where is the discretized attenuated Radon trans-
form normalized by the Chang correction[9], while
stands for the ramp filtering operation. The symboldenotes
the transpose matrix of. Vector is an intermediate unknown
image vector that is defined such that , to preserve the
system symmetry. The ramp filter and the Chang correction are
used as a preliminary approximate inversion making the matrix

close to the identity matrix, in order to speed conver-
gence up and work with normalized operators [10], [11]. Equa-
tion (2) leads to the following linear least-square minimization
problem:

(3)

A regularization term is added to avoid noise amplifica-
tion by constraining the norm of the image gradient

(4)
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where stands for the normalized Laplacian operator and
stands for the dot product. The following regularizing least-
square functional is obtained:

(5)

For a given strictly positive , this functional has a unique
minimum that is a compromise between fidelity to the data [the
term ] and regularity of the solution [the term ]. Kang
and Katsaggelos have shown that it is possible to simultaneously
estimate an image and its degree of regularization by making
an explicit dependence between them [12]. The simultaneous
estimation is obtained by finding the minimum of

(6)

under the constraint of alinear relationship between the regu-
larization parameter and the regularizing functional

(7)

By so doing, is made proportional to and ,
which both increase with the noise in the data. The value ofcan
be set such that the function is monotonically increasing,
mapping into and such that the functional is
convex with a unique minimum.

The minimum of with respect to coincides with the min-
imum of with respect to and is found by solving

(8)

This system can be solved with a successive approximation
scheme [12]. However, much faster convergence is obtained
when using the conjugate gradient algorithm. To apply the con-
jugate gradient to this nonlinear problem, is estimated at
each iteration but changed only if the new estimate ofis dif-
ferent enough from its current value. When is updated, the
conjugate gradient is restarted from the current estimate of the
distribution to solve the system defined by the new value of.
A similar trick was used by Kaufman for applying a positivity
constraint with the conjugate gradient [13].

In this approach, the regularization strengthis modulated
by the value of that we call the regularization “trend” in the
following. Our strategy involves setting this regularization trend

so that the algorithm produces a given regularization strength
for a reference study, for which this regularization strength is

optimized. Then, solving system (8) must produce a decreased
or increased regularization strength when the acquisition con-
ditions are improved or degraded whileis left unchanged. In
order to keep constant, whatever the true activity distribution

, must be normalized by . Since the true dis-
tribution is unknown, the norm is estimated by

(9)

III. EXPERIMENTS

A segmented computed tomography (CT) slice from the
Zubal phantom at the heart level was considered [14]. The
simulated activity distribution was obtained by setting the heart
muscle to 10 counts/s, the blood pool to 3 counts/s, the lungs to

Fig. 1. (a) Emission and (b) transmission images used for the simulation of
SPECT data.

2 counts/s, while all other tissues were merged into a uniform
background set to 1 [Fig. 1(a)]. The image was projected in
parallel geometry over 360with 120 steps (bin size 4 mm),
by taking attenuation into account. The attenuation map was
taken as the nonsegmented CT slice ([Fig. 1(b)] scaled to
mimic attenuation undergone by Tc photons (attenuation
of 0.15 cm in water) and by Tl photons (attenuation of
0.17 cm in water). With Tc , the total activity in the
sinogram was equal to 2675 counts/s. Four levels of noise were
considered, corresponding to acquisition times of 50, 100, 200,
and 500 s. Two additional variations were introduced with
Tc data to mimic variations of uptake in peripheral organs:
1) background and lung values were zeroed and 2) background
and lung values of the original distribution were doubled. In
total, 16 configurations were thus considered (three activity
distributions four acquisition durations for Tc , four
acquisition durations for Tl ) to study the robustness of the
regularization trend determined from one activity distribution
and then applied to different ones.

Given the known emission distribution , noise and bias in
a reconstructed image were characterized by calculating the
normalized mean-square error (NMSE) between the estimated
activity distribution and the true activity distribution

(10)

Two regularization approaches were compared: fixed regu-
larization (FR), i.e., the conjugate gradient applied to (5), and
adaptive regularization (AR), i.e., the conjugate gradient applied
to (8).

For a given data set, could be calculated using the con-
jugate gradient with FR. On the other hand, AR automatically
determined for any data set, once was fixed. To set the
regularization trend, a particular configuration was considered,
corresponding to a 100-s acquisition time with the Tcatten-
uation map and the nonspecific activity consisting of two in the
lungs and one in the background. For this study, thevalue min-
imizing the NMSE between the estimated activity distribution
and the true activity distribution was found equal to 0.99. The
corresponding was deduced and was equal to 3.0. This fixed

was then kept to process all other 15 configurations, leading
to a different value for each configuration.

For all 16 data sets, we computed the NMSE error of the
solution generated by AR, and compared this error to the lowest
NMSE as obtained using the conjugate gradient with FR with
varying by steps of 0.1.
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TABLE I
AR FOR Tc ATTENUATED DATA, WITH A BACKGROUND VALUE

OF ONE AND LUNG VALUES OF TWO

TABLE II
AR FOR Tl ATTENUATED DATA, WITH A BACKGROUND VALUE

OF ONE AND LUNG VALUES OF TWO

IV. RESULTS

Tables I –IV show the performances of adaptive regulariza-
tion for : for all acquisition times (first column), the reg-
ularization values obtained by solving system (8) with the
conjugate gradient are given in the second column together with
the corresponding NMSE, denoted , in the third column. FR
was used to find the lowest NMSE, denoted, that is given in
the fourth column. The NMSE that would be obtained ifwere
kept fixed to 0.99 whatever the data set is denoted. The
last two columns indicate the respective performances of AR
and FR by giving the percentage difference between the auto-
matically found value and the optimal , and between the
NMSE corresponding to the fixed regularization parameter
and the optimal .

Convergence was obtained after 15 iterations of the conjugate
gradient with both fixed and adaptive regularization (curves not
shown).

Table I shows the results obtained with the Tc attenuated
data with a background value of one and lung values of two.
As expected, AR increased the regularization parameter for the
acquisition duration of 50 s that was shorter than that used for
optimizing (the data set used for the optimization was 100 s
in duration). On the other hand, the regularization parameter
decreased when considering acquisition durations greater than
100 s as the data got less noisy. For all acquisition times, the
NMSE corresponding to the regularization parameter automat-
ically found using AR was very close to the smallest NMSE
that could be found by manually optimizing. AR yielded reg-
ularization values more than four times higher for the shortest
acquisition duration compared to the longest acquisition dura-
tion. When keeping the regularization value of 0.99 constant for
all data sets, the resulting NMSE was higher than the optimal
NMSE by as much as 27%.

Table II illustrates the automatic changes infor changes
in the simulated data sets induced by considering the attenua-
tion map corresponding to Tl instead of Tc . As photons
emitted by Tl are more attenuated by the human body than
photons emitted by Tc , the Tl data were noisier than the
Tc data for the same acquisition duration. Therefore, an in-

TABLE III
AR FOR Tc ATTENUATED DATA, WITH BACKGROUND

AND LUNG VALUES EQUAL TO ZERO

TABLE IV
AR FOR Tc ATTENUATED DATA, WITH BACKGROUND VALUE

OF TWO AND LUNG VALUES OF FOUR

crease of the regularization values was expected compared to
those obtained for Tc (Table I), for the same acquisition du-
rations. Table II demonstrates this behavior, with regularization
values varying from 0.40 to 1.54 for 500–50 s acquisition dura-
tions for Tl data, to be compared with regularization values
varying from 0.36 to 1.42 for Tc . NMSE were within 2% of
the lowest NMSE in each case, whereas when using fixed regu-
larization, NMSE greater than the lowest NMSE by up to 15%
were observed.

Table III shows the performance of AR for Tc attenuated
data when background and lung values were set to zero while
they were different from zero in the configuration used for op-
timizing . Without background, the data were less noisy as a
zero background appears in the data as zeroes with a null vari-
ance. Therefore, for a given acquisition duration, the regulariza-
tion parameter was expected to be smaller than for the same data
including a background (Table I). This is what was actually ob-
served, and the NMSE corresponding to the AR reconstruction
were always of the same order (for the 50-s acquisition time) or
smaller than those obtained using the FR reconstruction. How-
ever, the regularization value that yielded the minimum NMSE
was never reached.

Table IV shows the AR results when lung and background ac-
tivities were twice as much as those of the study used to calibrate
the regularization trend. In that instance, AR yielded smaller
regularization values than those obtained with the original back-
ground and lung activities (Table I). This is because increasing
the background and lung activities changed the structures in the
images, and did not simply correspond to a change of the noise
in the data. However, the change in regularization value with
respect to the acquisition duration was consistent. When com-
paring to the NMSE obtained for a fixed regularization value,
AR yielded more homogeneous results for the different acquisi-
tion durations, with NMSE 4%–13% higher than the optimal
NMSE, while NMSE were 0%–20% higher than the optimal
NMSE with fixed regularization.

Fig. 2 displays the images corresponding to the data sets pre-
sented in Table I. The images corresponding to a regularization
trend of three (second row) led to a more uniform image quality
(in terms of noise in the image) for the different acquisition du-
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Fig. 2. Tc attenuated data and original background and lung values. Heart muscle reconstruction with fixed regularization (� = 0:99, bottom row) and
adaptive regularization ( = 3:0 middle row and = 5:0 top row).

rations than the fixed regularization (third row). The figure also
illustrates that for a higher regularization trend ( , first
row), even less variation in image quality was obtained for the
different levels of noise in the data.

V. DISCUSSION

Adaptive regularization was demonstrated for SPECT recon-
struction with attenuation correction with a nonlinear regular-
izing least-square criterion based on the approximate inversion
of the attenuated Radon transform using the Chang correction
and the ramp filter. This criterion allowed for the simultaneous
estimation of the activity distribution together with its degree of
regularization, according to the method proposed by Kang and
Katsaggelos [12]. Images computed with fixed regularization
and adaptive regularization required the same number of itera-
tions with the conjugate gradient.

The results showed an effective regularization even though
the regularization term was computed from vectorrather than
from the estimate of the distribution (4). This is because the
Chang correction essentially affects the low frequencies of an
image.

By setting the regularization trend using a reference study,
results close to optimal, in terms of NMSE, were obtained
when varying the acquisition duration and the attenuation map.
Even when the background intensity varied, resulting NMSE
were within 9% of the minimum NMSE when zeroing the
background, and within 13% when the background and lung
activities were doubled.

In all cases, adaptive regularization led to more uniformity in
the image quality with respect to noise changes due to variations
in acquisition duration.

The proposed regularization functional sets a linear relation-
ship between the regularization parameter and the functional it-
self, to make the minimization problem tractable. This linear
dependency might not be strong enough to obtain a regulariza-
tion parameter yielding an NMSE almost identical to the op-

timal NMSE, especially when large variations occur between
two data sets (as when the background and lung activities were
doubled with respect to the background and lung values of the
reference study). There might be other relationships that adapt
more precisely to such variations.

Further work is needed to see if this adaptive technique can
be implemented with alternative regularization constraints that
can preserve the edges of the distribution, and for statistical
criteria modeling Poisson noise, as in the OSEM or weighted
least-square algorithms. Fessler and Rogers have already ad-
dressed the problem of normalizing the regularization constraint
with respect to the weights of the criterion [15].

To demonstrate that the technique could lead to optimal
noise/bias tradeoff, we used simulated data for which the
true activity distribution was known. The method was shown
to yield images with more uniform image quality than fixed
regularization with no additional cost in terms of computation
time. In the clinical context, the true distribution is unknown
and the NMSE is not available. In addition, there is no direct
relationship between a lower NMSE and an improved sensi-
tivity and specificity of the diagnosis. The “best” filtering in the
clinical practice often differs from a mathematical optimum.
Visual inspection of Fig. 2 is, therefore, useful to convince
oneself that adaptive regularization can be set based on a visual
assessment only. If an observer performs better on smooth
images (such as those in the first row of Fig. 2), the method
will adapt to the noise content of the data to always lead to
smooth images. If the noise in the data is lower than that in
the reference study (acquisition duration greater than 100 s in
Fig. 2), the method will yield better spatial resolution (a key
factor for improving diagnosis) without the intervention of
the observer. As the method also yields a regularization value
that is normalized with respect to the patients, the increase or
decrease of this regularization value with respect to a reference
study indicates whether the data set differs in its noise content
from the reference study. Further evaluation on clinical data
will determine whether setting the regularization trend instead
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of the regularization parameter actually reduces the variability
of image quality with respect to real variations in patients phys-
iology and anatomy, and improves the clinical interpretation of
attenuation corrected SPECT images.

VI. CONCLUSION

Adaptive regularization for SPECT nonuniform attenuation
correction was tested for four different acquisition durations,
three background intensity levels and two attenuation condi-
tions. By setting the regularization trend on a given reference
study, the adaptive regularization decreased (or increased) the
regularization strength when the acquisition duration increased
(or decreased) to yield tradeoffs between noise and bias that
were almost independent from the original noise level in the
projections. Adaptive regularization was also obtained when
changing the attenuation map and the background intensity with
respect to the reference study, but strong structural changes in
the activity distribution did not lead to optimal tradeoffs in terms
of NMSE.

Adaptive regularization was demonstrated to be a practical
way of modulating the level of filtering according to the noise
present in the data in order to generate a more homogeneous
image quality from patient to patient.
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