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Abstract
In brain PET/MR applications, accurate attenuation maps are required for 
accurate PET image quantification. An implemented attenuation correction 
(AC) method for brain imaging is the single-atlas approach that estimates 
an AC map from an averaged CT template. As an alternative, we propose 
to use a zero echo time (ZTE) pulse sequence to segment bone, air and soft 
tissue. A linear relationship between histogram normalized ZTE intensity and 
measured CT density in Hounsfield units (HU) in bone has been established 
thanks to a CT-MR database of 16 patients. Continuous AC maps were 
computed based on the segmented ZTE by setting a fixed linear attenuation 
coefficient (LAC) to air and soft tissue and by using the linear relationship 
to generate continuous μ values for the bone. Additionally, for the purpose 
of comparison, four other AC maps were generated: a ZTE derived AC map 
with a fixed LAC for the bone, an AC map based on the single-atlas approach 
as provided by the PET/MR manufacturer, a soft-tissue only AC map and, 
finally, the CT derived attenuation map used as the gold standard (CTAC). All 
these AC maps were used with different levels of smoothing for PET image 
reconstruction with and without time-of-flight (TOF). The subject-specific AC 
map generated by combining ZTE-based segmentation and linear scaling of 
the normalized ZTE signal into HU was found to be a good substitute for the 
measured CTAC map in brain PET/MR when used with a Gaussian smoothing 
kernel of 4 mm corresponding to the PET scanner intrinsic resolution.  
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As expected TOF reduces AC error regardless of the AC method. The 
continuous ZTE-AC performed better than the other alternative MR derived 
AC methods, reducing the quantification error between the MRAC corrected 
PET image and the reference CTAC corrected PET image.

Keywords: PET/MRI, attenuation correction, ZTE MRI, PET quantification

S  Supplementary material for this article is available online

(Some figures may appear in colour only in the online journal)

1. Introduction

One of the main challenges to get accurate quantitative PET images on hybrid PET/MR sys-
tems is to correct for the photon attenuation in the absence of CT and transmission scan. CT 
signal intensity, expressed in Hounsfield Units (HU), is directly related to tissue density and 
the linear attenuation coefficients (LAC or μ expressed in cm−1) are computed at 511 keV 
using a bilinear relationship (Carney et al 2006). In contrast, the MR signal depends on proton 
density and relaxation times; it offers a good soft tissue contrast but does not correlate with 
tissue electron density. Hence, MR-based attenuation correction methods (MRAC) are needed 
for brain PET/MR.

Several MRAC methods were suggested in the literature for brain imaging to generate a 
CT surrogate (pseudo-CT) from MR images and derive an attenuation map. The attenuation 
map can be estimated using the single atlas approach by registering a single average CT tem-
plate to the MR images acquired with a two-point Dixon pulse sequence (Wollenweber et al 
2013, Sekine et al 2016a). This method is commercially available on some PET/MR scanners. 
However, the single atlas approach was outperformed by the multi-atlas approach (Sekine 
et al 2016b). The latter is based on a database of CT and corresponding MR images (Burgos 
et al 2014, Mérida et al 2017). After registering MR images from the database to the measured 
T1 or T2 weighted MR images, weights were assigned to each CT based on a similarity metric 
to the measured MR image. The pseudo-CT was then generated by combining the corre-
sponding CT images of the database with the different weights or probabilities. Atlas-based 
methods show limitations when applied to unusual patient anatomies such as post-operative 
patients with deformed skull or neurological clips, children with different skull anatomy and 
density and preclinical applications. Also, these methods are computationally demanding 
(Sekine et al 2016b) and are highly dependent on the registration quality.

Another family of MRAC methods, referred to as segmentation based methods, consists 
in segmenting images in different tissue classes and assigning a fixed attenuation coefficient 
to each tissue class (Martinez-Möller et al 2009). In Keereman et al (2010) and Cabello et al 
(2015), an Ultra-short Echo Time (UTE) pulse sequence was used to acquire signals in tissue 
with short T∗

2  such as the skull and to separate bone and air cavity interfaces. Segmented bone 
was assigned a fixed LAC in Keereman et al (2010) whereas in Cabello et al (2015), the relax-
ation rate R∗

2 (R∗
2 = 1/T∗

2 ) image obtained from the log of the difference between two short 
TE images was mapped into a LAC map. The authors used a linear relationship established 
between R∗

2 values and CT density in HU to get continuous attenuation values in bone from 
the MR image. Nevertheless, due to relatively long TE (≈100µs) in UTE, the contrast between 
bone and parts of soft tissue is weak, which makes it difficult to identify bone. Consequently, 
a two-points T∗

2  weighted pulse sequence is needed to clear the intermediate T∗
2  structures and 

isolate bone signal resulting in a longer acquisition time (few minutes (Keereman et al 2010)).
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The recent development of zero echo time (ZTE) pulse sequences allows to measure MR 
signals in bone with a single acquisition (Weiger et al 2013). From the ZTE images, bone, 
soft tissue and air were segmented to derive a pseudo-CT which was later used for attenua-
tion correction of the PET image (Wiesinger et al 2016, Delso et al 2015). Recently, pseudo-
CTs with continuous bone density were generated from ZTE image and scaled using a linear 
relationship between ZTE intensity and CT density in HU (Sekine et al 2016c). However, 
the existence of such a linear relationship has not been yet fully investigated. Moreover, ZTE 
signal measured with water and fat suppressed projection imaging (WASPI) (Wu et al 2003), 
a ZTE-based sequence, can be accurately correlated to bone density as shown in Cao et al 
(2008) and Huang et al (2015). The AC map derived from the ZTE MR yields similar results 
as CT when correcting for γ photon attenuation in a bone phantom. All these results suggest 
that an empirical relationship between the ZTE signal and the attenuation map might exist 
(Khalifé et al 2016a).

Currently, all implemented MRAC methods show limitations regarding unusual head anat-
omy and bone density variations. The single atlas approach might not be able to handle unusual 
patient anatomies, intra- and inter-subjects bone density variations (Wollenweber et al 2013). 
Regarding the multi-atlas approach, to the best of our knowledge there is no proof that this 
approach would be able to handle anatomical abnormalities (Burgos et al 2014, Mérida et al 
2017). The advantage of segmentation-based methods is that they should be able to handle 
unusual patient anatomies (assuming that the different tissue classes are segmented properly). 
However, assigning a fixed attenuation coefficients to each tissue class might preclude taking 
intra- and inter-subjects bone density variations into account. Bone density varies in value and 
distribution, thus considering a single value for bone density as a reference is approximate. 
Additionally, taking the bone density variation into account (i.e. intra- and inter-subjects bone 
density variations) in the attenuation map was shown to reduce the bias in PET quantification 
(Juttukonda et al 2015, Ladefoged et al 2015). Consequently, this work describes and tests a 
segmentation-based approach that circumvents these two limitations (abnormal anatomy and 
bone density variations) using the ZTE pulse sequence (Khalifé et al 2016b).

In this paper, we present a generic segmentation-based MRAC method based on the ZTE 
pulse sequence with the potential to handle intra- and inter-subjects bone density variations 
and unusual patient anatomy, while keeping the acquisition time of the ZTE acceptable (e.g. 
<1 min 30 s). The paper is organised as follows. In section 2, the segmentation algorithm of 
the ZTE images to air, soft tissue and bone masks is presented. In order to derive a ZTE-based 
pseudo-CT map with continuous μ values in the bones, the evaluation of the relationship 
between the bone voxels intensity in the ZTE images and in the CT images is then described. 
The performance of the proposed ZTE-based MRAC method for brain imaging is character-
ised and compared to alternative approaches in section 3 on a cohort of 16 patients that under-
went a PET/CT scan followed by a PET/MR examination. The use of the proposed method to 
a non-human primate study is also presented in section 3. The main features of the presented 
method are discussed in section 4 before concluding.

2. Methods

In this study, 16 patients (five females, 11 males), aged 65 ± 6 years (mean  ±  standard devia-
tion), were included for lung or digestive cancer with no pathology in the head. They were 
enrolled after being checked for standard MRI exclusion criteria. All subjects provided a writ-
ten informed consent after a full explanation of the protocol. The study protocol was in accor-
dance with the latest version of the Helsinki declaration and approved by the national ethical 
committee.

M Khalifé et alPhys. Med. Biol. 62 (2017) 7814
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Patients were first scanned about 60 min after [18F]-FDG injection (injected tracer activity 
of 302 ± 92 MBq) in a PET/CT scanner (Siemens Biograph 6, Knoxville, TN, USA), with 
their arms up.

CT images were acquired using a whole-body attenuation correction protocol with 3 mm 
slice thickness and 1.376 × 1.376 mm2 in-plane resolution, tube voltage of 110 kV and expo-
sure set to 80 mA with automatic dose modulation. First, head CT was automatically seg-
mented to remove arms and the table  that appears in the field of view. The resulting head 
CT was registered to MR ZTE image using the Optimized Automatic Image Registration 3D 
method in MIPAV (CIT-NIH, Bethesda, USA) (Jenkinson and Smith 2001). The obtained 
transformation was an affine registration with 12 degrees of freedom (DoF) by minimizing 
a cost function based on normalized mutual information. The registered CT was resampled 
to the ZTE image resolution by means of a trilinear interpolation. The 16 patients CT were 
analysed to study intra- and inter-subjects bone density variations.

Forty-five minutes after the PET/CT acquisition, patients underwent a PET/MR exam  
(GE Signa PET/MR, Waukesha, WI, USA) as a part of this clinical protocol. A bed sta-
tion centred on the head with 3 min PET acquisition was added in the protocol. During the 
PET acquisition, a two-points Dixon pulse sequence (named LAVA-flex in the manufacturer 
nomenclature) used as input for the single-atlas approach (Wollenweber et al 2013) and a 
ZTE (zero echo time) pulse sequence were performed on the head using a 24 channel head-
neck receive coil. The two-points Dixon acquisition parameters were the same as in Sekine 
et al (2016a) with an acquisition time of 18 s (resolution 1.95 × 1.95 × 2.6 mm3, 120 slices, 
field-of-view (FOV) 50 × 50 cm2, flip angle of 5◦). The ZTE pulse sequence was a silent 3D 
radial proton-density weighted sequence (Delso et al 2015, Wiesinger et al 2016) and was 
acquired in the axial direction with the following acquisition parameters: 150 readout points, 
512 spokes, FOV 240 × 240 × 256 mm3, flip angle 0.8◦, bandwidth ±62.5 kHz, number of 
excitation 4, leading to a final image resolution of 1.6 × 1.6 × 1.6 mm3 and scan time of 
1 min 20 s. The PET acquisition lasted 3 min for the head station. PET sinograms raw data 
and MR and CT images were stored for offline reconstruction and processing.

2.1. ZTE segmentation

ZTE images were processed using an in-house program for attenuation maps generation and 
the PET Recon toolbox provided by the PET/MR manufacturer for PET image reconstruction 
in Matlab (The mathworks inc., Natik, MA, USA). First, the ZTE images were bias-corrected 
using the ITK N4-bias filter (Tustison et al 2010) to homogenise image intensity. The air and 
soft tissue peaks of the intensity histogram were fitted using a Gaussian function. This led to 
a clearer separation of the bone and soft tissue intensity as shown in Wiesinger et al (2016). 
However, as the MR image intensity varied between subjects, a normalisation of ZTE intensi-
ties was applied such that the air intensity peak was centred at zero, the soft tissue intensity 
peak was centred at 1 and the bone voxels intensity were the values in between (see figure 1). 
An air mask was then created by applying a threshold of 0.3 on the normalized ZTE image 
which is the distance at 3σ from the air peak value of the fitted air Gaussian (figure 1(a)). The 
distance between the air peak intensity and the soft tissue peak intensity on the histogram 
depends on the ZTE acquisition bandwidth per pixel (Wiesinger et al 2016), which is identical 
in all subjects. Therefore, the 0.3 threshold is consistent for all normalized images. As dentine 
contained inside the teeth appears with low intensities on the ZTE images, it might be mis-
taken for air. Consequently, holes might appear in the teeth after air segmentation. To circum-
vent this misclassification, the Zubal phantom (Zubal et al 1994) was used to approximately 

M Khalifé et alPhys. Med. Biol. 62 (2017) 7814



7818

Figure 1. ZTE images are segmented based on thresholds determined on their 
histogram. (a) Normalized ZTE intensity histogram. Air threshold is given by the 
foot of the descending slope of the air peak. (b) Bone intensity threshold is computed 
by subtracting the soft tissue fitted Gaussian (orange line) from the histogram. The 
resulting histogram (dotted line) contains the bone information. The threshold used 
to create a bone mask is the intersection of the two curves as indicated on the figure.  
The resulting bone mask is shown below at four different slice locations.

M Khalifé et alPhys. Med. Biol. 62 (2017) 7814
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locate teeth position in the ZTE image. The Zubal template was registered to the ZTE image 
using an affine registration with 12 DoF in MIPAV. The volume of the intersection between 
the teeth mask of the registered Zubal phantom and the air mask created from the ZTE image 
was considered as bone.

The bone intensity is obtained by subtracting the soft tissue fitted Gaussian from the nor-
malized histogram after removal of the air peak. The remaining intensities in the histogram 
are then the ones corresponding to the bone voxels and their intersection with the soft tissue 
fitted Gaussian was used to define the bone voxels threshold (see figure 1(b)). This result is 
a segmented skull image. Some morphological operations (watershed and opening-closing 
operations) were applied to remove isolated false positive voxels, if any.

Furthermore, a partial volume effect in the nasal area often yields to a misclassification of 
soft tissue into bone. Structures in these regions cannot be resolved with the MRI spatial resolu-
tion used in this work and the three tissue class intensities overlap in the same voxels leading to 
bone-like intensities although they contain a mixture of soft issue, air and cartilage. To correct 
for this, a volume of interest (VOI) is defined around the sinus and the nasal cavities as follows 
(see supplementary figure 1 (stacks.iop.org/PMB/62/7814/mmedia)): the FOV is divided in 
two equal parts in the Y (left/right) direction and in 3 equal parts in the X (anterior/posterior) 
and Z (superior/inferior) directions; the VOI is defined as the intersection of the last third in the 
Z direction, the middle third in the X direction and the upper half of the Y direction. A different 
threshold is applied in this VOI to correct for the partial volume effect and remove the misclas-
sified voxels from the bone mask. This local threshold is defined on the histogram as 50% of 
the intensity at the intersection between the horizontal axis and the tangent line of the curve part 
lying between 10% and 30% of the soft tissue peak value. After applying this second threshold, 
the identified voxels are transferred from the bone mask to the soft tissue mask (figure 2).

Finally, the soft tissue mask includes the voxels not assigned to neither the air nor the bone 
masks.

2.2. ZTE bone attenuation scaling

As shown in earlier studies (Cao et al 2008, Huang et al 2015), MR ZTE signal intensity 
measured with a WASPI pulse sequence (water and fat suppressed ZTE (Wu et al 2003)) on 
a bone sample correlates with bone density. In this work, we tested in vivo the existence of a 
relationship between the ZTE signal acquired with a ZTE pulse sequence on the bone and the 
bone density measured in HU on the CT images in our patients database. Moreover, a linear 
relationship has been previously used for the conversion of ZTE intensity to density in HU 
(Sekine et al 2016c, Leynes et al 2017), but it has not been explicitely given nor precisely 
justified. To identify an appropriate relationship, a 2D joint histogram was created between 
the bone CT intensities and the normalized ZTE image intensities rebinned in 256 bins for the 
16 patients. Bone voxels were selected on both images (i.e. CT and ZTE) if they met these 
two conditions:

 • voxels have bone-like densities on the CT meaning their densities are within [300, 2000] 
HU. The maximum CT density was set to 2000 to exclude tooth filling artefacts.

 • their 8 neighbours in 2D for every slice fulfil the previous criterion.

The 8 neighbourhood in 2D was used instead of the 26 neighbourhood in 3D because the 
latter would be very conservative in the case of the skull spherical geometry. To determine this 
relationship, we applied a principal component analysis (PCA) (Abdi and Williams 2010) on 
the joint histograms of the 16 patients. The first principal component (PC) explains the largest 
variance of the histograms and the second PC explains the second largest variance while being 
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orthogonal to the first PC. A leave-one-out (LOO) cross validation was applied on the 16 data-
sets to evaluate the accuracy of the model prediction. At each iteration, one joint histogram 
was pulled out for testing and the 15 remaining joint histograms were used for computing 
the model. The model was estimated using the first PC given by PCA of the grouped 15 joint 
histograms and tested against the first PC of the remaining subject. The coefficient of determi-
nation R2 between the predictions and the data from which the model was used to assess the 
quality of the prediction. This was repeated for each joint histogram of the 16 patients.

A relationship was determined by linear regression applied on the prediction of the first PC 
of the 16 patients. The sensitivity of the relationship to the CT-ZTE registration accuracy was 
evaluated by shifting the CT image by one voxel in the six 3D directions.

2.3. PET quantification

2.3.1. AC map generation. Five attenuation maps were created to correct the brain PET emis-
sion data. The reference attenuation map was derived from the CT image, using the bilinear 
relationship to convert HU into LAC values (Carney et al 2006), after having registered and 
rescaled the CT image to the ZTE image. The ‘atlas-based’ attenuation map was the one 
generated using the PET/MR built-in reconstruction algorithm. It used the acquired In-Phase 
Dixon image, usually acquired to distinguish water and fat tissues, to which a mean single-
atlas CT-based attenuation map is registered. The ‘atlas-based’ attenuation map was spatially 
filtered with a default Gaussian kernel of 10 mm by the built-in reconstruction algorithm 
before the PET image reconstruction.

The ZTE images segmented using the three classes based on their attenuating property 
were converted into an AC map as follows: the air class was set to −1000 HU equivalent to 
a LAC of 0 cm−1 by definition and the soft tissue class was set to 31.58 HU equivalent to a 
LAC of 0.098cm−1 at 511 keV based on our CT to LAC scaling at 110 kV. For the bone class, 
three cases were investigated:

 • fixed bone attenuation ‘ZTE fixed’: in which the bone density was set to 1136 HU  
corre sponding to a LAC of 0.151 cm−1 at 511 keV (Keereman et al 2010).

 • continuous bone attenuation ‘ZTE cont’: An AC map was created by scaling bone voxels 
in the ZTE image using the relationship established between normalized ZTE intensity 
and CT density in HU as explained earlier.

Figure 2. To correct for the partial volume effect in the nasal cavities, a different 
threshold is applied on the VOI defined on the image. The false positive voxels are 
removed from the bone mask and transferred to the soft tissue mask.

M Khalifé et alPhys. Med. Biol. 62 (2017) 7814
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 • no bone attenuation ‘no bone’: An AC map ignoring the bone in the segmented ZTE 
image by assigning the soft tissue attenuation value (i.e. 0.098 cm−1) to the bone voxels.

The resulting AC maps are the following:

 • atlas: the vendor atlas-based AC map with default 10 mm spatial smoothing
 • CT: CT-based AC map without smoothing
 • ZTEfixed: segmented ZTE-based AC map with constant bone LAC without smoothing
 • ZTEcont: segmented ZTE-based AC map with continuous bone LAC without  

smoothing
 • nobone: segmented ZTE-based AC map ignoring bone attenuation without smoothing

2.3.2. Spatial smoothing. As shown in Meikle et al (1993), mismatched spatial resolutions 
between the attenuation map and the emission data might cause attenuation artefacts. There-
fore, we studied the effect of a 3D isotropic spatial Gaussian smoothing of the AC maps on 
the PET image. Besides the original AC map resolution, the FWHM of 4 mm was chosen to 
match the PET/MR intrinsic resolution as the attenuation map should match the resolution of 
the emission data in the projection space regardless of the reconstruction algorithm (FBP or 
OSEM). The FWHM of 10 mm was the default blurring applied on the AC map by the ven-
dor. The atlas-based AC map is used with a 10 mm smoothing to assess the vendor-provided 
method. The suffixes ‘filt4’ and ‘filt10’ are added to each AC map name to indicate 4 mm 
smoothing and 10 mm smoothing respectively.

2.3.3. TOF contribution. TOF information in the reconstruction reduces the sensitivity to 
inconsistencies in the attenuation correction (Conti 2010). Since not all PET/MR scanners are 
equipped with the TOF technology, AC methods should be compared on non-TOF and TOF 
reconstructions to estimate the error introduced by the AC map independently of the PET 
detectors performance. All images with the different AC maps were thus reconstructed twice: 
once with and once without TOF information.

In addition, all attenuation maps were resliced to a slice thickness of 2.78 mm to match the 
PET emission data space. PET images were reconstructed using an OSEM (respectively with 
and without TOF) algorithm with 8 iterations, 28 subsets, voxel size 1.17 × 1.17 × 2.78 mm3, 
PSF modelling, attenuation correction, scatter correction and no post-filtering, as suggested 
by the manufacturer for brain images.

In total, for each of the 16 patients, 22 PET images were reconstructed using 11 different 
AC maps and 2 TOF options (on/off).

2.3.4. Primate application. One of the limitations of using an atlas-based AC is non-human 
primate application. As the ZTE-based AC approach aims at providing a subject-specific 
AC map, its application to primates would illustrate its flexibility. We thus included an adult 
baboon subject in this study. The animal was anaesthetized using isoflurane and injected with 
88 MBq of 18F-FDG before undergoing a PET-CT scan followed by a PET-MR scan using the 
same protocol as described earlier. A ZTE pulse sequence with the same parameters as given 
before was acquired on the head station. Three AC maps ZTEfixed, ZTEcont and nobone 
were generated as previously described and the PET images were reconstructed using the 3 
AC maps and the CTAC map smoothed with a 4 mm FWHM Gaussian kernel and the TOF-
OSEM algorithm.

M Khalifé et alPhys. Med. Biol. 62 (2017) 7814
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2.4. Image analysis

All reconstructed PET images were registered and spatially normalized to a PET brain 
template in montreal neurological institute (MNI) space using SPM12 (University College 
London). The registered and normalized images were resampled to 2 × 2 × 2 mm3.

A quantitative analysis was performed to evaluate the MRAC methods with respect to the 
CTAC reference method. The reference CTAC and the compared MRAC images were chosen 
with the same spatial blurring. The atlas corrected image whose AC map is blurred with 10 mm 
Gauss kernel was compared to all 3 CTAC images (no blurring, 4 mm and 10 mm filters). The 
comparison was performed for each TOF and non TOF reconstructions as follows: ‘atlas-
CT’, ‘nobone-CT’, ‘ZTEfixed-CT’, ‘ZTEcont-CT’, ‘atlas-CTfilt4’, ‘nobonefilt4-CTfilt4’, 
‘ZTEfixedfilt4-CTfilt4’, ‘ZTEcontfilt4-CTfilt4’, atlas-CTfilt10’, ‘nobonefilt10-CTfilt10’, 
‘ZTEfixedfilt10-CTfilt10’, ‘ZTEcontfilt10-CTfilt10’. [18F]-FDG being a glucose analog, its 
main uptake is in grey matter. Consequently, a grey matter mask defined in MNI space from 
a PET template was applied. The relative difference image in % in grey matter is given by :

DiffMRAC−CTAC(%) = 100 · IMRAC − ICTAC

ICTAC

where IMRAC is the PET image corrected with one of the MRAC methods, and ICTAC is the 
PET image corrected with the gold standard reference CTAC.

Furthermore, a ROI analysis using the automated anatomical labelling (AAL) brain atlas 
with 116 regions of interest (ROI) (Tzourio-Mazoyer et al 2002) was performed to assess the 
PET uptake difference in various brain regions. The 116 ROI were grouped into eight brain 
regions: frontal, parietal, occipital, parietal, insula and cingulate, central, temporal, cerebel-
lum. Only grey matter voxels were considered for the eight brain ROI. Relative difference 
and standard error were computed in each ROI between the compared MRAC image and the 
CTAC image and averaged over the 16 patients. A voxelwise relative difference image was 
displayed between the MRAC corrected images and the CTAC corrected image to visually 
assess the location of the differences between the MRAC methods to the reference method. 
Finally, the root mean square error (RMSE) was computed in grey matter between MRAC 
images and CTAC images to measure the global performance of the methods. A paired t-test 
was applied to evaluate the influence of TOF on the global error.

3. Results

All CT, Dixon and ZTE images were visually inspected to check that they did not include 
artefacts.

3.1. ZTE segmentation

The segmentation algorithm based on the ZTE image histogram Gauss fitting step, intensity 
normalisation and bone intensities identification performed visually well in all patients. The 
air-bone interface is well segmented in the sinus, nasal and the spheroid cavities as well as in 
the airways. The segmented maps are visually in good agreement with the corresponding CT 
images (see figure 3 for three examples of pseudo-CTs together with the corresponding CT). 
Spongious temporal bones and cartilage in the nasal structures can be misclassified as soft 
tissue or air due to their ZTE intensity closer to soft tissue or because of partial volume effect. 
Differences can be seen around the neck regions due to different positioning of the patients in 
the PET/CT and PET/MR scanners that was not compensated for by our registration proce-
dure, but this region had little impact on the reconstructed brain region.

M Khalifé et alPhys. Med. Biol. 62 (2017) 7814
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3.2. ZTE bone attenuation scaling

Over the 16 patients, observing CT density in the head bone (figure 4) showed that:

 (i) bone density in HU changes in the same patient between low density cancellous  
(200–300 HU) bone and cortical bone (>1100 HU); 

 (ii) Median bone density varies between 500 HU and 800 HU over the 16 patients suggesting 
the need for patient-dependent bone attenuation values.

A relationship between CT HU and ZTE acquired with the parameters described earlier was 
visually observed on the joint histogram (figure 5). The PCA of the ZTE and CT joint his-
tograms of all the patients showed that 60% of the variance is described by the first PC. The 
first PC allowed us to determine a linear relationship between normalized ZTE intensities and 
CT densities in HU. The LOO cross-validation showed that all predicted first PC from any 
other 15 training PCs are in very good agreement and have a coefficient of determination of 
0.92. The linear regression of the predicted PCs (the direction vectors of the first PC) yielded 
a relationship within a tight 95% confidence interval (figure 6) given by:

CT(HU) = −1182 × ZTEnorm + 1393.

Using this relationship, the coefficient of determination R2 between the predictions and the 
real data was 0.92. The error on the linear fitting after shifting the CT by a voxel in six 3D 
directions was not significant: slope = −1146 ± 42, intercept = 1387 ± 18. The goodness of 
fit was R2 = 95.5 ± 0.6. The linear relationship between normalized ZTE intensity and CT 
density in HU was applied on all segmented ZTE images to generate an AC map for PET 
reconstruction. The generated AC map respected the variations in bone density of the previ-
ously segmented ZTE image.

Additionally, the bone density distributions of the pseudo-CT generated with the continu-
ous ZTE derived method and the CT are displayed in figure 4 showing that the continuous 
ZTE pseudo-CT was able to capture a large part of the intra- and inter-subject variability. The 
coefficient of determination R2 computed from the linear regression of the joint histograms 

Figure 3. Three examples of CT images and ZTE-based pseudo-CTs generated using 
the segmentation algorithm and the linear relationship between normalized ZTE 
intensity and CT density in HU.

M Khalifé et alPhys. Med. Biol. 62 (2017) 7814
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between the pseudo-CTs and the reference CT to estimate their similarity was of 0.16 for 
nobone, 0.33 for atlas, 0.24 for ZTEfixed and 0.67 for ZTEcont.

3.3. PET quantification

All PET images were reconstructed successfully with all the AC maps using TOF and non-
TOF OSEM. The global performance of all methods in the grey matter is depicted in figure 7 
for non-TOF and TOF reconstructions. It showed that the RMSE in grey matter in 16 patients 
is overall less than 2%. Nobone-AC and atlas gave the highest RMSE, the biggest variability 
and the highest number of outliers. All ZTE-based AC had a RMSE lower than 0.5% and low 
variability. ZTEcont-AC gave the lowest RMSE and the lowest variability regardless of the 
usage of TOF or of the smoothing size of the AC map, with outliers when using a 10 mm 
Gaussian kernel for smoothing. RMSE computed for non-TOF reconstructions was signifi-
cantly higher than the one for TOF reconstructions (p < 10−3).

3.3.1. Relative difference. Figures 8(a) and (c) depict the relative difference maps between 
all the MRAC reconstructions and the CTAC reference reconstruction. They showed that PET 
images reconstructed with no bone MRAC underestimate CTAC image with errors reaching 
−25% without TOF and −17% with TOF in a circular region near the cortical bone. This 
region grows larger as the smoothing kernel increases (figures 8(a), (c) and 9).

Figure 4. Bone density distribution in HU observed in CT (in blue) and continuous 
ZTE pseudo-CT (in red), represented by median value  ±  median absolute deviation 
(MAD). The displayed values were obtained from unsmoothed CTs and pseudo-CTs.
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Conversely, PET images reconstructed with the atlas-based AC showed an overestimation 
of CTAC images on the whole brain that reaches +12% without smoothing and reduces as 
the smoothing kernel increases because the resolution mismatch decreases. A left-right asym-
metry was observed on atlas-AC images suggesting a registration bias. The error remained the 
largest in the parietal region of the brain (figure 9). Additionally, the atlas-based correction 
showed the highest variability regardless of the filter FWHM and the use of TOF as reflected 
by the high standard deviation on all slice locations in figures 8(b) and (d).

ZTE-based AC maps, whether with a fixed bone LAC or a continuous one, yielded an 
overall error on PET images between −5% and +5% with respect to CTAC images and a low 
variability with all smoothing filters and reconstructions (figure 8). Fixed ZTE-AC showed 
most often a positive error whereas continuous ZTE-AC showed a negative error except for 
the temporal lobe and the cerebellum. As shown in figure 9, continuous ZTE and fixed ZTE 
performed similarly in frontal, occipital, parietal and central regions with 4 mm filtering but 
continuous ZTE outperformed fixed ZTE in the insula and cingulate, temporal and the cer-
ebellum regions for all reconstructions. Temporal lobes close to temporal bones showed an 
overestimation on the ZTE-based AC images (fixed and continuous) with all smoothing filters.

3.3.2. Primate application. The continuous ZTE AC map of the baboon is displayed in  
figure 10. It showed a good agreement in bone depiction and HU scaling with CTAC. Affine 
registration showed some limitations at the neck area because the head position was differ-
ent in the PET/CT and in the PET/MR. The spine was slightly misaligned on the registered 

Figure 5. The joint histograms of CT and normalized ZTE including all patients. The X 
and Y axis coordinates of the joint histogram are respectively the normalized ZTE image 
intensity between [0, 1] and the CT density between [300, 2000] HU. The Z coordinate is 
the number of voxels having the combination of intensities (X, Y).
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CT with respect to the ZTE image but this did not impact the skull registration. The recon-
structed PET images corrected using MRAC were compared to CTAC and the relative mean 
error  ±  standard deviation computed on the grey matter were: −6.4 ± 7.4% for nobone, 
4.8 ± 6.2% for ZTEfixed, 1.0 ± 6.0% for ZTEcont. RMSE values were 2.14% for nobone, 
1.65% for ZTEfixed and 1.26% for ZTEcont.

4. Discussion

We have presented a ZTE MRI-based method to generate a pseudo-CT mimicking bone den-
sity in the skull. The proposed approach is close to that described by Sekine et al (2016c) 
but differs in three main aspects: (1) the spatial resolution of the ZTE image (2.4 mm ver-
sus 1.6 mm in our method), (2) the segmentation algorithm used to identify the bones from 
the ZTE image, (3) the method used to derive the CT—ZTE signal relationship. We have 
shown the reproducibility of this method in 16 patients while comparing it to the measured 
CT attenuation map in terms of regional activity in the attenuation corrected PET images. 
The segmentation algorithm performed well in separating bone, air cavities and soft tissue. 
It suffered from partial volume effect in the nasal sinus area. Small structures of bone, air 
and soft tissue coexist in this area and the chosen MRI resolution does not allow to recover 
entirely these structures in the segmented AC map. To avoid false positive in bone mask, a 
lower segmentation threshold was set in this area. This adds an extra condition dependent 

Figure 6. Linear relationship between normalized ZTE intensity and CT density in 
HU. The linear regression (red line) fits the first PC predicted by LOO cross-validation 
on the 16 patients joint histograms (R2 = 92.19%).
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on the localisation of the head in the field of view. In addition, spongious and cortical bones 
show ZTE intensities closer to soft tissue and can be misclassified using the threshold set for 
the bone mask, which is the case in the temporal bones, the thick skull bone in the back of 
the head and teeth. The second is recovered by morphological transformations and the latter 
relies on an a priori extracted from a registered Zubal template. However, the segmentation 
could probably be improved in the nasal and dental area by using more sophisticated segmen-
tation algorithms (Ma et al 2010, Sharma and Aggarwal 2010) in addition to the presented 
histogram-based algorithm.

A single CT with the same bone densities is unlikely to generate an accurate AC map that 
represents all patients. Continuous skull bone densities were modelled and scaled for each 
patient using a relationship between normalized ZTE intensities and CT density in HU. With 
the ZTE to CT scaling relationship, intra and inter-subjects bone density variability was suc-
cessfully taken into account. The continuous ZTE AC map was a good substitute to CT-based 
attenuation map as it is reflected by the low standard deviation of the error on the ZTE-based 
MRAC with respect to CTAC as opposed to higher error variability in the atlas-based MRAC 
images. However, this relationship is valid only for the described ZTE acquisition parameters 
and for CT Xray energy corresponding to 110 kVp. If changed, the ZTE image resolution and 
pixel bandwidth might impact the ZTE intensity and modify the relationship. We also checked 
that an error in CT to ZTE registration did not significantly affect the relationship and the 
goodness of the fit, suggesting that the relationship is robust enough with respect to possible 
registration errors.

Further, to make this relationship even more robust and reliable, a larger database should 
be considered to account for various bone densities, ages and skull thicknesses. This would 
allow to test the validity of this relationship on a broader population of subjects. Nonetheless, 
the linear relationship applied to our 16 patients database yielded a good agreement between 

Figure 7. Global performance of all AC methods in the 16 patients in grey matter 
based on root mean square error (RMSE). The red line represents the median, the box 
contains the 25th and 75th percentiles, the whiskers show one interquartile range (IQR) 
and the red ‘  +  ’ show the outliers. The RMSE is computed between the reconstructed 
PET images using the MRAC methods and the CTAC (the gold standard). The upper 
graph shows the errors for non-TOF reconstructions and the lower one is for TOF 
reconstructions.
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CTAC and ZTE-AC PET images. This relationship was also successfully applied to a primate 
subject to generate a ZTE-based AC map that was in good agreement with the corresponding 
CT. The results obtained on the baboon are consistent with the results obtained on the human 
data as nobone underestimates the CTAC reference uptake, ZTEfixed overestimates it and 
ZTEcont has a low overestimation of the uptake. As a result, the relationship determined on an 
adult human database is not specific to this database but can be used for other human subjects 
and even primates.

Continuous ZTE AC showed the best performance when studying the RMSE on grey mat-
ter even if all methods presented a RMSE less than 2%. However, the effect of attenuation 
correction is not homogeneous over the whole brain, it is larger in the cortex closer to the skull 
while it gets smaller towards the centre of the brain (Andersen et al 2014). Consequently, a 
global RMSE on the whole brain uptake shows an overall performance of the AC method but 
does not reflect the spatial variation of the error in the brain. As a result, ignoring the bone in 
the AC map did not lead to a significantly higher error than the other methods. However, the 
pixelwise relative difference map demonstrates spatial bias of each AC method. The misclassi-
fication of temporal bones or nasal cavities on the ZTE-AC map leads to a localized high error 
in the temporal lobe, as reported also in Sekine et al (2016c). As temporal bones are hollow 
bones that contain air holes, it is difficult to separate them from air in the ZTE image. In some 
cases, the segmentation algorithm classifies them as air (see for example patient 3 in figure 3) 
leading to this uptake underestimation in the temporal poles.

Figure 8. Relative difference maps (left) and standard deviation maps (right) between 
the TOF reconstructions using CTAC as reference, averaged over the 16 patients.  
AC maps were smoothed before reconstruction with: ((a), (b)) 4 mm FWHM Gaussian 
kernel, ((c), (d)) 10 mm FWHM Gaussian kernel.
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An asymmetrical left-right error distribution was also observed in the atlas-AC differ-
ence map that might be due to a registration bias of the CT template to the low resolution 
Dixon-MRI.

The standard single-atlas attenuation correction method was compared to the proposed 
ZTE-based method to study its accuracy in different patients using the acquired CT as a gold 
standard. PET images corrected based on the atlas overestimated the values in the PET images 
corrected with CTAC. This result is in contradiction with previous published results (Sekine 
et al 2016c) that used a similar ZTE pulse sequence and the same PET/MR scanner. Sekine 
et al (2016c) reported that PET images corrected with atlas underestimate PET images cor-
rected with CTAC. This opposite conclusion can be due to several factors: the difference in 
the ZTE image resolution and in the segmentation algorithm implementation, the difference 
in the CTAC used as a reference or the difference in the linear attenuation coefficient scaling 
relationship.

Since the atlas derived pseudo-CT was smoothed with a 10 mm FWHM, we have applied a 
spatial smoothing of 4 mm and 10 mm FWHM on the AC maps generated from CT and ZTE 
and used the resulting maps to correct PET images. This allowed determining the impact of 
spatial smoothing of the AC map on the PET image. Increasing the smoothing kernel width 
increased the error for all AC maps except for the atlas. This is explained by the original 

Figure 9. Relative difference in %  ±  standard error (SE) in regions of the brain between 
an MRAC image and CTAC image, averaged over the 16 patients. The AC maps used 
in the first row were smoothed with a 4 mm FWHM Gaussian kernel and in the second 
row were smoothed with a 10 mm FWHM Gaussian kernel. The first column contains 
the non-TOF reconstructions and the second column contains the TOF reconstructions.
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filtering applied to atlas AC map; applying the same smoothing filter width on the CTAC leads 
to a better match between both AC maps. However, 4 mm FWHM is the size needed to match 
the intrinsic PET resolution and has been commonly used in similar studies (Ladefoged et al 
2017). Atlas-AC is smoothed with a 10 mm FWHM kernel to reduce patients variability as it 
is made from an average CT template. This is one of the limitation of the atlas-based method. 
Furthermore, an excessive smoothing of the AC map leads to a mismatch in resolution causing 
attenuation artefacts (Meikle et al 1993).

The contribution of TOF was evaluated. PET quantification errors with non-TOF recon-
structions were significantly higher than the errors with TOF reconstructions as revealed by a 
paired t-test (details in the results section), in agreement with other recent studies (Conti 2010, 
Mehranian A and Zaidi H 2015, Delso et al 2017).

As for AC methods variability, the atlas method presented the highest inter-patient error 
standard deviation to the mean relative difference map (figures 8(b)–(d)). ZTE-based methods 
(fixed and continuous) both showed a low error standard deviation to the mean relative dif-
ference map. This demonstrates that ZTE-based methods have a similar performance as the 
CT-based methods across all patients.

These results could be compared to the multi-atlas algorithm as the multi-atlas approach 
was shown to present a slightly lower error than the single-atlas approach when compared 
to CTAC especially in brain region located close to the skull (Sekine et al 2016c). A study 
conducted on a large cohort to compare different MRAC methods (Ladefoged et al 2017) 
reported that multi-atlas presented outliers, explained by the bone density that could be over 
or underestimated when using a CT database and by registration errors. Registration is not an 
issue in ZTE-based MRAC since the MRI and the PET images are acquired simultaneously 
and the head is constrained by the coil. Additionally, scaling bone density from MR measured 
intensity ensures a patient-specific density in the AC map as was shown in a similar study 
using R∗

2 based AC maps (Juttukonda et  al 2015). Therefore, even though multi-atlas is a 
promising method, ZTE MRI might prove to be a more robust and adaptive method for attenu-
ation correction. It can potentially be easier to extend to paediatrics, non-human primates and 
post-operative applications.

Figure 10. Pseudo-CT generated from ZTE image on the baboon subject and the 
registered CT. The rigid registration failed in the neck area because of the difference of 
the head position between the PET/CT and the PET/MR scans.
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5. Conclusion

In this work, an MRAC method based on ZTE was presented and compared with several alter-
natives. It is demonstrated that ZTE MRI combined with the linear scaling is a good candidate 
to produce a pseudo-CT for attenuation correction in PET/MR brain imaging. It led to a more 
accurate and more reproducible performance than that of single atlas algorithm in our cohort 
of 16 patients. In addition, it was used to generate an accurate AC map for a primate subject. 
The method handles intra- and inter-patient bone density variation and abnormal anatomy. 
The ZTE acquisition is silent and lasts less than one and a half minutes making it especially 
appealing for delicate subjects such as children. The attenuation map is generated within few 
minutes of post-processing which makes it applicable to standard brain PET/MR protocols.
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