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Abstract—A statistical methodology is proposed to rank several
estimation methods of a relevant clinical parameter when no gold
standard is available. Based on a regression without truth method,
the proposed approach was applied to rank eight methods without
using any a priori information regarding the reliability of each
method and its degree of automation. It was only based on a prior
concerning the statistical distribution of the parameter of interest
in the database. The ranking of the methods relies on figures of
merit derived from the regression and computed using a bootstrap
process. The methodology was applied to the estimation of the
left ventricular ejection fraction derived from cardiac magnetic
resonance images segmented using eight approaches with different
degrees of automation: three segmentations were entirely man-
ually performed and the others were variously automated. The
ranking of methods was consistent with the expected performance
of the estimation methods: the most accurate estimates of the
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ejection fraction were obtained using manual segmentations. The
robustness of the ranking was demonstrated when at least three
methods were compared. These results suggest that the proposed
statistical approach might be helpful to assess the performance of
estimation methods on clinical data for which no gold standard is
available.

Index Terms—Bootstrap process, cardiac image analysis,
left ventricular ejection fraction, nonsupervised segmentation
methods ranking, regression without truth.

I. INTRODUCTION

I MAGE segmentation remains a central research topic
in image processing and analysis. In the medical field,

it is often a necessary step for other processing tasks, such
as image registration, volumetric and functional analysis, or
derivation of clinical parameters useful for the diagnosis. The
most frequently used method consists in manually outlining
regions of interest on images. However, this approach is labor
intensive, time consuming and subject to intra- and inter-oper-
ator variabilities. To overcome these limitations, segmentation
algorithms are developed with different degrees of automation.
An evaluation of the accuracy of these automatic segmentation
methods must be performed before any clinical application.
In most cases, the accuracy of the resulting segmentation is
assessed by comparing the estimated contours with a reference
contour ideally provided by one (or several) expert(s). Evalua-
tion can be achieved by visually inspecting the superimposition
of the contours. This approach being operator-dependent, a
quantitative assessment thus appears preferable. Distances be-
tween contours can be computed [1], [2]. A criterion measuring
the overlap between the segmented region and the gold standard
region can also be calculated, such as the Dice coefficient [3].
Such global coefficients are useful to evaluate the accuracy of
segmentation results with respect to a reference segmentation.
However, the gold standard is not always easily available.
Furthermore, since small errors in delineations may have an
important impact on further image processing steps, possibly
yielding misleading results and/or leading to inappropriate
treatment [4], [5], it is essential to propose new solutions for
comparing the performance of segmentation methods when
the ground truth is unknown. In addition, it appears relevant to
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evaluate the segmentation approaches with respect to the real
user objective.
A method to compare two measurements was proposed by

Bland and Altman [6]. Their approach aims at assessing the
agreement between twomethods. It consists in plotting themean
of the two parameter estimates versus the difference between
both parameter estimates. As the mean of differences can rep-
resent the mean bias between the two methods and the stan-
dard deviation is related to the data variability, it is possible to
test whether the two methods under evaluation provide similar
results.
When several segmentationmethods have to be evaluated, the

aforementioned approach quickly becomes tedious and does not
allow the ranking of the methods. To address this issue, the “Re-
gressionWithout Truth” approach (RWT) was proposed [4], [7],
[8]. The proposed method consisted in estimating the parame-
ters of a linear model establishing the relationship between the
measurements and the clinical index of interest. Among the hy-
potheses used for the ranking of the different segmentation ap-
proaches, it was assumed that the distribution of the true value
of the clinical parameter of interest follows a finite support dis-
tribution. The parameters of this distribution were estimated
jointly with regression parameters linking the estimated clin-
ical indices to the true values. A figure of merit characterizing
the performance of each estimation method was then derived. In
their first reports, the authors studied two finite support distribu-
tions (a Beta and a truncated normal distributions) to describe
100 ejection fractions (EF) simulated for the study.
On the basis of the previous work, Kupinski et al. compared

the results provided by three different algorithms for EF esti-
mation [4]. This study was performed on single-photon emis-
sion computed Tomographic images acquired on 100 patients.
In this study, a comparison between the Beta and the truncated
normal distributions was performed leading to the choice of the
Beta distribution which seemed to be the most appropriate for
studying clinical parameters with bounded values such as the
EF. Jha et al. recently used the RWT approach to compare the
performance of three segmentation algorithms developed to es-
timate the apparent diffusion coefficient of lesions from diffu-
sion-weighted magnetic resonance images (MRI) [9], assuming
that these coefficients followed a Beta distribution. The param-
eters of this finite support distribution were estimated among a
reasonable range of values during the comparison process. The
authors conclusions suggested to consider prior information re-
garding the finite support distribution to improve the reliability
of the ranking of the segmentation approaches.
In this paper, we propose a methodology based on the RWT

approach to rank segmentation methods with different degrees
of automation. This extended RWT (eRWT) approach was car-
ried out using a figure of merit introduced in [10] which differed
from the one initially introduced in [7] and [8]. To get a robust
comparison, a bootstrap analysis [5], [11] was performed on top
of the eRWT approach, followed by a rank analysis. A prelim-
inary study was performed using prior information regarding
the finite support distribution describing the statistical distribu-
tion of the EF of the left ventricle (LV) in a database [12]. This
work was completed here in assessing the robustness and limi-
tations of the ranking. The influence of several parameters was

studied, especially the parameters of the finite support distri-
bution describing the studied clinical parameter of interest. We
also investigated the impact of the number of segmentation ap-
proaches to be compared. The method is here illustrated in the
particular context of the EF estimation in cardiac cine MRI se-
quences with up to eight endocardial segmentation approaches
available from different research teams.
This paper is organized as follows. Section II presents the

database used in our study and the segmentation methods to be
compared. Section III explains the eRWT theory. Section IV
describes the experiments performed to assess the robustness
and limitations of eRWT. Section V shows the ranking of the
segmentation methods and the results regarding the robustness
of the eRWT method. The method and results are discussed in
Section VI.

II. DATABASE AND SEGMENTATION METHODS

A. Database

The eRWTwas applied to the EF estimated from the segmen-
tation of the MRI cardiac datasets provided to the participants
in the MICCAI 2009 Grand Challenge by Sunnybrook Health
Sciences Center [13]. The database consisted of the stacks of
sequences corresponding to 45 subjects from the training, the
testing and the online contest datasets. It included nine healthy
individuals and 36 patients with various cardiac pathologies:
12 hypertrophic cardiomyopathy, 12 heart failure without is-
chemia, and 12 heart failure due to ischemia. For each patient,
about ten MR short axis slices covering the LV were acquired
using a Steady State Free Precession sequence. Twenty phases
covering the cardiac cycle were acquired and the acquisition
was triggered by the R wave of the ECG (the first phase cor-
responds to the end-diastole). Further details regarding datasets
and image acquisition protocol can be found in [13].
The contestants were challenged to provide the best possible

segmentation and the most reliable EF estimate with respect to
a manual reference. The EF biomarker is defined as the ratio be-
tween the end-diastolic and the end-systolic LV volumes differ-
ence and the end-diastolic volume. It ranges from 0 to 1. A score
higher than 0.5 is considered as normal. The 24 patients of the
studied database with heart failure had a reduced EF .
More than 99% of EFs ranged from 0.05 to 0.85.
MR slices corresponding to the end-systolic and end-diastolic

phases were indicated to the participants in the challenge, so
as to avoid any variability due to the choice of these temporal
phases.

B. Segmentation Approaches

Eight segmentation approaches proposed by five different re-
search teams were included resulting in eight independent esti-
mates of the EF.
Methods M1, M2, and M3 were entirely manual and were

provided by three experts from two laboratories. Semi-au-
tomated methods M4, M5, and M6, described in [14]–[16],
respectively, involved an interactive definition of an initial
shape or a modification of the parameters used by the operators
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Fig. 1. Basal cine MRI slice from a patient at end-diastole with superimposed contours of the LV (green line) provided by the eight segmentation methods included
in our study (M1 to M8 represented from (a) to (h), respectively).

Fig. 2. Median cine MRI slice from a healthy individual at end-diastole with superimposed contours of the LV (green line) provided by the eight segmentation
methods included in our study (M1 to M8 represented from (a) to (h), respectively).

during the segmentation process. MethodM7, described in [17],
was mostly automated. Method M8 was fully automated and its
main principle was described in [18]. All of the aforementioned
methods included the papillary muscles (PM) in the LV cavity
except for M5. All of them were applied to the end-systolic and
end-diastolic phases (3D segmentation) except for M5 and M6
that provided LV contours for the whole temporal sequence
(4D segmentation). For the latter, only the end-systolic and
end-diastolic results were taken into account in this study.
Figs. 1 and 2 give examples of endocardial contours, obtained

by each segmentation approach, superimposed on a basal and on
a median MR end-diastolic image from a patient and a healthy
individual of the database.

III. EXTENDED REGRESSION WITHOUT TRUTH (ERWT)
APPROACH

A. Theory

The RWT approach, detailed in [4], [7], [8], is only summa-
rized here.
Let us consider the database containing images from pa-

tients (indexed by , ranging from 1 to ) and segmentation
methods (indexed by , ranging from 1 to ). Each segmen-
tation method yields an estimate of the biomarker of

interest on the sample . The true value of this biomarker is
unknown.
The RWT approach assumes a parametric relationship be-

tween the true value and its estimate based on the three
following hypotheses.

H1: The statistical distribution of the true value for the
whole database has a finite support.
H2: Each method provides an estimate of which
is linearly related to (1) where the error term is
normally distributed with zero mean and standard devia-
tion , and where the and parameters are specific
to each method and independent of the sample

(1)

H3: The error terms for each method are indepen-
dent.

Given these assumptions, the probability of the estimated
values given the linear model and the true value can
be expressed by (2)

(2)
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Considering the samples of the database, the log-likelihood
can be written, using (3), as a function of , , and

and the probability of

(3)

The maximization of this likelihood does not require the nu-
merical values of , but only a model of its statistical distri-
bution and leads to the estimates of the linear model
parameters for each method ( , , and ).
According to [4], the finite support Beta distribution is well-

appropriated to describe the distribution of the biomarkers
(such as the EF) ranging between two fixed values. This dis-
tribution was therefore chosen in our study. The log-likelihood
defined in (3) can then be computed using the probability den-
sity function of a Beta distribution given by the following equa-
tion (4):

(4)

In this work, the estimation of the linear model parame-
ters was performed by numerically optimizing a constrained
nonlinear multivariable function implemented in MATLAB
(R2009a, The Mathworks, Inc.) and based on a sequential
quadratic programming method [19]. To ensure convergence
of the optimization algorithm, the constrained nonlinear multi-
variable function was initialized close to the expected solution,
i.e., with a slope close to 1, an intercept and a standard deviation
of the error term close to 0.

B. Figure of Merit

The figure of merit proposed in [4], [7] for comparing the
different methods was the ratio between and : the smaller
this ratio, the more accurate the estimation method. According
to this criterion, if two segmentation approaches estimate the
clinical parameter of interest with a similar standard deviation
of the error term, the most accurate method will be the one with
the highest slope.
Equation (1), however, suggests that is accurately esti-

mated if the slope is close to 1, the intercept close to
0, and the error term has a low standard deviation. To quantify
the deviation between the estimated values and the “ideal” es-
timates represented by the identity line, Soret et al. introduced
in [10] another figure of merit defined as the mean square
difference between the true value of the parameter and the esti-
mated value [(5)]

(5)

As the mean and the variance of a Beta
distribution are given by (6) and (7), respectively, the second
moment is given by (8)

(6)

(7)

(8)

Using hypothesesH1,H2, andH3, can thus be expressed
using (9)

(9)

The ranking of the segmentation methods using the eRWT is
based on this figure of merit.

C. Bootstrap Process and Rank Analysis in the eRWT
Approach

To get robust estimates of and overcome robustness is-
sues due to low sample size, a bootstrap approachwas used. This
statistical process is extensively described in [11]. The principle
consists in randomly drawing with replacement samples from
the initial sample, and repeat the process times.
For each drawing , the parameters , and were

estimated, yielding a figure of merit . The nonparametric
Kruskal-Wallis test [20] was then performed based on the
figures of merit to determine whether the median figure of
merit was equal among segmentation methods. When the null
hypothesis was rejected, the mean rank of each method was
compared two by two, using a Bonferroni correction with a Type
I error equal to 5% [21].

IV. EXPERIMENTS

A. Comparison of the Segmentation Approaches Using the
eRWT Methodology

1) Estimation of the eRWT Parameters: A first study was
performed by setting the parameters of the Beta distribution to
fulfill two criteria:

C1: since there were more subjects with a reduced EF than
with a normal EF, the distribution was centered at a value
less than 0.5;
C2: since more than 99% of the EFs ranged from 0.05 to
0.85, and were chosen so that the probability density
function was close to 0 outside this range.

The and parameters of the Beta distribution representative
of the database were empirically determined. Parameters and
, respectively, equal to 4 and 5 met observations C1 and C2.
The probability density function of such a Beta distribution is
represented in Fig. 3(a).
The linear model parameters were first estimated without

considering a bootstrap. The figure of merit was computed
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Fig. 3. Probability density functions of Beta distributions corresponding to dif-
ferent and parameters.

for each method and a preliminary ranking of the segmentation
methods was deduced.
2) Analysis of After Bootstrap and Rank Analysis: To get

robust results, the bootstrap approachwas applied. In the present
work, different random drawings were performed
from the initial samples. As segmentation
methods were compared, the rank analysis was performed based
on 8000 figures of merit.
The distribution of for each segmentation method was

studied.

B. Robustness of eRWT

The bootstrap process considering different
random drawings was systematically applied to the following
experiments.
1) Influence of the Finite Support Distribution Parameters:

In the first studies regarding the RWT approach applied to the
EF estimates [7], the parameters of the finite support distribu-
tion were constrained to lie between 1 and 5 during the RWT
optimization process. Yet, Jha et al. suggested in the conclusion
of their work described in [9] that estimating the Beta distribu-
tion parameters during the RWT process was not necessarily the
best approach. To further investigate the role of the parameters
of the finite support distribution, we compared the segmentation
approaches as described in previous papers, i.e., in optimizing
the log-likelihood given by (3) so that the estimated Beta distri-
bution parameters were in the range.
The eRWT approach was thereafter applied while setting the

parameters of the Beta distribution differently. Tests were per-
formed using other parameter pairs representing a distribution
of values close to that shown in Fig. 3(a) [ rep-
resented in Fig. 3(b)], a symmetric distribution [

represented in Fig. 3(c)], and distributions with more subjects
with a normal EF thanwith a reduced one [ ,

and represented in Fig. 3(d)–(f),
respectively].
For each combination of parameters, was estimated. The

standard deviations of the error term were also com-
pared through the tests to study the robustness. A rank anal-
ysis was then performed using the values of .
2) Influence of the Segmentation Approaches Included in

the Comparison: To assess the robustness of the proposed
comparison methodology with respect to the segmentation
approaches under evaluation, the ranking of the methods was
performed considering different combinations of segmentation
approaches:
• semi- and largely automated approaches (i.e., methodsM4,
M5, M6, M7, and M8);

• manual and largely automated approaches (i.e., methods
M1, M2, M3, M7, and M8);

• manual and semi-automated approaches (i.e., methodsM1,
M2, M3, M4, M5, and M6);

• all combinations of three methods among the eight avail-
able (number of considered combinations: );

• all combinations of two methods among the eight available
(number of considered combinations: ).

To assess the modification of the ranking of methods with re-
spect to the methods entering the comparison, a ranking inver-
sion cost was computed. This cost is described in (10) with
and the reference rankings of and , respectively, and
and the rankings of and in the current comparison

study

if

otherwise.
(10)

This ranking inversion cost was computed for all combina-
tions of two methods and among the methods entering
the comparison (number of considered combinations:

). This cost penalizes more a ranking inversion be-
tween two methods performing very differently in the reference
ranking than a ranking inversion between two methods ranked
consecutively in the reference ranking.
For this robustness study, the ranking obtained with the eight

methods entering the comparison was considered as reference
and the Beta distribution parameters and were set to 4 and
5, respectively.
3) Influence of the Database Size: To evaluate the proposed

comparison methodology robustness with respect to the size of
the database, the ranking of the methods was performed using
only the testing and the online contest datasets. This smaller
database consisted of 30 subjects including six healthy sub-
jects, eight patients with hypertrophic cardiomyopathy, eight
with heart failure without ischemia, and eight with heart failure
due to ischemia. The sixteen patients with heart failure had a
reduced EF.
The eRWT was then applied to this reduced database by

including the eight methods and all combinations of three
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TABLE I
ESTIMATED ERWT PARAMETERS ( , , AND ) FOR EACH METHOD

USING AND AS BETA DISTRIBUTION PARAMETERS

methods. The ranking inversion cost evaluating the modifi-
cation of the ranking of methods when going from eight to
three methods was also estimated using this reduced database
and considering the ranking obtained with the eight methods
included as the reference [cf. (10)].
To be consistent with the previous robustness study, the Beta

distribution parameters and were set to 4 and 5, respectively.

V. RESULTS

A. Comparison of the Segmentation Approaches Using the
eRWT Methodology

1) Estimation of the eRWT Parameters: Table I lists the pa-
rameters of the linear model ( , and ) estimated for each
method using the eRWT approach with the and Beta distri-
bution parameters set to 4 and 5, respectively, and without any
bootstrap procedure.
For each method, estimates of EF with associated standard

deviation were plotted against the true value of the EF ranging
from 0 to 1 (see Fig. 4). A line corresponding to the “ideal” esti-
mates (identity between the estimated values and the true value)
was superimposed to these graphs. None of the methods yields
estimated values very far from the identity line. The smaller the
deviation between the experimental and the ideal lines along
the range of possible values and the smaller the standard devia-
tion, the more accurate the estimate. Table I and Fig. 4 suggest
that the estimates of the biomarker provided by manual methods
(M1, M2, and M3) were the most accurate and least variable,
whereas results obtained usingmethodM8were more scattered.
Method M5 globally underestimated EF.
The fifth column of Table I gives , the figures of merit for

each method. Based on the values, the ranking of the methods,
beginning from the most accurate, is: M2, M1-M3, M4, M7,
M5-M6, and M8.
2) Analysis of After Bootstrap Process and Rank Anal-

ysis: Fig. 5 illustrates the distribution of computed for each
segmentation approach after the bootstrap process. This figure
shows that results obtained with M8 are the most scattered and
those obtained using M1, M2, and M3 are the least dispersed.
Results of the rank analysis based on distinguished six

groups of methods classified in descending order of perfor-
mance: M2, M1-M3, M4, M7, M5-M6, and M8.
The time computation used to perform this test on a Dell Pre-

cision PWS380 computer (Windows XP, Pentium 4, 3 GHz, 3
Gb RAM) was about 3 h 30 min. This was not optimized as all
routines were coded in Matlab.

Fig. 4. Plot of the estimated EF as a function of the true EF
for each method (solid red line) with associated standard de-

viation (dashed red lines), and ideal estimates
.

Fig. 5. Boxplot of the distribution of computed after the bootstrap process
for each method: the median value is represented by the red horizontal segment,
the interquartile range by the blue rectangle, adjacent values inferior to 1.5 times
the interquartile range by the dashed black line and outliers by red crosses. The
first three methods provided the three lowest values of and are the least
dispersed.

B. Robustness of eRWT

1) Influence of the Finite Support Distribution Param-
eters: Fig. 6(a) shows, for each segmentation method, the
median value of the figures of merit computed during the
bootstrap process with associated first and third quartiles
for different parameters of the Beta distribution. Results
obtained for —solid red line—and for

—dashed green line—are very similar, and so
are the results obtained with —dotted light
blue line—and —pink solid line with circle
markers. This figure also shows that, for all segmentation
methods, was the lowest when and were set so that the
maximum of the finite support distribution was around 0.45,
i.e., for and for . The largest
were obtained for parameters representing a distribution with
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Fig. 6. (a) Median values of and (b) of in the eRWT linear model computed during the bootstrap process and associated first and third quartiles for
different parameters of the Beta distribution. The smallest values were obtained for and for , the largest values for

. The term did not depend on the Beta distribution parameters (similar estimates whatever the Beta distribution parameters).

TABLE II
RANKING OF THE SEGMENTATION METHODS FOR DIFFERENT PARAMETERS OF
THE BETA DISTRIBUTION. THE RANKING STRONGLY DEPENDS ON THE SET OF

PARAMETERS

a maximum close to 0.80, i.e., for —dashed
purple line pentagram markers. This configuration apart, the
highest figures of merit were obtained when the Beta distribu-
tion parameters were estimated during the eRWT process and
under the constraint to lie between 1 and 5 (dotted black line
with asterisk markers). This experiment shows that the joint
estimation of the Beta distribution parameters and of the linear
model parameters does not provide the smallest values of .
Fig. 6(b) presents, for the eight segmentation methods and

for the different sets of parameters of the Beta distribution, the
median and associated first and third quartiles values of the stan-
dard deviations obtained during the bootstrap process. For a
given method, the values of were similar whatever the Beta
distribution parameters.
Table II presents the ranking of the segmentation methods for

the different sets of parameters of the Beta distribution.
When and yielded close probability density functions (

and
), the ranking of methods was quite close. However, this table

shows that the ranking strongly depends on the set of
parameters.
2) Influence of the Segmentation Approaches Included in the

Comparison: Table III presents the ranking of the segmenta-
tion methods when different combinations of methods were in-
cluded in the comparison. This table shows that, when only
manual and semi-automated or manual and largely automated
approaches were included in the comparison, the segmentation
methods ranking was identical to the reference ranking (the one

TABLE III
RANKING OF THE SEGMENTATION METHODS WHEN DIFFERENT COMBINATIONS

OF METHODS ENTERED THE COMPARISON

obtained when all segmentation methods were included in the
comparison). Thus, in both cases, 100% of the ranking inver-
sion costs computed were equal to 0. When only semi- and
largely automated methods were included in the comparison,
there was no ranking inversion. Nevertheless, method M5 was
ranked third and method M6 ranked fourth. As both methods
had the same ranking in the reference ranking (rank number of
6.5), the ranking inversion cost computed for this ranking mod-
ification was equal to 1. All other computed ranking inversion
costs were equal to 0.
Fig. 7 presents the frequency of computed ranking inversion

costs to assess the modification of the ranking when only three
or two methods are compared instead of eight methods (refer-
ence ranking). For each case, the frequency was normalized by
the number of combinations available (case with three methods
including in the comparison: , case with two
methods including in the comparison: ). When
considering all combinations of three segmentation methods,
93% of computed ranking inversion costs were equal to 0 (black
bar on Fig. 7). Five percent of the computed ranking inversion
costs were equal to 1. The remaining cases were equal to 1.5, 2,
or 2.5.
When considering all combinations of two segmentation

methods, 46% of computed ranking inversion costs were equal
to 0 (red bar on Fig. 7). About 11% of computed ranking
inversion costs were equal to 1. The remaining 43% were either
higher than or equal to a score of 2.5. This means that almost
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Fig. 7. Ranking inversion costs measuring the change in ranking of methods
as a function of the methods included in the comparison. The reference ranking
is the one obtained when including all eight methods in the comparison with
the 45 patients database (red and black bars) and with the 30 patients database
(gray bar).

half of the comparisons including only two segmentation
methods changed the ranking of methods not consecutively
ranked in the reference ranking.
3) Influence of the Database Size: Results of the rank

analysis considering the reduced database (30 patients) and the
eight available segmentation methods distinguished six groups
of methods classified in descending order of performance: M2,
M1, M3, M4-M7, M5-M6, and M8.
Eighty-eight percent of the comparisons performed

using only three methods identically ranked the segmentation
methods as in the comparison involving all methods (ranking
inversion cost = 0, light gray bar on Fig. 7). Five percent of
the computed ranking inversion costs were equal to 1. The re-
maining 7% were equal to 1.5, 2, or 2.5.

VI. DISCUSSION

The main goal of this study was to propose and characterize
the performance of a comparison methodology which aims at
ranking, for a database, several estimation methods when the
gold standard is unknown. In our application, we ranked eight
segmentation approaches with various degrees of automation
used to assess the EF for nine healthy subjects and 36 patients
with various cardiac pathologies. One of the segmentation
methods did not include PM in the LV cavity to delineate
contours. It should be emphasized that the comparison did not
actually assess the segmentation accuracy, but the ability of
the segmentation algorithm to properly estimate the EF, which
is different as a systematic segmentation error can still lead to
reasonably accurate EF.
An approach often used to assess segmentation methods con-

sists in comparing the methods one by one by referring to a gold
standard commonly provided by a manual delineation. Since
manual delineation is an intensive work impractical on large
databases and since the true value of the clinical parameter of in-
terest remains unknown, a comparison approach without using
any gold standard was proposed [7]. This RWT approach is

based on several assumptions regarding the estimation methods
under assessment. The ranking of methods is based on the com-
putation of a figure of merit that is a function of the estimated
regression parameters.
In this work, we extended this method in two respects. First

we did not use the proposed figure of merit, but rather the one
introduced by Soret et al. [10]. Second, the ranking was defined
by a bootstrap approach and associated rank analysis, which al-
lowed us to better characterize the stability of the ranking. This
extended approach, named eRWT, was applied to the database
provided to the participants in the MICCAI 2009 Grand Chal-
lenge to characterize its performance and evaluate its robustness
with respect to various parameters. In particular, we studied how
the final ranking provided by the eRWT approach depended on:
1) distribution parameters used to describe the statistical dis-
tribution of the clinical parameter of interest;

2) number of methods included in the comparison;
3) size of the database.

A. Comparison of Segmentation Methods Using the eRWT
Approach

To assess the consistency of the ranking provided by the
eRWT, we included three manual segmentation methods among
the eight methods to be evaluated. At that point, it is important
to underline that if manual delineation is often considered to
be the “gold standard” when assessing segmentation methods,
in our study, the manual segmentation methods did not have
any a priori specific role. Yet, results presented in Section V-A
showed that the manual delineations appeared to provide the
most accurate EF estimations. This is consistent with our ex-
pectation that these methods would outperform semi-automated
or largely automated analyses. Thus, the eRWT approach, only
based on hypotheses described in Section III-A and using no
priors regarding the features of the methods (manual, semi-au-
tomated, largely automated) seems to be relevant to objectively
compare several segmentation approaches for subsequently
deriving the EF.
Estimated eRWT parameters for each method showed that

semi and largely-automated methods still provided reasonably
accurate EF estimates: the slope and intercept of the linear
model were close to 1 and 0, respectively, and the figures of
merit were close to the scores obtained for the manual delin-
eations. These observations were also true for M5, a method
that did not include the PM in the LV cavity. This means that
including or excluding the PM from the LV cavity does not
seem to have a large influence on the accuracy of EF estimates.
Method M8 was found to have more scattered performances
than the others. This is due to the image segmentation ap-
proach used to estimate contours [18]. Indeed, a region of
interest around the LV was automatically computed using a
circular Hough transform. Then, a morphological filtering and a
GVF-Snake algorithm were applied to estimate the LV contour.
This pipeline of processes was performed without any operator
intervention and its lower performance is due to the possible
failure of one of the steps involved in the whole process.
Despite of these good estimates, semi and largely automated

methods were not ranked as well as the manual approaches.
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Their actual version should be improved to be clinically
accepted.

B. Robustness and Limits of the eRWT Approach

When modifying the Beta distribution parameters, we ob-
served that the figures of merit for each segmentation method
were the smallest when the Beta distribution parameters were
set a priori and not when they were estimated during the
eRWT process. Moreover, we found that the smallest
were obtained when the Beta distribution parameters and
described a database with more reduced EFs than normal

values (cf. Fig. 6). In addition, with these distributions, manual
delineations were ranked first whereas it was not the case with
the other distributions (cf. Table II). These observations showed
the importance to carefully describe a priori the distribution of
the clinical parameter of interest for a given database. This also
showed that the computation of the figure of merit can help
to choose the most appropriate set of parameters of the Beta
distribution.
Comparisons performed when modifying the number of seg-

mentation methods showed that the eRWT approach accurately
and reproducibly ranked the methods for any combination
of at least three methods (cf. Fig. 7). Remaining errors were
characterized with a ranking inversion cost less than 2, which
means a possible error of one rank only. We also observed that
eRWT results might not be reliable when only two methods are
compared.
When comparing the methods on the reduced database (thirty

patients), the overall ranking of the eight segmentation methods
was close to the one obtained on the whole database (cf.
Section V-B3). However, when only three methods entered the
comparison, the percentage of changes in the methods ranking
was a little bit higher with the reduced database than when the
whole database was included (cf. Fig. 7). This showed that,
even if a bootstrap approach is used on top of the comparison
process, reducing the size of the database might decrease the
probability to correctly rank three methods. Larger database
should be preferred when only three segmentation methods
have to be compared to each other.

C. Future Directions

A strong assumption of the RWT techniques is that the es-
timated values are linearly related to the true values [4], [7],
[8]. Results presented in these previous reports and our findings
suggest that such an assumption is reasonable in a large number
of cases. Yet, the use of a quadratic model has actually been
proposed in [22]. The drawback of such an extension is that an
additional parameter has to be estimated for each method. It is
therefore more robust to use the linear assumption when it prop-
erly describes the data. Results shown in Fig. 4 suggest that this
is the case in our dataset. However, additional studies should
be carried out in the future to determine whether the linear as-
sumption is reasonable for a given dataset, or whether a different
assumption should be used instead.
Our results were obtained using a constrained nonlinear mul-

tivariable function based on a sequential quadratic program-
ming method [19]. To ensure convergence of the algorithm, the

initialization of the algorithm was set close to the expected so-
lution. Additional tests will be performed to study the influence
of the initialization on the results. Other algorithms, based on a
stochastic clustering, gradient descent and simulated annealing,
will also be tested.
Our eRWT method allows to conclude at the statistical sig-

nificance of differences in the ranking of estimation methods.
Yet, it does not address the practical significance of differences
in ranking. To go in greater depth in the methods ranking, the
eRWT approach could be applied to analyze other relevant clin-
ical parameters, like the end-diastolic and end-systolic volumes.
If several methods have similar performance according to the
eRWT approach, additional criteria, like the computation time
required to provide the segmentation results, could also be taken
into account to conclude that a method is more practical than an-
other.
When considering the performance level of image seg-

mentation approaches without gold standard, another solution
consists in evaluating the accuracy of the segmentation results
by estimating a reference shape from the segmentation entries.
Using this estimate, some associated evaluation parameters
can be computed (e.g., sensibility, specificity, distance to the
estimated reference shape). Among the methods that will be
investigated, the now classical STAPLE algorithm [23] and
another method based on variational approaches and active
contours [24] will be tested. In this latter method, we propose
to estimate a mutual reference shape within a continuous
optimization framework by minimizing a criterion based on
information theory. Let us note that the contour-based methods
cited above provide additional information on the relevance of
each segmentation method. They may then also be used jointly
with the eRWT approach in order to design a more complete
evaluation framework.

VII. CONCLUSION

The present study demonstrates the robustness and the limi-
tations of an extended version of the RWT approach for com-
paring the accuracy of different segmentation methods used to
estimate, for a database, a clinically relevant parameter in the
absence of gold standard (here the ejection fraction in cardiac
MRI). In comparison with previous applications, this extended
methodology was applied to rank numerous methods (eight in
total). No prior concerning the reliability or the degree of au-
tomation of the segmentation methods is required to perform
this comparison without a gold standard. A few conditions must
nevertheless be respected to apply the methodology. First, a
prior concerning the distribution of the biomarker is highly rec-
ommended. Additionally, our results suggest that eRWT pro-
vides an accurate ranking of methods when the database in-
cludes at least 30 samples and when at least three methods are
compared. Manual delineation might therefore not be required
anymore to evaluate the relative performance of different seg-
mentation algorithms.
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