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In PET-based patient monitoring, metabolic tumor changes
occurring between PET scans are most often assessed visually
or by measuring only a few parameters (tumor volume or
uptake), neglecting most of the image content. We propose
and evaluate a parametric imaging (PI) method to assess tumor
changes at the voxel level. Methods: Seventy-eight pairs of
tumor images obtained from baseline and follow-up 18F-FDG
PET/CT for 28 patients with metastatic colorectal cancer were
considered. For each pair, after CT-based registration of the
PET volumes, the 2 PET datasets were subtracted. A bipara-
metric graph of subtracted voxel values versus voxel values in
the first PET scan was obtained. A model-based analysis of this
graph was used to identify the tumor voxels in which significant
changes occurred between the 2 scans and yielded indices
characterizing these changes. The Response Evaluation Criteria
in Solid Tumors (RECIST) based on the CT images obtained 5–8
wk after the second PET/CT scan were used to classify tumor
masses as responding or progressive. On the basis of this clas-
sification, we compared the sensitivity and specificity of PI and
an approach based on recommendations from the European
Organization for Research and Treatment of Cancer (EORTC).
Results: For tumor-based classification, the EORTC-based
approach had a sensitivity and specificity of 85% and 52%,
respectively, for detecting responding lesions, whereas PI had
a sensitivity and specificity of 100% and 53%, respectively.
None of responding tumors using RECIST was classified as
progressive with the PI or EORTC-based criteria. Among the
14 progressive lesions according to RECIST, 12 were identified
as progressive with PI whereas EORTC-based criteria classified
only 1 as progressive and 13 as stable tumors. Considering the
patient-based classification, none of the responders according
to RECIST was classified as having progressive disease with
the PI and EORTC-based criteria. PI has the advantage of
showing a parametric image of the patient response to therapy,
indicating potential heterogeneity in tumor response. Conclu-
sion: The PI method has been successfully applied to charac-
terize early metabolic tumor changes in 78 lesions from
18F-FDG PET/CT scans of patients with metastatic colorectal
cancer during chemotherapy. The PI findings correlated well
with the standard RECIST-based response assessment.
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PET plays an increasing role in patient monitoring
(1). Because metabolic changes always precede the mor-
phologic changes detectable through conventional ana-
tomic imaging such as CT or MRI, PET is expected to
enable early assessment of response to therapy. Several
studies have already reported earlier detection of tumor
response or tumor recurrence with 18F-FDG PET than with
CT (2–5).

Changes in tumor uptake occurring between 18F-FDG
PET scans acquired before and during the course of therapy
are most often assessed visually. This visual assessment is
frequently associated with a quantitative characterization of
the tumor uptake in each scan, by measuring the standar-
dized uptake value (SUV) in each tumor mass. Recommen-
dations about how to interpret SUV changes between scans
have been published (4,6). These recommendations are
based on using cutoff values of the SUV changes to classify
tumor changes as complete response (CR), partial response
(PR), stable disease, or progressive disease. Although SUV
estimates are useful to objectively assess the change in
tumor uptake between 2 scans, they suffer from limitations.
First, several studies have shown that SUVs are highly
dependent on several parameters, including the delay
between injection and scan time (7), noise level and spatial
resolution in the reconstructed images, and region used to
estimate the SUV (8). Second, SUV provides either an
average estimate of the tumor uptake, when calculated in
a volume of interest (VOI) drawn around the tumor, or a
local estimate when considering only the maximum voxel
value in the tumor (maximum SUV [SUVmax]). As a
result, complex changes in tumor uptake, for instance, het-
erogeneous tumor response or development of a necrotic
area, can be overlooked when considering SUV changes
only. The recommendations regarding the interpretation
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of SUV changes between PET scans are thus of limited
value (5). New criteria for classifying tumor changes in
solid tumors based on PET/CT have been recently sug-
gested (9) but still need to be widely assessed.
In this work, we propose a parametric imaging (PI)

method to monitor tumor changes while overcoming some
limitations of the current approaches. First, the method
does not need a precise identification of the tumors to be
analyzed. Second, it provides a view of the changes of
tumor tracer uptake at the voxel level, showing evidence of
intratumoral response heterogeneity if present. The per-
formance of the method is studied using a set of 28 patients
with metastatic colorectal cancer.

MATERIALS AND METHODS

Patients and Imaging Protocols
Twenty-eight patients (mean age, 62.8 y; age range, 23–83 y)

with metastatic colorectal cancer treated at the Institut Jules
Bordet, Brussels, Belgium, were considered. All patients were
recruited as part of a prospective clinical trial on a larger cohort of
patients assessing the clinical role of early 18F-FDG PET/CT in
chemotherapy-treated metastatic colorectal cancer (10). The study
was approved by the ethics committee of the Institut Bordet and
registered at clinicaltrials.gov (NCT00741481). All patients pre-
sented advanced metastatic colorectal cancer deemed able to
receive chemotherapy. They were treated with 5-fluorouracil, leu-
covorin, and oxaliplatin (19 patients); folinic acid, fluorouracil,
and irinotecan (9 patients); and capecitabine (1 patient) as first-
(20) or second-line (9) treatments. The mean number of lesions
per patient was 3 (range, 1–8). Seventy-eight lesions in total were
analyzed (3 primary, 49 in the liver, 8 in the lungs, 10 in the
peritoneum, and 8 in other locations).

In addition, to validate the PET/CT image registration method
involved in the PI approach, 6 patients (mean age, 60 y; age range,
49–76 y) with inoperable non–small cell lung cancer (stage III or
IV) treated at the Institut Jules Bordet were considered. Unlike the
patients from the first group, these patients had 3 PET/CT scans,
enabling a detailed evaluation of the registration accuracy that was
not possible using 2 PET/CT scans only. These patients were
retrospectively recruited and received gemcitabine, ifosfamide,
and cisplatin; or cisplatin, docetaxel; or cisplatin, vinorelbine che-
motherapy as first-, second-, or third-line treatments. The tumor
masses were located in the lung (18), liver (8), mediastinum (3),
bone (5), and lymph nodes (5).

CT. Each of the 28 patients had a first helical diagnostic CT
scan with or without intravenous contrast injection (depending on
the evaluated lesion) 8 d (range, 0–23 d) on average before the first
18F-FDG PET/CT scan and after 5–8 wk on therapy or sooner in
the case of clinical suspicion of progression. Axial slice thickness
was 3 or 5 mm, depending on the scanner. A lesion-by-lesion
analysis was performed. The target lesions were identified by a
senior radiologist in a joint reading session with the nuclear med-
icine physician.

CT findings were interpreted according to Response Evaluation
Criteria in Solid Tumors (RECIST) 1.0, with additional restric-
tions: lesions should be clearly individualized on both baseline
PET and diagnostic CT scans and have a minimal diameter of 15
mm on the baseline diagnostic CT scan. Stable disease status was
confirmed by an additional CT scan after 6–8 more weeks.

18F-FDG PET/CT. Each patient underwent a baseline 18F-FDG
PET/CT scan just before the start of chemotherapy and a second
scan at day 14.

Patient preparation, imaging, and reconstruction protocols were
kept constant for serial scans of the same patient. All 18F-FDG
PET/CT images were obtained using a Discovery LS system (GE
Healthcare), 60 min after injection of 4 MBq/kg. PET images were
reconstructed with the built-in Advance software (GE Healthcare),
using the ordered-subset expectation maximization algorithm (11)
(2 iterations, 28 subsets) and gaussian postfiltering of 5.45 mm in
full width at half maximum. The images were corrected for attenu-
ation based on the CT scan and for scatter. CTwas performed with
a 4-slice multidetector helical scanner (Lightspeed; GE Health-
care). The tension was 120 kV, and the current was determined
by the Auto-mA algorithm (GE Healthcare) and ranged from 30 to
200 mA. The other parameters were 0.5 s per CT rotation, a pitch
of 1.5, and a table speed of 15 mm/rotation. The matrix of CT
images was 512 · 512 (0.98 · 0.98 mm pixel size) with a 5-mm
slice thickness. The PET volumes (128 · 128 pixels of 3.91 · 3.91
mm, 4.25-mm slice thickness) and the CT volumes (5-mm slice
thickness, 512 · 512 pixels of 0.98 · 0.98 mm) were systemati-
cally coregistered using the LightSpeedAppsct_dst_dls_1.7_R2.9N.
IRIX646.5 software.

Parametric Imaging of Tumor Changes
To compare PET scans acquired before and during antineo-

plastic therapy, the images were first converted to SUV units by
normalizing the measured activity by the injected activity per
body weight corrected for radioactive decay. Then, pairs of PET
volumes acquired in the same patient were considered. For each
patient, a set of slices of interest was manually selected in the
baseline scan using a large parallelepiped VOI encompassing the
organs including the tumor lesions.

For each pair of volumes, the comparison consisted of
registering the 2 PET volumes, calculating a parametric image,
and deriving quantitative indices from the parametric image.

Registration of PET Volumes. To compare 2 PET images at a
voxel level, these scans first need to be registered so that a given
voxel corresponds to the same volume element in each of the 2
scans. Because PET images suffer from modest spatial resolution
and are systematically coregistered with CT volumes acquired in
the same PET/CT session, the CT volumes were used to determine
the transformation appropriate for realigning the PET VOI. The 2
CT VOIs were registered using a rigid transform (3 translations
and 3 rotation parameters) derived from block-matching registra-
tion (12) as implemented in the Isogray software (Dosisoft). Local
rigid transformation was assumed because we considered limited
VOI including the tumor masses. The transformation mapping CT
volume 2 on CT volume 1 was then used to register the second
PET scan with the first PET scan.

Calculation of Parametric Image of Significant Tumor Changes.
The 2 registered PET scans, denoted PET1 and PET2, were first
subtracted voxel-by-voxel. This yielded a volume DIFF5 PET2 2
PET1 in which each voxel value DIFF(i), where i denotes the voxel,
corresponded to the difference in SUV in voxel i between the first
and second scans. To identify the voxels i corresponding to actual
changes in tumor uptake from this DIFF volume, a biparametric
graph of DIFF(i) (y-axis) against PET1(i) (x-axis) was plotted
(Fig. 1A). The number of points in this graph corresponds to the
number of voxels in the analyzed volume (from 38,400 to 147,456
voxels, depending on the patient slice selection). In this graph,
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voxels i that did not change much between the 2 scans are near the
horizontal axis (y5 DIFF(i)5 0), whereas voxels with substantial
change have high |DIFF(i)| values. In addition, tumor voxels will
tend to have higher x (PET1) values than voxels corresponding to
physiologic uptake. This plot can also be represented as a histo-
gram showing the density of voxels with specific (PET1(i),DIFF
(i)) coordinates, in which clouds of voxels can be clearly distin-
guished (Fig. 1B).

Voxels corresponding to changes in tumor uptake are identified
by fitting this graph using a gaussian mixture model (GMM).
GMMs have been shown to be useful for identifying clusters in
structured data (13). The GMM assumes that the distribution of
voxels in the biparametric plot can be expressed as a mixture of
gaussian distributions, each characterized by a mean mk and a
variance matrix Vk. The GMM reads (Supplemental Appendix 1;
supplemental materials are available online only at http://jnm.
snmjournals.org):

f ðxiÞ 5 +
K

k 5 1

pk f ðxijmk;VkÞ; Eq. 1

where xi is the 2-component vector (PET1(i),DIFF(i)), and pk is
the mixing proportion (0, pk , 1 for all k5 1,. . .,K and Sk pk5 1).

A stochastic expectation maximization algorithm was used to
calculate the maximum likelihood estimates of the model
parameters P 5 (p1,. . .,pk-1,m1,. . .,mk,V1,...,Vk) (14). Given these
estimates, the voxels were classified into K clusters, where each
voxel is assigned to cluster k such that the conditional probability
tk(xi) to belong to cluster k is maximum (Supplemental Appendix
1). Figure 1C gives an example of identification of 3 clusters in the
biparametric representation.

Solving the GMM requires an estimate of the number of
clusters, an initialization of the model parameters, and a stopping
criterion. Four clusters at most can be expected: 1 for voxels with
no substantial SUV changes between the 2 PET scans (noise only),
1 for voxels in which physiologic changes not related to the tumor
masses occurred, 1 for tumor voxels in which SUV increased
between the 2 scans, and 1 for tumor voxels in which SUV
decreased between the 2 scans. The initialization of these clusters
is described in Supplemental Appendix 2. Given the initial
clusters, the GMM is solved using stochastic expectation max-
imization (15). The stochastic expectation maximization algo-
rithm is stopped when the absolute change in the loglikelihood
is less than 0.001 between 2 successive iterations or after 150

iterations. The consistency of the resulting clusters is checked
(Supplemental Appendix 2). In the case of inconsistency, the
GMM is solved again using 1 cluster less. This is iterated until
the final clusters (4, 3, or 2) are found to be consistent.

On the basis of this classification, a parametric volume is
deduced. In this volume, all voxels belonging to the noise or
physiologic changes cluster are set to zero. Only the voxels i
belonging to the other clusters (increase or decrease in SUV) are
assigned their DIFF(i) 5 PET2(i) 2 PET1(i) values. To facilitate
visual interpretation, negative values are coded on a green color
scale, and positive values are coded on a red color scale.

Calculation of Quantitative Indices from Parametric Volume.
For each cluster of voxels seen in the parametric volume, 2 indi-
ces were calculated. The tumor volume DVaffected by changes in
SUV was equal to the largest number of connected voxels in
the cluster. The average change in SUV, DSUV, was the average
PET2(i) 2 PET1(i) in these connected voxels.

Each cluster of voxels corresponded to either a partial
metabolic response (PMR, decrease in the cluster mean SUV) or
a progressive or nonresponding lesion (progressive metabolic
lesion [PML], increase in the cluster mean SUV). When there
were multiple clusters within a lesion, if at least 1 cluster was
progressive, the lesion was classified as PML. By definition, no
stable tumor could be seen in the parametric volume.

Using the parametric volume, a patient was classified as having
overall metabolic response if at least half of the lesions observed
in the baseline PET scan showed a metabolic response, without any
progressive or new lesion. Otherwise, the patient was classified as
a nonresponder.

Evaluation of Image Registration Accuracy
The relevance of PI might strongly depend on the accuracy with

which PET scans acquired weeks apart can be registered. To
assess the registration accuracy, consistency measurements were
applied (16) using the 6 patients with 3 PET/CT scans. This
method consisted of registering 3 CT scans in a row and checking
the consistency of the parameters produced by registration of each
of the 3 scan pairs.

Evaluation of PI
After registration, PI was used to classify the 78 masses as

responding or progressive tumor. Patients were also classified as
responder or nonresponder.

Because no method for creating parametric images of tumor
changes has been described for PET, we compared PI with a

FIGURE 1. Patient with tumor in liver. (A) Biparametric graph of DIFF(i) against PET1(i): each point in graph corresponds to voxel i. (B)
Histogram showing density of voxels with specific (PET1(i), DIFF(i)) coordinates. (C) Biparametric graph of DIFF(i) against PET1(i) (same as
graph B) showing identification of GMM parameters with 3 clusters. Blue 5 voxels affected by changes in noise only; pink 5 voxels
corresponding to physiologic uptake (liver); red 5 tumor voxels with substantial SUV changes.
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regional approach for longitudinal study based on the recommen-
dations by the European Organization for Research and Treatment
of Cancer (EORTC) (6). The tumor VOIs were defined manually
on the baseline PET scan and then positioned on the second scan
as close to the original tumor volume as possible. Uptake was
measured using the SUVmax in the tumor region. For each tumor,
after 1 cycle of chemotherapy, the so-called EORTC tumor
response was assessed as follows: PML, SUVmax increase of at
least 25%; stable metabolic lesion, SUVmax change between
215% and 125%; PMR, SUVmax reduction of a minimum of
15%; and complete metabolic response, complete resolution,
indistinguishable from surrounding normal tissue.

PML and stable metabolic lesions were considered nonres-
ponding lesions, whereas PMR and complete metabolic responses
were considered responding lesions.

We also classified tumors by considering only the change in
SUVmax, without setting any cutoff value, as follows: PML
corresponded to lesions with an SUVmax increase (DSUVmax .
0), whereas PMR corresponded to lesions with an SUVmax
decrease. These classification rules are named SUVmaxSIGN.

Patient classification based on the EORTC criteria includes 2
groups only. A patient was classified as having overall metabolic
responsive disease if most of the lesions observed on the baseline

PET scan showed a metabolic response, without any progressive
lesion (PL) (new or $25% increase of SUVmax). Otherwise, the
patient was classified as a nonresponder. The same rules were
applied to categorize patients based on the SUVmaxSIGN lesion
classification.

To estimate the sensitivity and specificity of early response
assessment using the PI, SUVmaxSIGN, and EORTC-based
approaches, we used RECIST 1.0 derived from the late CT images
to obtain the gold standard classification (17), including CR, PR,
PL, and stable lesion.

CRs and PRs were considered responding lesions, whereas PLs
and stable lesions were considered nonresponding lesions.

On the basis of the patient’s tumor classification, the patient
was categorized as a responder if at least half of the tumors were
CR or PR without any PL. Otherwise, the patient was called a
nonresponder.

PI Robustness to Registration Accuracy
As a preliminary assessment of the robustness of PI with

respect to the accuracy of image registration, we considered 12
baseline PET scans that included 12 tumors from the colorectal
cancer patients. Each PET volume was misaligned randomly in the
3 directions so that the magnitude of the displacement was equal
to 1, 2, and 3 times the mean registration error (MRE) found using
the consistency criterion. We then applied PI, assuming that the
misaligned and initial (before misalignment) volumes were the
first and second PET scans to be compared. This approach
mimicked the comparison of the same PET volumes (i.e., no
metabolic change), differing only because of incorrect registration.

RESULTS

Registration Accuracy
In the 6 lung cancer patients, volumes consisting of 31

slices (15.5 cm) were registered. No obvious misregistra-
tion artifacts were seen by overlapping the registered CT
images using 2 different color scales (Fig. 2). The consis-
tency measurements led to an MRE (6SD) of 1.60 6 0.67
mm, which is, on average, less than the PET voxel size
(3.91 · 3.91 · 4.25 mm).

Detection of Tumor Changes
In the 28 patients, volumes ranging from 9 to 26 slices

(mean, 18 slices) were processed by PI. Figure 3 shows an
example of a parametric image for a slice including 5
tumors and the results of the quantitative analysis. The
results from the EORTC-based analysis are also shown.

FIGURE 2. Slice of CT1 (green) superimposed with CT2 (red)
after coregistration of 2 CT acquired 3 wk apart. Box shows region
of interest considered for image registration.

FIGURE 3. (A) PET1 showing 5 tumors, superimposed with CT1. (B) PET2 superimposed with CT2. (C) Parametric image (superimposed
with CT1) showing only voxels with significant tumor changes between PET1 and PET2. These voxels are shown in green, meaning that SUV
decreased between the 2 scans. For the 2 biggest tumors, the EORTC-based approach found a responding lesion (SUV decrease of 27%
for tumor 1) and a stable lesion (SUV decrease of 10% for tumor 2). PI found 2 responding lesions (DSUV525.9 and22.6 for tumors 1 and
2, respectively), which were consistent with RECIST classification derived from late CT. (D) Biparametric graph fitted by GMM, for which 3
clusters can be distinguished: noise (blue), physiologic changes (pink), and tumor changes (green).
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Figure 4 shows another example in which a tumor had
a heterogeneous evolution. Most of the tumor region
decreased, except for a small region, which appeared in
red in the parametric image. The green region had a DSUV
of 23.5, and the red region had a DSUV of 11.4. The
tumor was characterized by an SUV decrease of 22.7%
using the EORTC-based approach. The RECIST later clas-
sified this lesion as progressive disease.
Table 1 compares the lesion classification obtained using

RECIST and the PET-based methods (EORTC-based, SUV-
maxSIGN, and PI). None of the PRs seen by RECIST was
classified as PML, except 1 with SUVmaxSIGN. RECIST
did not find any CR, consistent with PI and SUVmaxSIGN,
whereas the EORTC-based approach found 4 complete met-
abolic responses. Twelve of the 14 lesions seen as PLs with
RECISTwere also PMLs with PI, whereas EORTC classified
only 1 of them as PML and SUVmaxSIGN classified 7.
All 44 lesions classified as stable using RECIST were

seen with PI either as PMR (25 tumors) or as PML (19
tumors). All clusters of voxels in PI corresponded to tumor
regions.
Considering the RECIST classification as a standard, the

EORTC-based approach had a sensitivity and specificity of
85% and 52%, respectively, for detecting responding
lesions, the SUVmaxSIGN had sensitivity and specificity
of 95% and 21%, respectively, and PI had sensitivity and
specificity of 100% and 53%, respectively. These values
corresponded to positive predictive values and negative
predictive values of 38% and 91%, respectively, for the
EORTC criteria, 29% and 92%, respectively, for SUVmax-
SIGN, and 43% and 100%, respectively, for PI.
Table 2 compares the classification of the 28 patients

between responders and nonresponders obtained using
RECIST, EORTC, SUVmaxSIGN, and PI. None of the

patients seen as responders by RECIST was classified as
having progressive disease with PI, SUVmaxSIGN, and the
EORTC-based approaches. Only 6 patients were classified
differently with PI, compared with RECIST, whereas 8
patients were classified differently between EORTC and
RECIST and 10 between SUVmaxSIGN and RECIST. All
these differences in classification corresponded to patients
seen as nonresponders by RECIST whereas PET classified
them as responders.

PI Robustness to Registration Accuracy
When analyzing the faked PET volume pairs in identical

PET scans differing only by misregistration, the PI volume
was always empty when the displacement magnitude was
1MRE (51.6 mm). It was empty in 7 of 12 cases when the
displacement magnitude was 2MRE and never empty when
the displacement magnitude was 3MRE. For displacement
magnitudes of 2MRE, when the parametric image was not
empty, the mean DVof the clusters seen in PI was 70 voxels
6 30, whereas it was 282 6 293 in the 78 clusters seen in
the real analysis of the 28 patients. The artifacts in the PI
due to misregistration could be clearly identified as sym-
metric responding and nonresponding regions in the para-
metric image (Fig. 5).

DISCUSSION

The interpretation of serial 18F-FDG PET/CT scans in
treatment monitoring is most often based on the visual
assessment of tumor mass tracer uptake, and measurements
of SUV, but there is no consensus about the criteria to
translate SUV changes into patient classification (9). When
comparing scans acquired from the same patient, summa-
rizing the complexity of the uptake distribution by only an

FIGURE 4. (A) PET1 superimposed with CT1. (B) PET2 superimposed with CT2. (C) Parametric image (superimposed with CT1) showing
tumor with heterogeneous response.

TABLE 1
Classification of Tumor Masses

Complete metabolic
response PMR Stable metabolic lesion PML

RECIST EORTC SUVmaxSIGN PI EORTC SUVmaxSIGN PI EORTC SUVmaxSIGN PI EORTC SUVmax SIGN PI

PR 5 20 2 0 0 15 19 20 3 0 0 0 1 0
Stable lesion 5 44 2 0 0 23 39 25 14 0 0 5 5 19
PL 5 14 0 0 0 3 7 2 10 0 0 1 7 12
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SUV per tumor is extremely restrictive. This observation
motivated the development of PI, which considers all
changes in uptake between the 2 PET scans to be compared
and then identifies those related to tumor masses. The
approach is similar to the subtraction of ictal SPECT cor-
egistered to MRI used to localize the epileptic zone from
ictal and interictal SPECT scans (18). In our application, in
which the PET scans to be compared are acquired weeks
apart, a first step was to determine whether accurate regis-
tration of the 2 PET scans was possible.
We considered rigid registration of the CT scans already

aligned with the PET scans. Rigid registration was used to
avoid any uncontrolled distortion at the sites of the tumor
masses through elastic deformations. To make rigid regis-
tration appropriate, it was applied to a VOI defined as a set
of slices. This selection does not involve any precise
delineation of a region and is fast. To assess the registration
accuracy, we validated the approach based on consistency
measurements (16) using a set of lung cancer patients for
which 3 scans of each patient were available. The scans of
these lung cancer patients were acquired using the same
imaging and processing protocol as that used for patients
with colorectal cancer. We thus hypothesized that if the
registration procedure was accurate enough for these lung
cancer patients, it would also be reliable for the 28 patients
with colorectal cancer. The registration error between the
CT scans (1.6 mm) was, on average, less than the PET
voxel size (3.91 · 3.91 · 4.25 mm). Even when accounting
for the variability of the error (SD, 0.67 mm) and assuming
a normal distribution of the error, a 95% confidence interval
still does not encompass a PET voxel, suggesting that in
most cases, registration errors are less than 1 voxel in the
PET VOI. This was confirmed visually on the 28 pairs of
scans that were registered in the colorectal cancer patients

(results not shown). Accurate local registration of PET
scans acquired several weeks apart is thus feasible.

The PI approach is based on the subtraction of the 2 PET
scans to be compared, each expressed in SUV, and on the
interpretation of the subtracted values in light of the SUVs
in the baseline PET scan through a biparametric graph. An
automatic procedure identifies the clusters of voxels
belonging to tumor masses. No voxel contiguity criterion
was used when generating the biparametric graph and
solving the GMM. Yet, the resulting clusters were spatially
consistent: each cluster corresponded to one or several
distinct groups of adjacent voxels that were associated with
well-identified structures (Figs. 3 and 4). The method does
not require the setting of some cutoff in changes in SUV,
below which the change would not be considered signifi-
cant. The identification of the voxels with significant
changes is based only on the simultaneous analysis of all
voxels in the biparametric graph using the GMM. Solving
this model involved setting the number of clusters to be
identified. Given the limited number of possible clusters
(2–4 at the most), an iterative search automatically deter-
mined a meaningful solution. We checked that the final
classification was robust with respect to the empiric initi-
alization of the clusters (results not shown).

When applied to patient data, the method always yielded
parametric volumes that were visually consistent. The
clusters with significant change in SUV identified by PI
always corresponded to tumor masses in which changes
could be visually identified. The parametric volume also
shows heterogeneous responses within tumor sites (Fig. 4)
that are not described when considering a single SUV per
tumor. Whether such heterogeneity brings useful information
about the tumor response and final outcome will need further
investigation. A limitation of the method is that it does not

TABLE 2
Classification of Patients as Responders and Nonresponders

EORTC SUVmaxSIGN PI

RECIST classification Responder Nonresponder Responder Nonresponder Responder Nonresponder

Responders (n 5 6) 6 0 6 0 6 0
Nonresponders (n 5 22) 8 14 10 12 6 16
Total (n 5 28) 14 14 16 12 12 16

FIGURE 5. (A) PET1 superimposed with CT1. (B) Baseline PET/CT misaligned by 4.8 mm (faked PET2). (C) Parametric image (super-
imposed with CT1) showing artifacts due to imperfect image registration.
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identify any stable tumor mass (in which SUV has not
changed between the 2 scans). The method does not identify
CRs either but classifies them as responding tumors. Finally, if
a tumor appears in a region that is not part of the volumes
selected to perform PI, it will be missed. Thus, the parametric
volume should not be interpreted without viewing the 2 PET
scans independently and should be regarded as an aid to quickly
visualize the changes between the 2 PET scans and automati-
cally get quantitative information regarding these changes.
In our patient population, none of the tumor sites

classified as a PR using RECIST was seen as a progressive
tumor in the early PET scan using PI. Any tumor seen as
progressive in the early PET scan was later confirmed as
resistant to the treatment by RECIST. The same conclusion
could also be drawn when interpreting the early PET scans
based on the EORTC criteria. However, the PI approach
was more consistent with the RECIST classification
regarding the identification of the PLs: among the 14 tumor
masses seen as progressive by the late CT, 12 were
classified as progressive using PI on the early PET scan,
whereas only 1 using the EORTC-based criteria and 7 using
SUVmaxSIGN were classified as progressive. The missed
PLs with PI or SUVmaxSIGN were classified as PR,
whereas the 13 missed lesions using the EORTC approach
were classified as stable disease (10) or PR (3). In our study,
25 of 78 tumor masses were classified as stable disease with
RECIST but PR with PI. This classification might suggest
that PI is more sensitive to the changes due to therapy than
RECIST, although we cannot prove it from this single
study. Overall, the results obtained using PI were extremely
promising in terms of sensitivity of detection of responding
tumor masses (100% vs. 85% for the EORTC-based crite-
rion). The specificity was lower (53% with PI and 52% with
the EORTC-based criterion). This might not be due to the
PET image analysis itself but rather to the inability of the
early PET scan to detect all nonresponding patients.
Another hypothesis may be an initial response detected
by the early PET scan, with a rapid escape from chemo-
therapy detected by the late diagnostic CT scan. The neg-
ative predictive value of the early PET scan was high: with
PI, all lesions identified as nonresponding were confirmed
as nonresponding with the late CT scan versus 91% of the
lesions identified as nonresponding with the EORTC-based
criteria and 92% with SUVmaxSIGN.
Regarding the patient classification, the PI-, SUVmax-

SIGN-, and EORTC-based approaches yielded the same
classification for 21 of 28 patients. The 7 other patients were
all classified as nonresponding with RECIST. Five of them
were classified as nonresponding with PI, but 2 were
classified as responding. Two were classified as nonrespond-
ing and 5 as responding with the EORTC criteria, whereas all
7 were classified as responding with SUVmaxSIGN. The
agreement between the early PET scan and RECIST from
the late CT scan was thus slightly more consistent when the
early PET scan was analyzed with PI than when the analysis
was based on the EORTC or SUVmaxSIGN criteria.

In our patients, when repeating the PI analysis starting
from a different PET VOI, the repeatability coefficient of
DSUV was 8.3%, with an intraclass correlation coefficient
of 0.99 (95% confidence interval of 0.99–1), suggesting a
high repeatability. The tumor and patient classifications
(Tables 1 and 2) remained unchanged.

A preliminary study about the possible impact of small
misregistration of the serial PET scans on PI was conducted.
The results suggest that the method is robust with respect to
realistic registration errors (i.e., within the mean 6 2 SD of
the MRE). In addition, artifacts in the PI images due to
misregistration might be visually recognizable (Fig. 5) on
the basis of the presence of responding and nonresponding
clusters at almost symmetric positions with respect to the
initial tumor location and the small volume of these clus-
ters. We also found that the interpolation scheme (nearest-
neighbor interpolation, trilinear, B-splines of the third or
fourth order) used in the registration procedure did not
modify at all the cluster volumes in the parametric image
and only slightly modified the DSUVs, always by less than
0.5 SUV (results not shown). A comprehensive study of the
robustness of the method in various situations was beyond
the scope of this study.

CONCLUSION

We proposed a PI approach to compare serial 18F-FDG
PET scans in the context of patient monitoring. This
approach yielded images of the tumor foci that had changed
between PET scans, possibly highlighting heterogeneous
tumor response, and provided quantitative parameters char-
acterizing the tumor changes. The PI method was success-
fully applied to characterize early metabolic changes of 78
lesions from 18F-FDG PET/CT scans of patients with meta-
static colorectal cancer. The PI findings correlated well with
the standard RECIST-based response assessment obtained
5–8 wk after the early follow-up PET scan.
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