
Understanding Changes in Tumor Texture Indices in PET:
A Comparison Between Visual Assessment and Index Values
in Simulated and Patient Data

Fanny Orlhac1, Christophe Nioche1, Michaël Soussan1,2, and Irène Buvat1

1Imagerie Moléculaire In Vivo, IMIV, CEA, INSERM, CNRS, Université Paris-Sud, Université Paris Saclay, CEA-SHFJ, Orsay,
France; and 2Department of Nuclear Medicine, AP-HP, Avicenne Hospital, Bobigny, France

The use of texture indices to characterize tumor heterogeneity from

PET images is being increasingly investigated in retrospective
studies, yet the interpretation of PET-derived texture index values

has not been thoroughly reported. Furthermore, the calculation of

texture indices lacks a standardized methodology, making it difficult

to compare published results. To allow for texture index value
interpretation, we investigated the changes in value of 6 texture

indices computed from simulated and real patient data. Methods:
Ten sphere models mimicking different activity distribution patterns

and the 18F-FDG PET images from 54 patients with breast cancer
were used. For each volume of interest, 6 texture indices were

measured. The values of texture indices and how they changed

as a function of the activity distribution were assessed and com-

pared with the visual assessment of tumor heterogeneity. Results:
Using the sphere models and real tumors, we identified 2 sets of

texture indices reflecting different types of uptake heterogeneity.

Set 1 included homogeneity, entropy, short-run emphasis, and
long-run emphasis, all of which were sensitive to the presence of

uptake heterogeneity but did not distinguish between hyper- and

hyposignal within an otherwise uniform activity distribution. Set 2

comprised high-gray-level-zone emphasis and low-gray-level-zone
emphasis, which were mostly sensitive to the average uptake rather

than to the uptake local heterogeneity. Four of 6 texture indices

significantly differed between homogeneous and heterogeneous le-

sions as defined by 2 nuclear medicine physicians (P , 0.05). All
texture index values were sensitive to voxel size (variations up to

85.8% for the most homogeneous sphere models) and edge effects

(variations up to 29.1%). Conclusion: Unlike a previous report, our
study found that variations in texture indices were intuitive in the

sphere models and real tumors: the most homogeneous uptake

distribution exhibited the highest homogeneity and lowest entropy.

Two families of texture index reflecting different types of uptake
patterns were identified. Variability in texture index values as a func-

tion of voxel size and inclusion of tumor edges was demonstrated,

calling for a standardized calculation methodology. This study pro-

vides guidance for nuclear medicine physicians in interpreting tex-
ture indices in future studies and clinical practice.
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An increasing number of studies focus on the characterization
of tumor heterogeneity based on texture analysis from CT, MRI,
ultrasound images, and, since 2009, PET images (1). The calcu-
lation of tumor heterogeneity indices from medical images offers
the benefits of being noninvasive, accounting for the whole tumor,
and being repeatable during treatment. These indices, if proven,
could be used to reliably identify the existence of subpopulations
of cells with distinct genomic alterations and could guide the choice
of treatment, especially for targeted therapeutics (2). In PET, several
retrospective studies suggest that texture indices reflect tumor hetero-
geneity and predict treatment response or patient survival whereas
other studies underline the limitations of these indices (3–9). In ad-
dition, the interpretation of texture index values derived from PET
images has never been reported, and texture indices have been in-
vestigated only in retrospective studies (10). A practical use of texture
indices would benefit from a better understanding of which value
they take as a function of the spatial distribution of the metabolic
activity in the tumor.
The purpose of this study was thus to investigate how texture

index values vary as a function of the macroscopic activity distribu-
tion, based on simulated sphere models and real patient tumors, in an
attempt to help nuclear medicine physicians interpret texture index
values.

MATERIALS AND METHODS

Numeric Model

To investigate the variations of texture indices as a function of uptake
heterogeneity, we created numeric models of spheres as described in

Figure 1. An arbitrary voxel size of 4 mm was used, similar to that
frequently used in clinical PET. We first simulated a uniform back-

ground uptake with an SUV of 1 affected by gaussian noise (SD of
0.25, negative values set to 0). In that background, we inserted a sphere

of 6-voxel radius with an SUVof 8. We then created arbitrary variations
of this uniform sphere (Fig. 2). Spheres 1 (mean of distribution [m]5 8,

SD 5 2) and 2 (m 5 12, SD 5 2.5) had homogeneous uptake of
different levels. Spheres 3–10 included internal macro metabolic hetero-

geneities, either as cold spheric subregions coarsely modeling hypome-
tabolic areas (such as necrotic zones in a tumor on 18F-FDG PET) or

as hot spheric subregions that could correspond to clones of the most
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18F-FDG–avid cells on 18F-FDG PET. All images were smoothed using
a gaussian filter to model a 7-mm PET image resolution. We analyzed

the sphere images using 2 volumes of interest (VOIs): the first was a
sphere of 5-voxel radius so that the sphere edges were included in the

VOI, whereas the second was a sphere of 4 voxels in which the edges
were excluded. Finally, the same spheres were created with a voxel size

of 2 mm and analyzed with a spheric VOI of 10-voxel radius. To
characterize the variability of the measurements, all 10 sphere models

were simulated 20 times.

Patients and PET Acquisitions

To compare the observations made in spheres and in patient tumors,
we retrospectively investigated primary breast lesions from 54

patients. The patient cohort and imaging protocol were described
previously (5,11). The Institutional Review Board approved this ret-

rospective study, and the requirement to obtain informed consent was
waived (Ile-de-France X). PET images were expressed in SUVs nor-

malized by the patient body weight. The lesions were segmented as
described by Nestle et al. (12). After this step, an erosion of 1 voxel

was performed to study the sensitivity of indices to information at
the edge of the tumor VOI.

Visual Assessment of Patient Data

All lesions were reviewed independently
by 2 nuclear medicine physicians (readers

1 and 2) separating lesions into 2 groups:
homogeneous or heterogeneous. The read-

ers received no instructions on how to de-
fine homogeneous and heterogeneous lesions.

They were masked to clinical information
and to the classification of the other reader.

The images were presented to the readers
in the same order and with the same color

scale set between 0 SUV units and twice
the SUVmean in the noneroded tumor VOI

(SUVmean), as this always provided a color
range visually suitable for assessing uptake

heterogeneity.

Simulated Tumors Based on

Real Lesions

To study the sensitivity of texture indices

to hypo- and hypermetabolic regions in patient images, we created
artificial tumors based on the real breast lesions using:

CðxÞ 5 20 2 IðxÞ; Eq. 1

where I(x) was the initial intensity of voxel x in the PET images and

C(x) was the intensity of voxel x in the artificial tumor. Negative C(x)
values were set to 0.

These artificial tumors were the negative of the original tumors,

where highly metabolic voxels in the original tumors (e.g., with an SUV
of 18) became low-metabolism voxels (with an SUVof 20 2 18 5 2 in

our example) and vice versa, while retaining the spatial correlation of
voxel values present in the original tumor images (Supplemental Fig. 1;

supplemental materials are available at http://jnm.snmjournals.org).

Texture Analysis

In each VOI (for each sphere model, each primary tumor, and each
artificial tumor), SUVmax and SUVmean were calculated. For texture

index calculation, the VOI voxel intensities were resampled using 64
discrete values between 0 and 20 SUVs, corresponding to a sampling

bin width of 0.3 SUVs (6,7).
Texture indices were deduced from 3 texture matrices: the

cooccurrence matrix, the gray-level run length matrix, and the gray-
level zone length matrix. Six texture indices (homogeneity, entropy,

short-run emphasis (SRE), long-run emphasis (LRE), low gray-level
zone emphasis (LGZE), and high gray-level zone emphasis (HGZE);

Supplemental Table 1) were calculated using LIFEx software (http://

www.lifexsoft.org). These 6 indices were the most robust with respect
to the segmentation method in each texture correlation group (5).

Statistical Analysis

We investigated the texture index values in the 10 simulated
spheres, with and without edge effects and with a voxel size of 4 and

2 mm, using Wilcoxon tests for comparison.
In patients, the interobserver agreement in the assessment of tumor

heterogeneity was evaluated using Cohen к statistics. The ability of
each parameter to distinguish between homogeneous and hetero-

geneous lesions as defined by the 2 readers was assessed using
Wilcoxon tests. To investigate the direction of texture index changes,

we selected pairs (t1, t2) of lesions with less than a 5-mL difference in
metabolic volume. We computed the number of pairs with, for example,

homogeneity (t1) . homogeneity (t2) and LRE (t1) . LRE (t2). We
performed this test for homogeneity and LRE, entropy and SRE, ho-

mogeneity and entropy, homogeneity and SRE, entropy and LRE, SRE
and LRE, and HGZE and LGZE.

FIGURE 1. Process for creating sphere models. σ 5 SD.

FIGURE 2. Example of 10 sphere models with edge effects. σ 5 SD;

R 5 radius of internal sphere.
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To study the impact of uptake on texture index values, we computed

the correlation between texture indices extracted from real lesions and
those extracted from artificial tumors using the Spearman correlation

coefficient. Finally, we investigated the difference in texture index
values between lesions segmented with and without an erosion of 1

voxel using the Wilcoxon test. P values of less than 0.05 were inter-
preted as statistically significant.

RESULTS

Sphere Models

Texture Indices as a Function of Heterogeneity Type. The plots
of texture index, SUVmax, and SUVmean as a function of the sphere
models with edge effects show the change in the various indices as
a function of simulated heterogeneity (Fig. 3 and Supplemental
Fig. 2), with 4 types of texture index behavior: homogeneity and
LRE varied similarly, as well as entropy and SRE, whose varia-
tions correlated negatively with those of homogeneity and LRE.
LGZE varied in an opposite way to HGZE, and their variations
were different from those of the other 4 texture indices.
Homogeneity, LRE, entropy, and SRE identified sphere 1 as the

most homogeneous among the models, with texture index values
always being higher or lower than in any other sphere (Fig. 3 and
Supplemental Fig. 2).
When inserts were included in sphere 1, homogeneity and LRE

decreased and entropy and SRE increased whatever the uptake of
the inserts (lower or higher than that of the rest of the sphere), and
the decrease or increase was related to the number or size of the
inserted spheres. The texture indices of this first index family,
including homogeneity, LRE, entropy, and SRE, did not distin-
guish hyper- from hyposignal in the inserts, unlike HGZE and
SUVmean. These latter indices decreased when low-signal inserts
were included in the large sphere and increased when high-signal
inserts were included, and these changes also depended on the
number or size of the inserts. LGZE varied in an opposite direction
to HGZE. LGZE and HGZE can thus be seen as belonging to a
second texture index family.
When comparing spheres 1 (m5 8) and 2 (m5 12), the value of

homogeneity, LRE, and LGZE decreased, whereas entropy, SRE,
HGZE, SUVmax, and SUVmean increased.

No texture index was sensitive to the location of the inserts
(centered in sphere 10 and at the periphery in sphere 6).
Edge Effects. The most homogeneous sphere model (sphere 1)

yielded homogeneity of 0.45 6 0.01 (average over the 20 repli-
cates 6 1 SD), LRE of 1.55 6 0.04, entropy of 1.87 6 0.04, SRE
of 0.895 6 0.005, HGZE of 559 6 10, and LGZE of 0.00192 6
0.00004 when the edges were included in the ROI (Fig. 3 and
Supplemental Fig. 2). In VOIs eroded by 1 voxel, sphere 1
exhibited a more homogeneous pattern, with homogeneity of
0.52 6 0.01 (114.3%), LRE of 1.68 6 0.05 (18.4%), entropy
of 1.586 0.04 (215.2%), SRE of 0.8706 0.008 (22.8%), HGZE
of 722 6 18 (129.1%), and LGZE of 0.00145 6 0.00004
(224.6%) (Supplemental Fig. 3). Including the sphere edge for
texture index calculation therefore changed the absolute value of
texture index, but the variation in texture index as a function of
uptake pattern remained similar. According to Wilcoxon testing,
all indices except SUVmax were significantly different when cal-
culated from the noneroded and eroded VOI (Fig. 4 and Supple-
mental Fig. 4).
Between spheres 1 and 5 with sphere edge included, homoge-

neity, LRE, and LGZE decreased by 19.2%, 14%, and 15.6%,
respectively, whereas entropy, SRE, and HGZE increased by
21.5%, 4.0%, and 29.7%, respectively. When edges were
excluded, entropy, SRE, and HGZE increased by 34.8%, 6.8%,
and 31.9%, respectively, between spheres 1 and 5 whereas the
other texture indices decreased: homogeneity (227.2%), LRE
(220.9%), and LGZE (221.1%). The difference in texture index
values between sphere 1 with edge effects and sphere 1 without
edge effects was lower than the difference between spheres 1
and 5 (both with and without edge effects) except for LGZE
(Fig. 3 and Supplemental Figs. 2 and 3).
Influence of Voxel Size. Noneroded sphere 1 exhibited a more

homogeneous pattern with the 2-mm voxel size than with the 4-
mm voxel size: homogeneity of 0.61 6 0.01 (135.5%), LRE of
2.9 6 0.1 (185.8%), entropy of 1.58 6 0.04 (215.7%), SRE of
0.785 6 0.009 (212.3%), HGZE of 560 6 11 (10.1%), and
LGZE of 0.00188 6 0.00004 (21.7%). The use of smaller voxels
did not change the variations in texture indices as a function of the
sphere model (Supplemental Fig. 5).

Table 1 summarizes the changes in texture
indices and conventional indices depending
on the sphere model.

Patient Data

The noneroded mean breast tumor volume
was 43.0 6 51.1 mL (range, 5.0–316.7 mL).
Comparison Between Sphere Model and

Patient Data. The box plots of texture
indices for the sphere models and patient
data show that the sphere models led to
texture index values similar to those en-
countered in patient tumors, although the
variability in texture indices in our 10
spheres was less than that observed in the
patients (Fig. 4 and Supplemental Fig. 4).
To study the relevance of the texture

index variations identified from sphere
models, we had 199 pairs of breast lesions
with a difference in metabolic volume
lower than 5 mL. Table 2 shows that ho-
mogeneity and LRE varied in the same

FIGURE 3. Plots of homogeneity (A), entropy (B), HGZE (C), and LGZE (D) for 10 sphere models

with edge effects (mean and SD over 20 replicates).
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direction in 93.5% of the pairs whereas entropy and SRE varied in
the same direction in 91.5% of the pairs. Homogeneity and LRE
varied in an opposite direction to entropy and SRE in 91%–97.5%
of pairs. HGZE and LGZE varied in opposite directions in 97.5%
of lesion pairs.
Texture Indices Versus Visual Heterogeneity Assessment. In-

terobserver agreement (Cohen к) was 0.765 (P , 0.01) for clas-
sifying lesions into 2 groups: heterogeneous (n 5 30 for reader 1
and n5 34 for reader 2) or homogeneous (n5 24 for reader 1 and
n 5 20 for reader 2). The consensus interpretation yielded 19
homogeneous and 29 heterogeneous lesions. All indices signifi-
cantly differed between the 2 lesion groups, except SRE and LRE,
with P values of 0.07 and 0.08, respectively, on Wilcoxon testing
(Supplemental Table 2). Heterogeneous lesions exhibited a higher
value than homogeneous lesions for entropy, SRE, HGZE, SUVmax,
SUVmean, and metabolic volume. Conversely, homogeneity, LRE,
and LGZE were higher in homogeneous lesions than in heteroge-
neous ones.

To study the impact of uptake values on
texture indices, we plotted indices com-
puted from the artificial tumors as a func-
tion of the same indices computed from
the real lesions (Supplemental Fig. 6).
By definition, the values of homogeneity,
LRE, entropy, and SRE (first family) were
identical for the artificial and real lesions.
Inversely, HGZE and LGZE were nega-
tively correlated (r 5 21 for HGZE and
r 5 20.99 for LGZE), as well as SUVmax

(r 5 20.68) and SUVmean (by definition).
Edge Effects. The values of entropy

and LGZE were significantly higher in
the noneroded breast tumors than in the
same tumors with an erosion of 1 voxel
(Fig. 4 and Supplemental Fig. 4). Con-
versely, HGZE was significantly higher

in eroded tumors. When we eroded the lesions with 1 voxel,
entropy, SRE, and LGZE decreased by 210.1%, 20.4%, and
242.4%, respectively, whereas the other texture indices increased:
homogeneity (11.7%), LRE (0.9%), and HGZE (44.3%).

DISCUSSION

In this study, to help nuclear medicine physicians understand
texture index values in a clinical setting, we showed how different
texture indices vary as a function of uptake pattern based on
numeric models and patient lesions.
Using sphere models and real tumors, we found that texture

indices varied consistently with visual assessment of uptake
heterogeneity, unlike a previous study (13) that found the so-called
homogeneity textural index to be highest in tumors that were
visually assessed as the most heterogeneous (Fig. 2 of Tixier
et al. (13)). In our sphere models, the sphere that was the most
homogeneous (Fig. 2, sphere 1) was identified as such by all
texture indices (Fig. 3 and Supplemental Fig. 2). This was also

FIGURE 4. Box plots of homogeneity (A), entropy (B), HGZE (C), and LGZE (D) for 10 sphere

models and 54 breast tumors without and with VOI erosion of 1 voxel. *P , 0.05, Wilcoxon test.

**P , 0.01, Wilcoxon test.

TABLE 1
Summary of Texture Index Changes as Function of Type of Heterogeneity in Sphere Models

First texture index family Second texture index family SUVs

Change Homogeneity LRE Entropy SRE LGZE HGZE SUVmax SUVmean

Increasing average

uptake (1 vs. 2)

— 1 — 1 1 1

Including hypersignal
inserts (1 vs. 3, 4, 5)

— 1 — 1 1 1

Including hyposignal

inserts (1 vs. 6, 7, 8)

— 1 1 — Not sensitive —

Making hyposignal

insert larger (1 vs. 9, 10)

— 1 1 — Not sensitive —

Changing location of

hyposignal (6 vs. 10)

Little to no

sensitivity

Little to no

sensitivity

Little to no

sensitivity

Little to no

sensitivity

Little to no

sensitivity

Little to no

sensitivity

Removing edge effect 1 — — 1 Little to no

sensitivity

1

Using smaller voxels 1 — Little to no

sensitivity

Little to no

sensitivity

Little to no

sensitivity

Little to no

sensitivity
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true for the patient tumors. For instance, in Supplemental Table 2,
homogeneous lesions had a higher value of homogeneity and
LGZE and a lower value of entropy and HGZE than did the
visually heterogeneous lesions. As expected, entropy, which re-
flects disorder (14), varies in an opposite direction to homogeneity,
whereas in a previous study (15) these 2 indices surprisingly var-
ied in the same directions. The reason for these different results is
the SUV resampling step used for texture index calculation. We
rescaled the SUVs in the VOI to between 0 and 20 whatever the
SUVmax in the VOI (called absolute resampling (7)), whereas in
most articles (13,15), resampling was performed between
the minimum SUVand SUVmax in the VOI (called relative resam-
pling). As shown in Supplemental Fig. 7, when relative resampling
was used, the variations in texture indices were counterintuitive:
sphere 3 was identified as the most homogeneous sphere by the
first family of texture indices whereas sphere 1 was the most
homogeneous by construction. Also, LGZE increased and HGZE
decreased when a hypersignal was added (sphere 3 vs. 1). Simi-
larly, in patient data (Supplemental Table 3), lesions classified as
homogeneous by the physicians exhibited a lower value for the
homogeneity index than did heterogeneous lesions. This finding
shows that absolute resampling not only reduces the dependency
of texture indices on the tumor volume, enhances tissue discrim-
ination based on texture indices, and increases the correlation of
texture indices with SUV (7) but also yields variations in texture
indices consistent with the visual assessment.
Our results suggest that different texture indices reflect different

types of visual heterogeneity. Simulated spheres show that texture
indices from the first family (homogeneity, entropy, SRE, and
LRE) are not sensitive to the fact that the heterogeneity is caused
by a hypo- or hypersignal, unlike HGZE and LGZE (Fig. 3 and
Supplemental Fig. 2). The changes in texture index as a function
of sphere model were partly validated using the real breast lesions,
by analyzing pairs of tumors and checking that when a texture
index was greater in one lesion than in another, this difference was

also reflected by another texture index (Table 2). The comparison
of artificial and real lesions confirms that texture indices from the
first family were immune to the nature of the heterogeneity (hypo-
or hypersignal). This result is also consistent with our previous
investigation of the biologic meaning of texture indices (16). In
that investigation, we demonstrated that texture indices of the first
family measured from autoradiography images were sensitive to
the cell pattern seen on a histologic slice, whereas texture indices
from the second family were mostly sensitive to cell density. The
identification of these 2 families of texture index might explain
why different texture indices may be useful in different settings.
For instance, the high-gray-level-run emphasis index (which be-
haves similarly to HGZE (5)) better assessed invasive breast can-
cer aggressiveness than homogeneity and entropy (11). Yet, in
esophageal cancer, entropy was significantly correlated with the
T and N stage (17), could distinguish malignant tumors in bone
and soft-tissue lesions (18), and was associated with overall sur-
vival in non–small cell lung cancer patients (19).
Several studies (3–5,20–24) investigated the robustness of tex-

ture indices as a function of various parameters (Supplemental
Table 4). Given that there is no consensus on the most accurate
tumor segmentation method, the robustness of texture indices as a
function of the tumor delineation has to be known. For example, 4
studies demonstrated that entropy was either slightly (5,23,24) or
moderately (20) influenced by the segmentation method. Our re-
sults also showed the impact of including edges in the VOI used to
calculate the texture indices. Including the tumor edges did not
change the way each texture index varied from one sphere to
another (Fig. 3 and Supplemental Figs. 2 and 3) but significantly
changed the value of the texture index. For instance, for sphere 1,
entropy was 1.58 without edge effects versus 1.87 with edge ef-
fects. This finding underlines the difficulty of comparing texture
index values reported in different articles using different tumor
delineation methods. When the tumor region was eroded by 1
voxel, the heterogeneity was reduced (Fig. 4 and, Supplemental
Fig. 4), with lower entropy and higher homogeneity than for the
initial VOI, and the difference in texture index values between
spheres 1 and 5 was higher for eroded VOI than for noneroded
VOI. Using patient data, the texture index values were significantly
different for entropy, LGZE, and HGZE between the 2 tumor seg-
mentations (with and without erosion). This suggests that using tight
contours around the tumors may make different tumor metabolic
patterns more easily distinguishable using texture indices than when
using loose tumor delineation. Another factor affecting texture index
values is voxel size. Indeed, the same uptake pattern is seen as more
homogenous by texture indices with a voxel size of 2 mm (Supple-
mental Fig. 5) than with a voxel of 4 mm (Fig. 3 and Supplemental
Fig. 2). This is consistent with our previous observations (16): auto-
radiography images (voxel size, 50 · 50 · 20 mm) exhibited a more
homogenous texture than preclinical PET images (voxel size, 388 ·
388 · 796 mm). Using the simulated spheres, we demonstrated that
homogeneity and LRE were the most variable with voxel size, with
an increase of 35.5% and 85.5%, respectively, between sphere 1 de-
scribed with voxels of 2 and 4 mm, whereas entropy and SRE were
less influenced and LGZE and HGZE were robust to voxel size
change (Supplemental Table 4). These results call for a precise de-
scription of all parameters that might affect texture index values in
publications, so that texture index values can be compared and ulti-
mately be used in prospective studies.
Overall, among the 6 investigated texture indices, compiling

previously published results with ours regarding the impact of

TABLE 2
Percentage of Breast Tumor Pairs with Less Than 5 mL of

Volume Difference and Satisfying Various Conditions

Test

Percentage of pairs

satisfying condition

Homogeneity (t1) .
homogeneity (t2) and

LRE (t1) . LRE (t2)

93.5

Entropy (t1) . entropy (t2)

and SRE (t1) . SRE (t2)

91.5

Homogeneity (t1) .
homogeneity (t2) and

entropy (t1) , entropy (t2)

91.5

Homogeneity (t1) .
homogeneity (t2) and

SRE (t1) , SRE (t2)

95.0

Entropy (t1) . entropy (t2)

and LRE (t1) , LRE (t2)

91.0

SRE (t1) . SRE (t2) and

LRE (t1) , LRE (t2)

97.5

HGZE (t1) . HGZE (t2)
and LGZE (t1) , LGZE (t2)

97.5
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voxel size and edge effects, entropy appeared to be the most robust
with respect to all parameters listed in Supplemental Table 4, with
a low variability for 11 criteria and a moderate variability for 5.
Although our numeric sphere models were simple, the obser-

vations made from these models were extremely consistent with
what was measured in patient tumors. The use of these simple
models made it possible to fully control several parameters (volume,
SUV, type of heterogeneity, location of inserts) whereas this was not
possible in real tumors. By combining observations made from
these models and from real lesions, the interpretation of texture
indices could be clarified. Our work is a first attempt to contribute
to a better understanding of the meaning and interpretation of
texture indices under specific conditions, but given the variability
of texture index values as a function of the parameters listed in
column 2 of Supplemental Table 4, extra work is still needed to
define reference texture index values required for using texture
indices in prospective studies.
In radiomics (25), it is assumed that image features can also

reflect tumor characteristics that may not be visually assessed.
These characteristics still certainly reflect some underlying biologic
processes. In addition to the visual interpretation of image-derived
features addressed here, efforts should thus be pursued to elucidate
their microscopic biologic meaning as initiated previously (16,26).

CONCLUSION

Using simulated and patient data, we showed how texture index
values vary as a function of uptake pattern. We demonstrated that
texture indices can reflect heterogeneous uptake and identified 2
families of texture index, consistent with previous observations on
the biologic relevance of texture indices. The texture index values
observed in our simulations were within the range observed in patient
breast tumors, and the changes in texture index values as a function of
the uptake pattern or edge effects observed in the simulations were
consistent with those observed in real tumors. This study provides
guidance for nuclear medicine physicians in using and interpreting
texture indices in future studies and clinical practice.
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