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Comparison of Bootstrap Resampling Methods
for 3-D PET Imaging

C. Lartizien*, J.-B. Aubin, and I. Buvat

Abstract—Two groups of bootstrap methods have been proposed
to estimate the statistical properties of positron emission tomog-
raphy (PET) images by generating multiple statistically equiva-
lent data sets from few data samples. The first group generates re-
sampled data based on a parametric approach assuming that data
from which resampling is performed follows a Poisson distribu-
tion while the second group consists of nonparametric approaches.
These methods either require a unique original sample or a series
of statistically equivalent data that can be list-mode files or sino-
grams. Previous reports regarding these bootstrap approaches sug-
gest different results. This work compares the accuracy of three
of these bootstrap methods for 3-D PET imaging based on simu-
lated data. Two methods are based on a unique file, namely a list-
mode based nonparametric (LMNP) method and a sinogram based
parametric (SP) method. The third method is a sinogram-based
nonparametric (SNP) method. Another original method (extended
LMNP) was also investigated, which is an extension of the LMNP
methods based on deriving a resampled list-mode file by drawings
events from multiple original list-mode files. Our comparison is
based on the analysis of the statistical moments estimated on the
repeated and resampled data. This includes the probability density
function and the moments of order 1 and 2. Results show that the
two methods based on multiple original data (SNP and extended
LMNP) are the only methods that correctly estimate the statistical
parameters. Performances of the LMNP and SP methods are vari-
able. Simulated data used in this study were characterized by a
high noise level. Differences among the tested strategies might be
reduced with clinical data sets with lower noise.

Index Terms—Bootstrap, noise properties, positron emission to-
mography (PET).

I. INTRODUCTION

C HARACTERIZING the noise properties of positron
emission tomography (PET) images based on a unique

scan or a small number of repeated samples is highly desirable
in clinical practice to estimate the errors affecting measure-
ments made from the images. This would also facilitate the
use of model observers for estimation and detection tasks [1].
Analytical derivations of the variance have been proposed for
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images reconstructed from the filtered back projection (FBP)
[2], [3] and the maximum-likelihood expectation-maximization
(MLEM) [4]–[6] algorithms but they require approximations,
the most critical of which being that the recorded counts in
the projection are Poisson distributed. Although PET emission
process is described by a Poisson statistic, many processing
steps of the raw signal change the voxel values to non-Poisson
variates. Bootstrap resampling methods [7] have been proposed
as an alternate to analytical methods to estimate the statistical
properties of PET and single photon emission computed to-
mography (SPECT) images [8]–[12]. The bootstrap approach
consists in generating multiple statistically equivalent data sets
from few samples of data, i.e., data sets that are samples from
the same multivariate probability distribution as the original
data. A first group of bootstrap methods in PET and SPECT
[8], [10] is based on a parametric approach which assumes that
data from which resampling is performed follows a Poisson
distribution [8]. The original data is a unique sinogram or a
unique list-mode file. Bootstrap replicates (sinograms or list
mode files) are then produced by estimating the parameter of
the Poisson distribution from the original file. For the sino-
gram-based method, this means that each bin of a bootstrap
sinogram is randomly drawn from a Poisson distribution whose
parameter is the corresponding bin value of the original file.
An alternative solution is to consider a few sets of statistically
equivalent original data instead of a unique sample to better
estimate the parameter of the Poisson distribution. A second
group of methods is based on nonparametric approaches [9],
[11]. A method based on a unique list-mode file consists in
randomly choosing events from this file with replacement to
produce a number of new list-mode files of the same size as
the original file [10]. Another method uses a set of statistically
equivalent sinograms [9], [11]. Bootstrap sinograms are then
produced by randomly choosing sinogram bins from the set of
original sinograms.

Haynor and Woods [8] produced resampled list-mode and
sinogram PET data sets from one original file using the para-
metric bootstrap approach assuming a Poisson distribution.
They showed that this method allowed an accurate estimate of
the variance in the final reconstructed image. More recently,
Dahlbom [10] generated list-mode data files from one original
2-D list-mode ECAT HR PET data set by choosing events
at random and with replacement. Considering different recon-
struction algorithms, he showed that the standard deviation
images derived from the bootstrap list-mode files closely agreed
with the standard deviation images derived from repeated scans.
D’Asseler et al. [12] used the same nonparametric bootstrap
method as Dahlbom for 2-D simulated PET data and found
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that the mean background of the bootstrap realizations and the
mean background of the noisy realizations were different.

Kim et al. [11] used a non-parametric sinogram-based boot-
strap technique for precorrected 2-D GE Advance PET data
in which each distance-angle bin of the resampled sinogram
was uniformly drawn from subsets of experimental and sta-
tistically equivalent sinograms. They found equivalent mean
values between images reconstructed from the resampled data
and from repeated acquisitions, but some discrepancies in
variance values. Finally, Buvat [9] generated resampled data
by randomly choosing one row (instead of one bin) from a
set of statistically equivalent original sinograms, in order to
potentially account for noise correlation within a row. This
nonparametric method was shown to produce accurate estima-
tion of moments of order 1–3 and of the 1-D local covariance
on simulated SPECT and real 2-D PET data.

This short review suggests that bootstrap methods might
be used for the estimation of 3-D PET statistical properties,
but underlines some contradictory results. This work aims
at comparing three bootstrap methods in the context of 3-D
PET, namely the list-mode based nonparametric (LMNP)
method used by Dahlbom [10], the sinogram-based parametric
(SP) method proposed by Haynor and Woods [8], and the
sinogram-based nonparametric (SNP) method by Buvat [9].
Another original method was also investigated which is an
extension of the LMNP methods based on deriving a resam-
pled list-mode file by drawing events from multiple original
list-mode files. The main purpose of this study is to compare
different bootstrap methods and derive guidelines regarding
their use for 3-D PET imaging as a function of the type (list
mode or sinograms) and statistics of the original data set. A
question we address in this study is whether we can generate
accurate resampled PET data series, each of a fixed number
of events, from a unique list-mode file or a unique sinogram
of the same number of events. A positive answer to this
question would open new perspective for the development of
patient-specific statistical image processing methods.

This study used simulated data obtained with the GATE
Monte Carlo simulation tool [13] for a scanner geometry equiv-
alent to the MicroPET R4 manufactured by Siemens Preclinical
Solutions [14].

II. MATERIALS AND METHODS

A. 3-D PET Data Monte Carlo Simulations

The GATE Monte Carlo simulation tool used in this study can
model most of the phenomena encountered in PET acquisitions
including scattered and random components of the PET signal,
dead-time effects and contamination from activity outside the
field-of-view [13]. This tool has already been validated for dif-
ferent PET and SPECT scanner geometries.

3-D PET data were simulated for a scanner geometry equiva-
lent to that of the small animal MicroPET R4 scanner [14]. The
axial and transverse fields-of-view of this scanner are 78 and 91
mm, respectively. The phantom geometry shown in Fig. 1 con-
sisted of three 2-cm-diameter water cylinders of uniform activ-
ities located in an 8-cm-diameter water cylinder. The ratios be-
tween the small cylinder activity and the background activity

Fig. 1. 3-D view of the simulated object. Activity ratios with respect to the
background were 10:1, 15:1, and 20:1.

were 10:1, 15:1 and 20:1, respectively. All cylinders were 2 cm
long and the activity in the 8-cm-diameter cylinder was 4 MBq.
The acquisition time was set to 5 s which corresponded to ap-
proximately 1.88 million detected coincidence events.

B. Bootstrap Resampling

Five hundred and fifty-one statistically equivalent list-mode
files (each containing about 1.88 million detected coincidences)
were generated with GATE using the LMF list-mode format
proposed by the Crystal Clear Collaboration [15]. Five hundred
repeated scans were used as a gold standard and are referred to
as GS in the following. The remaining 51 statistically equiva-
lent samples were used to generate five series of 500 bootstrap
resampled data as follows.

• One of the list-mode files was used to derive 500 resam-
pled list-mode files based on the nonparametric method
proposed by Haynor and Woods [8] and used by Dahlbom
[10]. Each resampled list-mode file contains the same
number of events as the original file. In this technique,
events are chosen at random and with replacement among
the original list-mode events. One event from the original
file may thus be selected more than once in a bootstrap data
set. This method is referred to as LMNP in the following.

• The same list-mode file was first rearranged into 3-D sino-
grams using a program described in Section II-C. This
sinogram was then used to derive 500 resampled 3-D PET
sinograms based on the parametric bootstrap approach pro-
posed by Haynor and Woods that consists in drawing each
bin of the resampled sinogram from a Poisson distribution
with parameter equal to the corresponding bin value in the
original sinogram. This method is referred to as SP in the
following.

• Fifty of the original list-mode files were rearranged into
3-D sinograms. Two series of 500 resampled sinograms
each were then sampled from two original sets of 10 and 50
of these sinograms respectively using the method proposed
by Buvat. This method consists in randomly choosing each
row of a bootstrap sinogram among the rows
corresponding to the same projection angle in the orig-
inal sinograms. These data series are referred respectively
to as SNP10 and SNP50 in the following. The 10 and 50
parameters were chosen to assess the impact of the number
of original sinograms the SNP bootstrap approach is per-
formed from.

• The same series of 50 original list-mode files as the ones
used in the SNP method were used to derive 500 resampled
list-mode files following a non-parametric method derived
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from the LMNP method described above. For each resam-
pled LM file, each event was drawn from the original data
series by first choosing at random one of the 50 files and
then choosing one event at random and with replacement in
this selected file. The total number of events of each resam-
pled file was chosen at random among the values of the 50
original files (close to 1.88 M detected coincidences). This
method is referred to as LMNP50 in the following.

The LMNP and SP methods are two methods based on a
unique original sample and they produce bootstrap replicates of
the same statistics as that of the original sample. The other three
methods (SNP10, SNP50, and LMNP50) are based on a set of
statistically equivalent original samples and produce replicates
of the same statistics as that of one of the original sample.

While the main objective of this study was to evaluate
and compare the statistical properties of the images obtained
from the resampled sinograms, some elements of statistical
analysis of the resampled sinogram properties are presented in
Appendix I for the LMNP, SP, and SNP methods. This analysis
is intended to provide some insight into the statistical meaning
of the bootstrap approaches.

C. Data Reconstruction

List mode data were rearranged into 3-D and 2-D sinograms
using a rebinning program based on the library proposed by the
Crystal Clear Collaboration to handle the LMF list-mode data
format. This program identifies each couple of crystals corre-
sponding to any given line of response of the LMF coincidence
file and increments the bin of the corresponding sinogram based
on a precomputed lookup table. The corresponding sinograms
are thus not corrected for arc effects. The 3-D data were rear-
ranged with a span of 1 and a maximum ring difference (mrd)
of 10. The number of segments after rebinning was 21 and the
number of coincidence events was about 7.5 10 . The 2-D
sinograms were rearranged with a span of 1 and an mrd of 1. The
number of segments after rebinning was 3 and the number of co-
incidence events was about 1.1 10 . The raw data, i.e., without
any correction for attenuation, scatter, random, or geometrical
effects were reconstructed using the STIR library [16]. The 3-D
sinograms were reconstructed using the 3-D implementation of
the FBP algorithm referred to as FBP3D in the following with
a ramp filter and a cutoff frequency of 0.5 voxel . The 2-D
sinograms were reconstructed with the ordered subset expec-
tation maximization algorithm (OSEM2D) using four subsets
and 16 iterations. Parameters of the FBP and OSEM reconstruc-
tions were set as the standard values recommended by the mi-
croPET R4 manufacturer for preclinical imaging [17]. This re-
sulted in reconstructed images with dimensions 87 87 63
and an isotropic voxel size of 1.2115 mm .

D. Statistical Properties of the Resampled Images

The statistical properties of the reconstructed images were
characterized for the five series of bootstrap resampled data
(LMNP, SP, SNP10, SNP50, and LMNP50) and for each recon-
struction scheme (FBP3D, OSEM2D). They were compared
with the same statistical properties measured on the reference
GS series of statistically equivalent samples. These properties
included 1) the estimated point probability density function

(PDF), 2) the moment of order 1 (mean) and of order 2 (vari-
ance) images, and 3) the 1-D local covariance.

Comparison of the mean and variance images included a sta-
tistical analysis based on the nonzero voxels of a reconstructed
transverse image of the cylindrical phantom (See Fig. 4 for an
illustration of such an image). For this study, was equal to
5261 voxels. For the data series to accurately describe the pop-
ulation statistical parameters, the number of samples should ex-
ceed the number of voxels. One way to achieve this
for the GS data series would be to generate at least sim-
ulated replicates which would be very time consuming. Indeed,
the generation of one 3-D LMF file was around 16 h on a stan-
dard PC running Linux and the size of one original single event
list-mode file was around 253 Mb. We chose instead to consider
the 12 central reconstructed planes of each of the 500 image
volumes, resulting in replicated “samples.”
These 12 adjacent axial planes all cross the cylindrical phantom
and are reconstructed from the same number of original lines of
responses (LORs). Each of these LORs only contributes to one
specific plane so that there is no axial correlation between these
planes.

1) Probability Density Function: We first compared the point
probability density function (PDF) of the GS and bootstrap im-
ages by calculating the distribution of single voxel values over
the entire set of data. This voxel was chosen at the center of
the hottest cylinder of Fig. 1. The estimated PDF were obtained
using 6000 voxels values each (1 voxel/plane 12 planes 500
replicates).

2) Estimated Mean and Variance Images: The moment of
order 1 or mean images, , was computed as

(1)

where is the value of voxel in the th sample of the
reconstructed images.

The moment of order 2 or variance images was also computed
as the diagonal elements of the covariance matrix M2 defined as

(2)

The mean and variance images were computed for 10, 500,
and 6000 samples in order to estimate the convergence speed of
the statistical metrics of interest.

The comparison of the GS and bootstrap mean and variance
images was based on a visual analysis followed by a quantitative
analysis using two error measures described in Wilson et al. [18]
and Soares et al. [19].

The first error measure is the root mean square (rms) per cent
error defined as

(3)

where stat can either represent the variance or the mean,
is the estimated statistic in voxel of the GS images and
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Fig. 2. Histograms of a voxel centered on the hottest cylinder of the reference and resampled images reconstructed with FBP3D. These distributions were obtained
using 6000 replicate images.

is the corresponding value in the images derived from the boot-
strap data.

The second error measure is the average percent bias defined
as

(4)

The rms and bias were calculated in a 9 9 voxel region-of-
interest centered in the hottest cylinder of the mean and variance
images derived from 6000 samples.

A nonparametric Friedman analysis of variance [20] was per-
formed on the six mean images estimated from the 6000 sam-
ples of the reference data and from the 6000 samples of each of
the five resampled data series. This analysis tested the null hy-
pothesis that these six populations of samples were drawn from
the same population (see Appendix II). A similar analysis was
conducted on the variance images. When the Friedman anal-
ysis demonstrated a global significant difference among the dif-
ferent methods, a post-hoc test for multiple comparisons was
performed using the method of the smallest significant differ-
ence (SDD) [20] to determine which methods differed (see Ap-
pendix III).

A nonparametric global test for variance homogeneity among
the six methods was performed on the mean and variance images
using the Box’s M test [20] (see Appendix IV).

All statistical tests were applied on all nonzero voxels of the
12 central reconstructed planes of the 3-D and 2-D PET image
volumes.

3) 1-D Local Covariance: Finally, we compared the 1-D
local covariance at a specific image position obtained by plot-
ting the elements of the covariance matrix for the
voxel value and a correlation distance of voxels in the di-
rection. Voxel was chosen in the background activity of the
cylinder. The estimated 1-D local covariance plots were ob-
tained using the 6000 replicate values of voxel .

III. RESULTS

A. Estimated Probability Density Function (PDF)

Fig. 2 shows the distributions of values for a single image
voxel in the background of the cylinder shown in Fig. 1.
These histograms were obtained using 6000 replicates of the
reference and resampled images reconstructed with FBP3D.
Fig. 3 shows similar results for images reconstructed with
OSEM2D, respectively. Fig. 2(c), (d), (e) and Fig. 3(c), (d),
(e) show a good agreement between the histograms of the GS
images and of the resampled images generated from the three
bootstrap methods based on multiple original data, namely
SNP10, SNP50, and LMNP50. The histograms corresponding
to the bootstrap methods based on a unique file (LMNP, SP)
were similar but did not match well the gold standard histogram
[Fig. 2(a), (b), Fig. 3(a), (b)].

B. Comparison of the Mean Images

Fig. 4 shows the mean transverse images of the 3-D image
volumes reconstructed with FBP3D and averaged over 10
(column 1), 500 (column 2), and 6000 (column 3) replicates.
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Fig. 3. Histograms of a voxel centered on the hottest cylinder of the reference and resampled images reconstructed with OSEM2D. These distributions were
obtained using 6000 replicate images.

The first row (row a) corresponds to the reference mean im-
ages computed from the repeated scans and the other rows (rows
b–f) correspond to the mean images derived from the five series
of resampled data. These images are displayed with the same
intensity range of the gray scale. Visual analysis of Fig. 4 sug-
gests that the mean images corresponding to the two methods
based on one list-mode or sinogram file (LMNP and SP, rows b,
c) had different noise characteristics than the reference mean
image whatever the number of samples used to compute the
mean. These differences are clearly seen when the mean im-
ages are computed from 500 samples and less evident when
computed from 6000 samples although the noise characteris-
tics seem different. The two images series corresponding to the
nonparametric sinogram-based approach based on 10 and 50 re-
peated scans (SNP10, SNP50, rows d and e) visually better re-
produced the gold standard image, especially with 50 repeated
scans (row e). The LMNP50 method (row f) based on drawing
the resampled events from a series of 50 original LMF files did
also yield a better estimation of the mean image than the LMNP
method. The same comments apply to Fig. 5 representing the
same mean images computed from the data series reconstructed
using OSEM2D.

Tables I and II show the bias and rms resulting from the com-
parison of the mean images derived from the GS data series
and the 5 resampling methods. For images reconstructed with
FBP3D, the lowest bias is achieved for the SNP50 and LMNP50
methods ( % in magnitude), followed by the SNP10 method
( % in magnitude). Other strategies lead to bias always ex-
ceeding 3.9%. For images reconstructed with OSEM, the SNP

and LMNP50 methods lead to similar biases ( % in magni-
tude). A similar trend is observed for the rms error.

A Friedman nonparametric analysis of variance was per-
formed on the 6 mean images computed from 6000 samples
(columns 3 of Figs. 4 and 5). The mean rank sums of the six
tested distributions were found not to be significantly different
for images reconstructed with FBP3D . We can
hypothesize that the statistical test was not powerful enough to
discriminate the images. We thus could not perform a multiple
comparisons and confirm the trends observed using the visual
analysis. The Friedman analysis yielded a significant difference
for data reconstructed with OSEM2D . Results
from the multiple comparisons based on the smallest significant
difference (SSD) are presented in Table III. The SSD value
for the comparison of the six images corresponding to a 0.05
confidence level was 373, thus indicating that two images
were significantly different if the difference of their rank sums
was higher than 373. Bold numbers in Table III correspond
to the pairs of images that can be considered as statistically
equivalent. The first column of Table III shows that SNP50 and
LMNP50 were the only methods that produced mean images
that could not be differentiated from the gold standard mean
image. This result is consistent with the visual analysis of
Fig. 5. SP and LMNP were also found to be not significantly
different, as well as SNP50 and LMNP50.

The Box’s test evaluating the overall variance homogeneity
was performed separately on the two series of six mean images
corresponding to data reconstructed with FBP3D and OSEM2D.
It indicated that the variances of the mean OSEM2D images
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Fig. 4. Mean images of the central plane of the image volumes reconstructed
with FBP3D and computed from 10, 500, and 6000 replicates. The first row
(row a) corresponds to the reference mean images computed from the repeated
scans and the other rows correspond to the mean images obtained from the five
bootstrap methods. All images are shown with the same intensity range of the
gray scale.

were similar but different for the FBP3D mean
images . Figs. 4 and 5 suggest that the variances of
the images based on resampled data from a unique file (LMNP
and SP) and were indeed different from that of the images gen-
erated from the SNP and LMNP50 method.

C. Comparison of the Variance Images

Fig. 6 shows the variance images computed from 10, 500,
and 6000 samples of images reconstructed with FBP3D. Results
are displayed following the same order as for the mean images
presented in Figs. 4 and 5: the columns represent the variations
according to the number of samples used to compute the vari-
ance and the different rows correspond to the reference variance
images (row a) and to the variance images computed from the
five series of resampled data (rows b–f). Fig. 7 shows similar

Fig. 5. Mean images of the central plane of the image volumes reconstructed
with OSEM2D and computed from 10, 500, and 6000 replicates. The first row
(row a) corresponds to the reference mean images computed from the repeated
scans and the other rows correspond to the mean images obtained from the five
bootstrap methods. All images are shown with the same intensity range of the
gray scale.

TABLE I
ESTIMATED BIAS (%) BETWEEN THE GS AND RESAMPLED MEAN IMAGES

FOR THE FBP3D AND OSEM2D RECONSTRUCTION

results for data reconstructed with OSEM2D. These images are
displayed with the same intensity range.

Tables IV and V show the bias and rms estimated from the
comparison of the variance images derived from the GS data se-
ries and the five resampling methods. For images reconstructed
with FBP3D, the SNP50, LMNP50, LMNP, and SP methods
show similar small biases below 1%. Note that the estimated
bias computed over the SNP10 variance image is around 10%.
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TABLE II
ESTIMATED RMS (%) BETWEEN THE GS AND RESAMPLED MEAN IMAGES

FOR THE FBP3D AND OSEM2D RECONSTRUCTION

TABLE III
MULTIPLE COMPARISONS OF THE MEAN IMAGES RECONSTRUCTED

WITH OSEM2D BASED ON THE SSD

Comparison of the rms error for the four resampling methods
mentioned above confirms this trend with rms error values
about 6%. For images reconstructed with OSEM2D, the SNP50
and LMNP50 methods have a significantly lower bias %
than all other resampling methods % bias % . SNP50
and LMNP50 also have a significantly lower rms error than
the other resampling methods. One possible explanation of
the discrepancies between images reconstructed with FBP
and OSEM is that the absolute variance is much lower in the
OSEM images. Thus, a small error in the estimation of the
variance image based on the resampled data may lead to a
high difference between the GS and resampled data, hence the
higher bias and rms.

Results of the rms and bias measurements are in good
agreement with the visual analysis of the last columns of Fig. 6
showing that all variance images computed over 6000 repli-
cates and reconstructed with FBP3D look similar. A similar
analysis of Fig. 7 corresponding to the variance images derived
from OSEM2D reconstructed data, however, indicates that the
SNP50 and LMNP50 methods better reproduce the variance
image derived from the GS data.

The overall Friedman nonparametric analysis of variance per-
formed for variance images computed from 6000 replicates re-
constructed with FBP3D confirmed that the mean rank sums of
the six variance image distributions were significantly different

. The SSD value for the comparison of the six im-
ages corresponding to a 0.05 confidence level was 280. Table VI
shows that none of the resampled schemes produced variance
images that could not be distinguished from the gold standard
variance images.

Fig. 7 shows variance images obtained with the 2-D data se-
ries reconstructed with OSEM2D. Visual analysis of Fig. 7 sug-
gests that the variance images corresponding to the two methods
based on one list-mode or sinogram file (LMNP and SP, rows b
and c) were different from the gold standard image whatever the

Fig. 6. Variance images of the central plane of the image volumes reconstructed
with FBP3D and computed from 10, 500, and 6000 replicates. The first row
corresponds to variance images obtained using the repeated scans and the other
rows correspond to variance images derived from the five resampling strategies.
All images are shown with the same intensity range of the gray scale.

number of samples used to compute the variance. The two im-
ages series corresponding to SNP50 and LMNP50 (rows e and f)
better reproduced the gold standard variance image.

The overall Friedman nonparametric analysis of variance in-
dicated that the mean rank sums of the 6 variance image distribu-
tions were significantly different with a SSD value
of 370 for a 0.05 confidence level. Table VII shows that all re-
sampled data series produced different variance images from the
one obtained with repeated scans. This result does not confirm
the visual comparison of the variance images reported above,
probably because of the inadequate power of the statistical test
based on the SSD value. Table VII suggests that SP, LMNP, and
LMNP50 are equivalent.

The Box’s test evaluating the overall variance homogeneity
was performed separately on the two series of five variance
images corresponding to data reconstructed with FBP3D and
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Fig. 7. Variance images of the central plane of the image volumes reconstructed
with OSEM2D and computed from 10, 500, and 6000 replicates. The first row
corresponds to variance images obtained using the repeated scans and the other
rows correspond to variance images derived from the five resampling strategies.
All images are shown with the same intensity range of the gray scale.

TABLE IV
ESTIMATED BIAS (%) BETWEEN THE GS AND RESAMPLED VARIANCE

IMAGES FOR THE FBP3D AND OSEM2D RECONSTRUCTION

TABLE V
ESTIMATED RMS (%) BETWEEN THE GS AND RESAMPLED VARIANCE

IMAGES FOR THE FBP3D AND OSEM2D RECONSTRUCTION

OSEM2D. The test was always significant for
FBP3D and OSEM2D.

TABLE VI
MULTIPLE COMPARISONS OF THE VARIANCE IMAGES RECONSTRUCTED

WITH FBP3D BASED ON THE SSD

TABLE VII
MULTIPLE COMPARISONS OF THE VARIANCE IMAGES RECONSTRUCTED

WITH OSEM2D BASED ON THE SSD

Fig. 8. Local covariance of a voxel centered in the background of the cylinder
of the reference and resampled images reconstructed with FBP3D. These dis-
tributions were obtained using 6000 replicate images.

D. 1-D Local Covariance

Fig. 8 shows the 1-D local covariance for a voxel located
in the background of the cylinder. These curves were obtained
from images reconstructed with the FBP3D and using the series
of 6000 samples.

Fig. 9 shows similar results for images reconstructed with
OSEM2D. The local covariance includes a central peak for

corresponding to the variance and the values corresponding
to represent the noise correlation at distance from the
considered voxel in the direction (horizontal). Fig. 8(a) and
Fig. 9(a) show a good agreement between the histograms of the
GS images and the LMNP50 and SNP50 resampled images. The
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Fig. 9. Local covariance of a voxel centered in the background of the cylinder
of the reference and resampled images reconstructed with OSEM2D. These dis-
tributions were obtained using 6000 replicate images.

SNP10 method allows a good approximation of the local covari-
ance estimated from the resampled images reconstructed with
FBP3D, but it fails at estimating the variance from the OSEM2D
resampled image. The bootstrap methods based on a unique file
(LMNP and SP) did not accurately estimate the GS covariance
profile for this voxel. The comparison of the peak values of the
different curves indicates that the SNP50 and LMNP50 methods
were the only methods which always properly estimated the
variance in that particular voxel. This result is in good agree-
ment with bias and rms errors given in Tables IV and V. Also
note that the variance and covariance terms of the OSEM2D im-
ages are approximately 2 and 3 orders of magnitude lower than
the FBP3D values, respectively.

IV. DISCUSSION

This study compared the accuracy of different bootstrap re-
sampling methods for 3-D PET data. The first group of bootstrap
methods in PET and SPECT is based on a parametric approach
which assumes that data from which resampling is performed
follow a Poisson distribution [8]. The second group of methods
is based on nonparametric approaches that consist in randomly
choosing events (for the list-mode based approaches) or bins
(for the sinogram based approaches) from a unique original
list-mode file or a series of statistically equivalent list-mode files
or sinograms. Five resampling strategies were compared to a se-
ries of 6000 statistically equivalent samples considered as the
reference. The evaluation criteria included the estimated point
probability density function in a single voxel, the statistical pa-
rameters including the mean and variance image and the 1-D
local covariance. The 3-D raw data were either reconstructed
with the filtered-backprojection algorithm (FBP) or rearranged
into 2-D sinograms and reconstructed with the OSEM2D algo-
rithm to estimate the influence of the reconstruction strategy on
the statistical properties of the resampled images.

A. Summary Comparison of the Bootstrap Methods

The distribution of voxel intensities in the reconstructed
images was first compared. Results presented in Figs. 2 and 3
demonstrated that all resampling techniques based on a unique
list-mode or sinogram file did not produce accurate frequency
histograms whatever the reconstruction strategy. The SNP
method was shown to yield a correct estimate of the reference

histogram which confirms the results published in [9] on a
series of 2-D PET and SPECT simulated data and extend it to
the 3-D case. We also introduced the LMNP50 method and
showed that it enabled a correct estimation of the probability
density function.

The visual comparison of the mean images in Figs. 4 and 5
also suggests that the SNP50 and LMNP50 methods yielded ac-
curate estimates of the mean images unlike the methods based
on one original sample (LMNP and SP). This analysis was con-
firmed by the rms and bias errors reported in Tables I and II.
The Friedman nonparametric analysis of variance resulted in
significant differences between resampling methods when the
data were reconstructed using OSEM2D. The multiple compar-
isons of OSEM2D mean images confirmed that the SNP50 and
LMNP50 images were the only ones statistically equivalent to
the reference mean image (see Table III). This is because the
mean image computed using data resampled from one file rep-
resents the mean of one noisy realization of the activity dis-
tribution, as underlined by D’Asseler et al. [12], whereas the
mean image estimated from the SNP50 and LMNP50 approach
better estimates the true activity distribution. This result was
also reported by Dahlbom [10] for 2-D experimental PET recon-
structed with FBP. The SNP10 method also provided a correct
visual estimate of the mean image but it did not pass the SSD
test (Table III). The Friedman analysis was not powerful enough
to confirm the visual analysis of the FBP3D mean images.

The variance images derived from all resampling strategies
and reconstructed with FBP3D (Fig. 6) seemed similar and visu-
ally correctly reproduced the GS variance. This was confirmed
by the error measures in Table IV, except for the SNP10 method,
but not by the statistical analysis which found that all methods
were statistically different. Considering the OSEM2D variance
images (Fig. 7), the SNP50 and LMNP50 methods were the only
ones close to the GS variance, which was confirmed by the error
measures (Tables IV and V), but not by the statistical analysis
(Table VII). This analysis might suggest that the methods based
on a unique original sample (LMNP and SP) did not perform as
well as those based on multiple samples (SNP50 and LMNP50)
for estimating the variance, and that this difference is better seen
when using the OSEM reconstruction.

Results from the visual analysis of the variance images in
Fig. 6 are in good agreement with those of Haynor and Woods
[8] who demonstrated that the SP method properly estimated
the variance for FBP images. Their comparison consisted in es-
timating the mean number of counts per pixel within circular
regions of interest (ROIs) of different diameters drawn on re-
constructed FBP images of 10 repeated and 10 resampled scans
and measuring the standard deviation of this measure. However,
the number of samples (10) was small and did not guarantee the
convergence of the variance estimate. Our results (Figs. 6 and 7)
suggest that the variance image computed over 10 samples was
different from the variance image computed over 500 and 6000
samples, thus indicating that 10 samples were not sufficient in
our case to correctly estimate the moment of second order. The
differences of count rates might explain why the variance con-
verged with a smaller number of samples in the paper by Haynor
and Woods. The average number of count per sinogram bin is
not mentioned, but we can hypothesize that it was higher than
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ours. It is thus probable that the SP method performs better with
higher statistics. Our results also agree well with the conclusion
of Dahlbom [10] suggesting that the LMNP method correctly
reproduces the variance images for 2-D PET data reconstructed
with FBP. Note that these results were based on a qualitative
comparison of the variance images computed from 250 experi-
mental and resampled cases.

B. Comparison of Bootstrap Methods Based on Single Versus
Multiple Data Sets

As underlined in the introduction, the ground basis for this
study was to compare existing (SP, LMNP, SNP) and “original”
(LMNP50) bootstrap methods in order to estimate their perfor-
mance based on the same data series and the same evaluation
criteria. The goal was to derive guidelines regarding the best
bootstrapping scheme for 3-D PET imaging, ideally based on
a unique original sample. Comparisons performed in this study
may not always seem fair since methods based on single and
multiple original data were compared. The fairest way to com-
pare the different bootstrap methods would be to compare them
separately, considering LMNP and SP on one hand and SNP50
and LMNP50 on the other hand.

Considering the methods based on a unique original file
(LMNP and SP), results shown in this paper underline that
some methods may be adapted to the estimation of some
statistical parameters but not well suited for other parameters.
The LMNP and SP methods, for instance, were shown to be
good candidates to estimate the variance image reconstructed
with FBP3D. However, considering the OSEM variance images
(Fig. 7) and the errors measures in Tables IV and V, it appears
that they did not perform so well. They did not correctly esti-
mate the mean either, as expected since they converge to the
original noisy image the bootstrap is performed from.

On the other hand, the methods based on a series of statisti-
cally equivalent data samples (SNP50 and LMNP50) accurately
estimated the moment of first order for 3-D PET data with high
noise. They also yielded a correct estimation of the moment of
second order.

The elements of statistical analysis of the resampled sinogram
properties presented in Appendix I give a better insight into the
properties of the different bootstrap algorithms. While the ulti-
mate goal of this paper is the correct prediction of “image” and
not “sinogram” properties, for linear algorithms such as FBP
and approximately linear algorithms (e.g., OSEM or penalized
likelihood with medium/high counts) the sinogram properties
can be translated into image domain properties. One of the re-
sults of this statistical analysis is that the SP and LMNP methods
are almost similar (for the counting statistics considered in our
study). This result is consistent with the observations made from
the visual and quantitative analysis of the reconstructed images
shown in this paper. This analysis also shows that the distribu-
tion of the voxel bin values in the resampled sinograms based
on the SP, LMNP, and SNP methods tends in probability toward
the distribution of the corresponding voxel in the original file for
high count studies (without accounting for the bin correlations
possibly present in the original sinograms).

The low counting statistics of the original data may explain
the poor performance of the LMNP and SP methods observed

in this study. As a matter of proof, we compared the maximum
bin values and the total counts per sinogram estimated from 20
GS sinograms and 20 resampled sinograms derived from the
SNP50, LMNP50, LMNP, and SP methods. The maximum bin
values were for the GS,

and for the SNP50, LMNP50, LMNP, and
SP methods, respectively. The total numbers of counts (x10e3)
per sinogram were for the GS,

and for the SNP50, LMNP50,
LMNP, and SP methods, respectively. These values underline
the low statistics of the original data. They also indicate that the
SP and LMNP methods correctly reproduced the global statis-
tics but did not adequately reproduce the distribution of counts
in the sinogram bins, unlike the SNP50 and LMNP50 methods.
We might expect the SP and LMNP methods to perform better
at clinical count rates.

Comparison of the LMNP50 and SNP50 methods indicates
similar performances based on the visual and quantitative anal-
ysis. This would suggest that the bin correlation which is ac-
counted for in the SNP method and not in the LMNP method
is not significant in the data considered in this study. The SNP
method might gain interest with other types of raw data where
the correlations may be more significant, in case of pileup ef-
fects in the detector for instance.

This analysis suggests that the best bootstrapping scheme for
3-D PET imaging, at least for low count studies, require mul-
tiple original samples, which might be hardly achievable in clin-
ical practice. We, however, guess that these bootstrap methods
based on multiple data might find useful applications especially
for clinical research protocols whose purposes are to estimate
the accuracy of some measures of interest, such as SUV during
patient monitoring [21]. Given that most of the ongoing clin-
ical protocols consist of step-by-step list-mode acquisitions of
2–3 min length per step for a total scan time about 25 min to
cover the whole-body, we might indeed consider increasing this
acquisition for some special steps of interests (centered on a
tumor, for instance) without impairing the patient comfort. This
would allow rearranging the “long” list mode acquisition corre-
sponding to this special area of interest in multiple samples of
specific duration so as to derive bootstrap replicates. These boot-
strap methods may also be useful for small animal PET imaging
where acquisition time is less of a burden. Finally, they are well
suited to PET Monte Carlo simulations where the generation of
a few set of multiple data is achievable, but that of a thousand is
computationally too expensive. These different types of appli-
cations will require further investigation.

C. Limitations of the Study and Further Work

The main limitation of this study was the long simulation
time, which was not compatible with the generation of simu-
lated data reproducing typical clinical count rates. We chose to
use the GATE Monte Carlo simulation tool to generate realistic
PET data in terms of statistical properties and correlation at the
price of high simulation time and data storage requirements.
As discussed above, the resulting low statistics of the original
data might explain the poor performance of the SP and LMNP
methods. The differences among the five bootstrap strategies
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may be reduced when considering clinical count rates, as sug-
gested by the derivation in Appendix I.

Another limitation is that the data were neither normalized
nor corrected for attenuation, scatter or random before recon-
struction. We do not think, however, that these corrections
strongly impact the comparison of the different resampling
techniques since these corrections are applied after the boot-
strap step (i.e., when reconstructing the data). Our data were
simulated using a list-mode format and then rebinned into 2-D
or 3-D sinograms with no angular or azimuthal compression, so
that the lines-of-response were not summed. This might not be
the case with clinical PET systems where axial mashing is per-
formed during the acquisition. We did not investigate the effect
of this mashing on the performance of the different bootstrap
methods. It will alter the Poisson nature of the registered counts
in each bin of the sinogram, but may not impact the resampling
performed by the nonparametric methods which do not make
any statistical assumptions.

Further investigation is required to optimize the parameters of
the SNP and LMNP methods. In this study, we considered two
sizes of original samples for the SNP method, 10 and 50, which
were chosen empirically. Our results suggest that 10 repeated
scans were not always sufficient to correctly estimate the statis-
tical properties of the reconstructed images, whereas all statis-
tical parameters were correctly estimated based on 50 original
scans. This is consistent with results in [9] where the use of 30
replicates was found to be appropriate. Yet, further investigation
is required to better estimate the required number of repeated
scans and the minimum statistics in each of these scans. This
will highly depend on the statistics of the original files.

Another strategy that could be investigated would be to adapt
the parametric SP approach to the case of multiple original sam-
ples, by estimating a mean original sinogram from a series of
statistically equivalent samples, and using the SP method on
this mean sinogram. This method, that could be referred to as
SP50 in case we use 50 original files, should allow a better esti-
mation of the parameter of the Poisson law and achieve similar
performances to the LMNP50 and SNP50 methods. It is indeed
sometimes used in the literature although not referred to as a
bootstrap method.

We also plan to apply the SNP method for observer detec-
tion performance studies [22] where the aim is to evaluate de-
tectability based on large series of images with and without a
signal. Observer studies indeed require a large number of statis-
tically equivalent samples, which is hard to achieve both with
experimental data and with simulated data because of the long
duration of realistic Monte-Carlo simulations [23]. These sam-
ples are used to estimate the mean image background and the
covariance matrix.

V. CONCLUSION

The comparison of the different bootstrap strategies per-
formed in this study suggested that the SNP and LMNP
methods based a series of statistically equivalent samples
correctly estimated the distribution of voxel values and the
moments of first and second order for 3-D PET data charac-
terized with a high noise level and reconstructed with FBP3D

or OSEM2D. The resampling methods based on a unique file
(LMNP and SP) were not able to accurately approximate the
moment of first order whatever the reconstruction algorithm but
yielded an overall acceptable estimate of the variance. These
performances are likely to be improved with 3-D PET data of
higher statistics. Further investigation is required to optimize
the parameters of the SNP and LMNP methods and to validate
their use in clinical practice. The good agreement between the
voxel intensity distribution obtained for SNP50 or LMNP50
and the GS data suggests that these bootstrap approaches can be
used to create bootstrap replicates statistically equivalent to real
replicates. This may open novel approaches for patient-specific
statistical image processing techniques.

APPENDIX A
STATISTICAL PROPERTIES OF THE BOOTSTRAP SINOGRAMS

FOR THE SP, LMNP, AND SNP METHODS

Let denote the number of photons detected in the th bin
of the original sinogram. For simplicity, we will note it in the
following. For a fixed object, let us assume that is a Poisson
random variable of parameter .

Let denotes the number of photons stored in the corre-
sponding th bin of the bootstrap sinogram.

In SP resampling, is by definition a realization of Poisson
distribution of parameter .

In the LMNP resampling method, events are chosen at
random and with replacement among the original list-mode
file of events to produce a new list-mode file of the same
size as the original file. Each LMF file is then rearranged
into sinograms before reconstruction. If is the value stored
in a specific bin of the original sinogram, then the value of
the same bin in the resampled sinogram follows a binomial
distribution with parameters and .

The binomial law approaches a Poisson law of parameter
when (i.e., in our case) is much smaller than (i.e.,
in our case) [24]. These hypotheses are confirmed in our study
since events and is comprised between 0 and
9 events per bin. SP and LMNP thus produce similar Poisson
laws of parameter for the resampled sinograms.

Let us consider the bounding conditions when tends to in-
finity. Tchebychev’s inequality says that for all greater than
1, the probability that an observed data of a probability distri-
bution is within standard deviation units of the mean value of
the distribution is smaller than . We can thus write, e.g., for

, that for at least 8/9 of the observed data

(5)

where and are the mean and variance of the
distribution.

being the realization of a Poisson random variable with a
parameter and , so that (5) can be
rewritten as

(6)
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which gives

(7)

This means that, when tends to infinity, will be close
to 1 for a wide part of the observed data , and a sinogram bin
resampled by LMNP or SP will follow a distribution similar to
the one of the corresponding voxel in the original sinograms. It
should be noted that this does not account for possible correla-
tions within sinograms rows.

In the SNP method, each voxel of the resampled sinograms is
randomly chosen in the corresponding voxels of the original
sinograms ( or 50 in this study). The SNP method draws
lines of the sinograms instead of separate bin value to account
for spatial correlations, but this does not affect the derivation
of the probability distribution of each bin, so we will consider
each of them separately. As already mentioned above, it should
be noted that this derivation does not account for the correlations
within sinograms rows.

Let denote the number of times that a specific bin of the
original sinograms is equal to . The probability that a given

bin of a resampled sinogram is is equal to . follows
a binomial distribution B with parameters and

where is the probability that the bin value of an original
sinogram is equal to , i.e., the probability that a Poisson random
variable with parameter is equal to . So, the expected mean
and variance of are given by

(8)

(9)

When tends to infinity, tends to 0, so that
converges in probability to (the probability that a Poisson
random variable with parameter is equal to ). This means
that, for large enough, the value of a voxel of a resampled
sinogram follows the same distribution as the one of the corre-
sponding voxel in the original sinograms.

APPENDIX B
NONPARAMETRIC FRIEDMAN ANALYSIS OF VARIANCE

The nonparametric Friedman analysis tests the null hypoth-
esis that several populations of samples (six in our application)
were drawn from the same population, by determining whether
the sums of the ranks, , of each tested method are similar. In
our case, the nonzero voxels of one plane of the reconstructed
image of the cylindrical phantom represent one matched group
( voxels) and the populations ( for {GS,

LMNP, SP, SNP10, SNP50, and LMNP50}) represent the dif-
ferent conditions to test. Each series of corresponding voxels
are ranked separately with a value ranging from 1 to the number
of tested conditions, i.e., . The Friedman test determines the
probability that the populations consisting each of ranking
values come from the same population, i.e., have the same me-
dian. The Friedman statistic is defined as

(10)

Where

(11)

is the mean value of the squared rank sum

(12)

is the sum of the squared ranks for method and voxel and
is a correction term defined as

(13)

In the case of large-sample approximation that can be as-
sumed in this study, the Friedman statistic may be consid-
ered as a statistic with degrees-of-freedom.

APPENDIX C
SMALLEST SIGNIFICANT DIFFERENCE (SSD) TEST

FOR MULTIPLE COMPARISONS

The SSD is given by (14), shown at the bottom of the page
where is the value of the Student’s t-distri-
bution corresponding to a two-sided probability of and

degrees-of-freedom, is the size of the group, is
the number of tested conditions and is the rank sum for con-
dition . If the difference between the rank sums of two tested
conditions exceeds the critical values given by (14), then the two
methods were considered as yielding different results.

APPENDIX D
NONPARAMETRIC BOX’S M TEST FOR VARIANCE

HOMOGENEITY

The Box’s test is robust with large data sets and does not as-
sume normal distributions. The Box’s M statistic was computed
as

(15)

(14)
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where is the covariance matrix for condition and is the
pooled covariance matrix defined as

(16)

Here, is the size of the group and is the number of tested
conditions. As for the Friedman statistic, the Box’s M statistic
may be considered as a statistic.
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