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Characterizing tumor heterogeneity using texture indices derived

from PET images has shown promise in predicting treatment

response and patient survival in some types of cancer. Yet, the

relationship between PET-derived texture indices, precise tracer
distribution, and biologic heterogeneity needs to be clarified. We

investigated this relationship using PET images, autoradiographic

images, and histologic images. Methods: Three mice bearing

orthotopically implanted mammary tumors derived from transgenic
MMTV-PyMT mice were scanned with 18F-FDG PET/CT. The tu-

mors were then sliced, and the slices were imaged with autoradio-

graphy and stained with hematoxylin and eosin. Six texture indices
derived from the PET images, autoradiographic images, and histo-

logic images were compared for their ability to capture heterogene-

ity on different scales. Results: The PET-derived indices correlated

significantly with the autoradiography-derived ones (R5 0.57–0.85),
but the values differed in magnitude. The histology-derived indices

correlated poorly with the autoradiography- and PET-derived ones

(R 5 0.06–0.54). All indices were slightly to moderately influenced

by the difference in voxel size and spatial resolution in the autora-
diographic images. The autoradiography-derived indices differed

significantly (P , 0.05) between regions with a high density of cells

and regions with a low density and between regions with different
spatial arrangements of cells. Conclusion: Heterogeneity derived in

vivo from PET images accurately reflects the heterogeneity of tracer

uptake derived ex vivo from autoradiographic images. Various

tumor-cell densities and spatial cell distributions seen on histologic
images can be distinguished using texture indices derived from

autoradiographic images despite the difference in voxel size and

spatial resolution. Yet, tumor texture derived from PET images only

coarsely reflects the spatial distribution and density of tumor cells.
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A current challenge in oncology is to offer each patient a
personalized treatment that accounts, at best, for the characteris-
tics of the tumor or tumors. To achieve this goal, the specific
histologic or genetic features of the tumor, including intratumoral

heterogeneity, have to be determined before therapy is prescribed
(1). This determination is usually based only on biopsy analysis,
yet one study (2) reported that 63%–69% of all mutations were not
detectable within a single tumor sample. Indeed, intratumoral het-
erogeneity reflects different mutations in cell subpopulations dis-
tributed in different regions of the tumor, some of which may be
far from the biopsy site. PET provides molecular information about
the whole tumor and may therefore be a relevant option to complete the
characterization of the tumor. Indeed, PET imaging is noninvasive, can
be repeated during the course of therapy, and allows for a comprehen-
sive assessment of each tumor site. Using different tracers, PET can
even yield information on the glucose metabolism of cells (18F-FDG),
tumor hypoxia (18F-fluoroazomycin arabinoside, 18F-fluoromisonida-
zole), and tumor cell proliferation (39-deoxy-39-18F-fluorothymidine)
(3). Recently, several studies have used tumor texture analysis of PET
images to characterize intratumoral heterogeneity. Most of the studies
assessed the ability of texture indices to predict outcome in patients
with cancer, and some found a relationship between these indices and
such characteristics as tumor stage in esophageal cancer (4) and
tumor grade in glioma (5). Gao et al. (6) showed that a combination
of texture indices derived from PET and CT images before treatment
could contribute to the assessment of node stage. In the context of
developing a computer-aided diagnosis system, Lartizien et al. (7)
demonstrated that use of the 12 most discriminating PET and CT
features made it possible to distinguish between hypermetabolic cancer
lesions and hypermetabolic inflammatory or physiologic regions in
lymphoma patients, with an area under the receiver operating charac-
teristic curve of 0.91. To separate malignant from benign bone and
soft-tissue lesions, Xu et al. (8) used a combination of 4 texture indices
derived from PET images (entropy and coarseness) and CT images
(entropy and correlation) to improve lesion classification over that from
SUV only. In breast cancer, the combination of a high gray-level-run
emphasis and SUVmax identified triple-negative lesions (9) with a sen-
sitivity of 77% and a specificity of 71%. Despite these encouraging
results, the biologic interpretation of PET-derived texture indices and
whether they reflect microscopic intratumoral heterogeneity have not,
to our knowledge, been investigated.
The purpose of this study was to investigate the relationship between

texture indices derived from 18F-FDG PET images, autoradiographic
images, and histologic images in order to determine whether indices
measured on a PET scale (mm) are representative of features seen on a
microscopic scale (autoradiographic images) and on a cellular level
(histologic images).

MATERIALS AND METHODS

Animal Models

All animal procedures were approved by the ethics committee in
charge of animal experimentation (CETEA DSV no. 44, reference
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no. 12-036) and were performed

in accordance with European

guidelines on handling labora-

tory animals.
Three mice bearing ortho-

topically implanted mammary

tumors derived from transgenic

MMTV-PyMT mice were used.

The tumor donors were FVB/

N-Tg (MMTV-PyMT) 634Mul/

J (PyMT) 12-wk-old mice. Asep-

tically collected mammary tu-

mors from PyMT mice were

minced and immersed in cold

Dulbecco modified Eagle me-

dium (Sigma). The cells were

mechanically dissociated using

Medicon disposable chambers

(BD Biosciences). The cell sus-

pension was then progressively

passed through Filcon filters

with pore sizes of 500, 200, and

70 mm (BD Biosciences). Fi-

nally, the cells were aliquoted

in freezing medium (Life Tech-

nologies) and stored in liquid

nitrogen. After removal of the

freezing medium and enumera-

tion, the tumor cells were di-

rectly inoculated, without any in

vitro culturing step, in the mam-

mary fat pad of the posterior nip-

ple in FVB mice.

PET/CT Imaging Protocol

At 30–36 d after implantation of the tumors, the animals were kept

fasting for 12 h before undergoing PET/CT, for which they were anesthe-
tized using 2% isoflurane. Imaging was performed using a dedicated small-

animal Inveon PET/CT scanner (Siemens). Each mouse was injected with
7.9 6 0.3 MBq of 18F-FDG, and the acquisition started 65 6 5 min after

this injection and lasted for 30 min (two 15-min acquisitions). The energy
window was set from 350 to 650 keV. PET images were reconstructed

using 2-dimensional ordered-subset expectation maximization with 4 itera-
tions and 16 subsets. Scatter was corrected using the direct calculation from

analytic formulas (10), and attenuation correction was based on the CT
images. No postfiltering was applied. The matrix size was 256 · 256 · 159

voxels, corresponding to a PET voxel size of 388 · 388 · 796 mm. The
PET volume of interest (VOI-PET) was converted to SUVunits normalized

by mouse body weight (Fig. 1).

Tumor Tissue Sectioning

After the PET/CT acquisitions, the animals were sacrificed and the
tumors removed using landmarks for tumor orientation to facilitate

registration of autoradiographic images and histologic images with PET
images. A cryostat (Leica) was used to slice 20-mm-thick transaxial

sections from the frozen tumor. Sections were obtained at 100-mm inter-
vals. Each section was placed on a glass slide. The first tumor yielded 116

slices, whereas the other two yielded 102 slices each.

Autoradiography Imaging Protocol

The tumor sections were exposed to imaging plates for 15 h, which
were then scanned using a Storm scanner (GE Healthcare). The voxel

size of the autoradiographic images was 50 · 50 · 20 mm (Fig. 1).

Histochemistry

To investigate the biologic meaning of texture indices, we assumed
that 18F-FDG uptake would correlate with cellular density in tumors.

The slices were thus analyzed using hematoxylin and eosin staining.
Hematoxylin stains nuclei blue-purple and cytoplasm and extracellu-

lar matrix pink (Fig. 1). To separate the hematoxylin component, we
used the color deconvolution function (11) of ImageJ software. The

resulting images were resampled to match the autoradiography voxel
size (50 · 50 · 20 mm) using the TransformJScale function (12) of

ImageJ, yielding resampled “hematoxylin” images called histologic
images thereafter (Fig. 1). From these images, a histologic volume of

interest (VOI-H) was segmented manually to separate the tumor from
the background.

Creation and Registration of 3-Dimensional Volumes

For each tumor, a 3-dimensional autoradiography volume was created

from the autoradiography slices using the StrackReg function (13) of
ImageJ. The 80-mm interval between slices was filled using a cubic-b

spline interpolation (TransformJScale) hypothesizing that morphologic
changes over this short distance were negligible. Three 3-dimensional

autoradiography volumes were created (Fig. 1): the original autora-
diography volume (50 · 50 · 20 mm voxels), called VOI-AR; VOI-

AR resampled to the PET voxel size using TransformJScale (388 ·
388 · 796 mm voxels), called VOI-RAR; and VOI-RAR smoothed with

a gaussian filter (SD 5 677 mm) to match the PET image spatial
resolution, called VOI-SRAR. The PET tumor volume was also regis-

tered to VOI-SRAR using the Optimized Automatic Image Registration
function of the Medical Image Processing Analysis and Visualization

software (14). This registration approach determines the transfor-

mation (12 degrees of freedom) that minimizes the correlation ratio
function and involves a trilinear interpolation.

VOI-PET, VOI-AR, VOI-RAR, and VOI-SRAR were segmented
using a threshold equal to 40% of the maximum voxel intensity in

the volume.
VOI-AR, VOI-RAR, and VOI-SRAR were normalized using

IðSUVÞ 5 weightðgÞ · K�ðkBqÞ · I ðauÞ
dose ðt 5 tautoÞ Eq. 1

K�ðkBqÞ 5
CPET

�
kBq

mL

�
· VPETðmLÞ

Cauto

� au

mL

�
· VautoðmLÞ

; Eq. 2

where I(au) and I(SUV) correspond to the voxel value before and

after normalization, respectively. Dose is the injected dose corrected
for radioactivity decay at the time of autoradiography. CPET is the

mean intensity in VOI-PET, and VPET is the volume of VOI-PET.
Similarly, Cauto is the mean intensity in VOI-AR, VOI-RAR, or VOI-

SRAR and Vauto is the volume of VOI-AR, VOI-RAR, or VOI-
SRAR. K* therefore represents the scaling factor that converts

autoradiographic images expressed in arbitrary units into SUV units

so that they can be compared with the PET images.
Similarly, the histologic images were normalized using a calibra-

tion factor K**:

I ðSUVÞ 5 K�� · I ðauÞ Eq. 3

K��ðSUVÞ 5
Cauto

�
SUV

mL

�
· VautoðmLÞ

CH

� au

mL

�
· VHðmLÞ

; Eq. 4

FIGURE 1. Example of tumor slice

as seen with different modalities.
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where CH represents the mean intensity in VOI-H and VH is the

volume of VOI-H.

Texture Analysis

For each selected 2-dimensional image and each modality, we computed
the maximum intensity in the tumor region of interest. Before computing

the texture matrices, we resampled the voxel intensities using an absolute
resampling method with fixed bounds and 64 discrete values (15):

RðxÞ 5 round

�
64 ·

IðxÞ 2 lower bound

upper bound 2 lower bound

�
; Eq. 5

where R(x) is the voxel intensity after discretization and I(x) is the voxel

intensity before discretization. The lower bound was set to 0. The upper
bound corresponds to the maximum intensity over all images for each

image type across the 3 tumors. The upper bound was 6 for VOI-PET, 0.1
for VOI-AR, 12 for VOI-RAR, 9 for VOI-SRAR, and 175 for VOI-H.

After this resampling step, we computed 3 texture matrices in 2
dimensions for each slice and each modality and we extracted 6 texture

indices with LIFEx software (http://www.lifexsoft.org/): homogeneity and
entropy computed from the cooccurrence matrix, short-run emphasis

(SRE) and long-run emphasis (LRE) from the gray-level-run length ma-
trix, and low gray-level-zone emphasis (LGZE) and high gray-level-zone

emphasis (HGZE) from the gray-level-zone length matrix. These indices
were selected given their previously demonstrated robustness with respect

to the segmentation method (16).

Relationship Between Texture Indices and Actual Biologic

Tissue Composition

Using one tumor slice from one mouse that included a great variety

of cell densities, we investigated the sensitivity of texture indices to
various patterns of cell arrangements. We defined 80 subregions of

30 · 30 voxels in the histologic images and copied them to the auto-
radiographic images. The histologic images were transformed into

binary images using a threshold to identify the presence of cells. Three
types of subregions exhibiting different cell arrangements were iden-

tified: subregions A (n = 10), consisting of a large continuous area of
cells with no more than 3 small islands of extracellular matrix (,15%

of the surface), or the opposite (mostly extracellular matrix with # 3
small islands of cells); subregions B (n = 10), consisting of 2 distinct

tissue types (cells and extracellular matrix) clearly separated in terms
of location and in comparable proportions (35%–65% of cells); and

subregions C (n = 10), consisting of 2 nested mixed tissue types in
comparable proportions (35%–65% of cells). The 15%, 35%, and

65% values were arbitrarily chosen to obtain well-distinguished cell

arrangements. In each subregion, we computed the value of texture
indices in autoradiographic images.

Statistical Analysis

To investigate the relationship between texture indices derived from

the various image types, we plotted PET-derived indices as a function
of autoradiography-derived indices, autoradiography-derived indices

as a function of histology-derived indices, and PET-derived indices as
a function of histology-derived indices. All these plots were charac-

terized by the Spearman correlation coefficient. Moreover, we com-
pared the index values derived from PET and autoradiography using

Bland–Altman plots.
We studied the impact of voxel size and spatial resolution by

plotting texture indices from VOI-AR against texture indices from
VOI-RAR and texture indices from VOI-RAR against texture indices

from VOI-SRAR. We also characterized the observed relationships
using Spearman correlation coefficients.

We used box-plot analyses and Wilcoxon tests to study the ability
of texture indices to distinguish between the 3 types of subregions on

histologic images. We also studied the impact of cell density by

comparing texture indices between subregions A with more than 85%
cells (A1) and subregions Awith less than 15% cells (A2). Again, the

15% and 85% thresholds were arbitrarily chosen.

RESULTS

We selected 28 slices from all 3 tumors together, with a mini-
mum of 388 mm between slices in the PET, autoradiography,
RAR, SRAR, and histologic volumes.

Correlation Between Texture Analysis on Different Scales

The autoradiography-derived values are plotted against the PET-
derived values in Figure 2 and Supplemental Figure 1 (supplemental
materials are available at http://jnm.snmjournals.org). All texture
indices and maximum intensities correlated significantly between
PETand autoradiography (R5 0.57–0.85) (Table 1), but the Bland–
Altman plots showed differences in the absolute values of the tex-
ture indices and maximum intensities between the 2 modalities (Fig. 2
and Supplemental Fig. 1). For example, entropy, SRE, HGZE, and
maximum intensity were lower when derived from autoradiography
than when derived from PET. Inversely, homogeneity, LRE, and
LGZE were higher for autoradiography than for PET.
The histology-derived values are plotted against the autoradiography-

and PET-derived values in Figure 3 and Supplemental Figure 2.
Neither the texture indices nor the maximum intensities showed
a significant positive correlation (Table 1).

Effect of Voxel Size and Spatial Resolution in

Autoradiographic Images

The plots of the texture index values measured from VOI-RAR
against those measured from VOI-AR are shown in Supplemental
Figure 3, together with the values measured from VOI-SRAR against
those measured from VOI-RAR; their Spearman correlation coeffi-
cients are in Table 1. All texture indices and maximum intensity
correlated moderately or strongly between VOI-AR and VOI-RAR
(R $ 0.62), but the absolute values of the texture indices differed.
Indeed, texture measured from VOI-AR was more homogeneous
than that from VOI-RAR. For instance, homogeneity, LRE, and

FIGURE 2. Plots of index derived from autoradiographic (AR) images

as function of index derived from PET images and corresponding

Bland–Altman plots.
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LGZE were greater in VOI-AR than in VOI-RAR, and the opposite
was true for the other indices (Supplemental Fig. 3), demonstrating
that voxel size influences the absolute value of texture indices.
Regarding the influence of spatial resolution, the plots of texture

indices measured from VOI-SRAR as a function of texture indices
measured from VOI-RAR (Supplemental Fig. 3) showed there to
be a high correlation for entropy (R 5 0.96) but only a moderate
correlation for the other texture indices and for maximum intensity
(R 5 0.59–0.69). For homogeneity, entropy, SRE, and LRE, there
was no significant difference between the values calculated from
VOI-RAR and those calculated from VOI-SRAR (P . 5%, Wil-
coxon test), suggesting that changing the spatial resolution did not
significantly change the texture index values when the voxel size
was identical.

Texture Index Values on Autoradiographic Images as

Function of Tumor Cell Density and Arrangement

Only homogeneity, entropy, SRE, and LRE significantly differed
between subregions A, B, and C (Figs. 4 and 5 and Supplemental
Fig. 4): subregions A were more homogeneous than subregions C,
and subregions C were more homogeneous than subregions B. For

instance, homogeneity and entropy had respective median values of
0.68 and 1.42 in subregions A, 0.61 and 1.96 in subregions B, and
0.64 and 1.81 in subregions C. Conversely, HGZE, LGZE, and
maximum intensity did not significantly differ between the 3
subgroups of cell arrangement.
In subregions A, HGZE, LGZE, and maximum intensity were

sensitive to cell density and could distinguish A1 from A2,
whereas the other indices could not. For example, HGZE and
maximum intensity were higher for A1 than for A2 (Fig. 5
and Supplemental Fig. 4), and the opposite was true for LGZE
(Supplemental Fig. 4). The median values for HGZE, maximum
intensity, and LGZE were 965, 0.06, and 0.001, respectively, for
A1 and 163, 0.03, and 0.007, respectively, for A2.

DISCUSSION

In this study, we showed that texture derived from in vivo PET
images reflects texture derived from ex vivo autoradiographic
images and that some texture indices are more sensitive to the
spatial distribution of cells whereas others are more sensitive to
the density of tumor cells in the region of interest. This study also
demonstrated the potential and limitations of PET-derived indices
to quantify microscopic heterogeneity.

Multiscale Comparison of Texture Index Values

All texture indices correlated significantly between PET and
autoradiographic images, even if the absolute values differed
between modalities because of differences in voxel size and
spatial resolution. This finding demonstrates the ability of
texture indices to quantify heterogeneity seen on different scales.
However, we observed that indices derived from PET or
autoradiographic images did not correlate significantly with
those from histologic images, suggesting that the precise spa-
tial distribution of cells was captured neither by PET nor by
autoradiography. These results may partly be explained by the
nonspecific uptake of 18F-FDG. Indeed, cells seen on the histo-
logic images were not necessarily 18F-FDG–avid, and a better
correlation might be expected using glucose transporter 1 immu-
nohistochemistry (17). Nevertheless, using subregions in the au-
toradiographic images, we demonstrated that some indices were
sensitive to the spatial organization of tumor cells whereas others
were sensitive to cell density as seen on the histologic images.

TABLE 1
Comparison of Spearman Correlation Coefficients Among Different Modalities for 6 Texture Indices and for Maximum

Intensity

Texture index

VOI-PET vs.

VOI-AR

VOI-H vs.

VOI-AR

VOI-H vs.

VOI-PET

VOI-AR vs.

VOI-RAR

VOI-RAR vs.

VOI-SRAR

Homogeneity 0.66* −0.18 −0.23 0.71* 0.69*

Entropy 0.57* 0.31 0.13 0.77* 0.96*

SRE 0.67* −0.25 −0.13 0.65* 0.60*

LRE 0.70* −0.41* −0.54* 0.62* 0.62*

LGZE 0.83* −0.23 −0.06 0.92* 0.66*

HGZE 0.85* 0.32 0.29 0.78* 0.59*

Maximum intensity 0.75* 0.20 0.09 0.89* 0.68*

*P , 0.05.

FIGURE 3. Plots of index derived from autoradiographic (AR) images

or PET images as function of index derived from histologic (H) images.
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Texture indices may therefore provide some useful information
on the spatial organization of tumor cells even if the index value
derived from a PET or autoradiographic image cannot be di-
rectly translated into a textural pattern seen on the histologic
images. This observation could explain some results previously
reported in the literature. For instance, one study found that
texture analysis of SPECT images (18) could differentiate be-
tween 2 types of hepatic metastatic colorectal cancer by showing
greater homogeneity for well-differentiated than poorly differen-
tiated tumors. Those investigators also found that in poorly dif-
ferentiated liver metastases, texture indices were sensitive to the
action of an antivascular treatment that produced an increase
in homogeneity. Inversely, texture indices could not distinguish
between treated and untreated well-differentiated metastases.
Because histologic analysis did exhibit the treatment-induced
modifications, this example illustrates the limited ability of SPECT-
derived texture indices to characterize tumor cell heterogeneity.

Robustness of Texture Indices with Respect to Voxel Size

and Image Spatial Resolution

All texture indices correlated significantly between VOI-AR and
VOI-RAR or between VOI-RAR and VOI-SRAR, with a correlation
coefficient higher than 0.59, suggesting that PET-derived tex-
ture indices reflect measurements on a microscopic scale. Yet, the
absolute values of all texture indices were affected by substantial
differences in voxel size and, in some cases, spatial resolution. As a
result, it appears that the index values cannot be readily compared
between images with a large difference in voxel size (voxels were
2,000 times larger on PET images than on autoradiographic
images). We found that autoradiographic images are seen by tex-
ture indices as being more homogeneous than PET images, as is
consistent with a more homogeneous texture in autoradiographic
images than in RAR images. Although this trend might appear
counterintuitive, it is due to the calculation procedure. When texture
indices are calculated, the actual voxel size is not considered. Yet
for the same lesion, the VOI-AR contain more voxels than the VOI-
PET or VOI-RAR. As a result, a small, homogeneous zone that
might be represented by only a very few voxels in a VOI-PET will
involve many voxels in a VOI-AR and hence “weighs” more, caus-
ing the texture indices to reflect a more homogeneous texture.

Entropy was the most robust index with respect to differences in
spatial resolution (R 5 0.96 between VOI-RAR and VOI-SRAR
that had similar values [1.8–2.8]). These results were consistent
within the correlation groups previously identified (16), as reported
in Supplemental Table 1. In one study (19), it was shown that the
6 texture indices were moderately influenced by the postrecon-
struction smoothing of PET images, excepting LGZE. These
results were obtained not with our absolute resampling method
but with relative resampling of discrete intensities between
the minimum and maximum for each lesion. The smoothing
was also weaker in that study, which used a full width at half
maximum of 0.9 times the voxel size (19), compared with 1.7
times the voxel size between RAR and SRAR images in our
study. Consistent with our results, another study (20) demon-
strated that the 6 texture indices were not more affected by
smoothing than was SUVmax, also with the relative resampling.
This result is due to the resampling step before texture index
calculation. Indeed, by assigning the same value to voxels with
similar intensities, resampling actually acts as a smoothing op-
eration and reduces the impact of the noise that affects indices
such as SUVmax.

Study Limitations

A limitation of our study was the small number of animals and
the use of only one tumor model. Moreover, uptake of 18F-FDG
is not specific to tumor cells and can also reflect inflammation.
Still, these limitations do not invalidate our results regarding the
change in texture indices as a function of voxel size, spatial
resolution, and observation scale (autoradiography or PET im-
ages). In addition, because we performed texture analysis on 28
distant slices that could be seen as independent, the correla-
tions between texture indices calculated from PET images and
autoradiographic images were based on 28 points. The use of
more specific PET tracers, other immunohistochemical analy-
ses, more animals, and more tumor cell lines would be necessary
to better understand the relationship between heterogeneity
seen on PET images and microscopic heterogeneity. In addi-
tion, the preclinical PET scanner had a spatial resolution of
1.6 mm, and the tumors were approximatively 10 mm in di-
ameter. In a clinical setting, this would translate to analyzing

FIGURE 5. Boxplots of texture indices derived from autoradiographic

(AR) images as function of cell pattern (subregions A, B, and C) or as

function of number of cells in subregions A (A1, A−). *P , 5% on

Wilcoxon test. **P , 1% on Wilcoxon test.

FIGURE 4. Image of selected tumor slice as seen on autoradiographic

and histologic images.
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tumors that are about 4 cm in diameter with a PET image spa-
tial resolution of 6 mm. Further studies are needed to better
understand the relationship between texture indices derived
from clinical images and tissue heterogeneity seen on histologic
images.

CONCLUSION

Autoradiography-derived texture indices are sensitive to the spatial
distribution or density of tumor cells, and PET-derived texture indices
correlate well with those derived from autoradiography, although
there are differences in magnitude between the two because of
differences in voxel size and spatial resolution. PET-derived texture
indices cannot easily be correlated with texture seen on histologic
images and cannot precisely capture the heterogeneity of tumor cells,
yet additional information may still be gleaned about the tumors and,
potentially, about their aggressiveness and resistance to therapy.
Although the biologic meaning of texture indices still needs to be
clarified, their use may help characterize a whole tumor more
extensively than is possible through biopsy alone. Further investiga-
tions are needed to better elucidate the relationship between the
biologic features of tumors and the heterogeneity of tracer uptake as
reflected by texture indices.
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