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Abstract. The aim of factor analysis of medical image sequences (FaMIS) is to estimate 2
tmited number of physical or physiological fundamental functions. Its oblique rotation
stage strongly affects the quality and the interpretation of the resulting estimates (factors
and factor images). A new target apex-secking method which imegrates physical or
physiological knowledge in this stage is described. This knowledge concerns some of the
fundamental functions and reacts on the determination of alf the factors. A simulated
spectral study illustrates the method. We discuss its properties in comparison with the
other approaches using @ priori physical or physiological information.

1. Introduction

In nuclear medicine, factor analysis of dynamic structures (FADS) is now considered
as a powerful tool to process time image sequences (Houston 1990). It gives rise to
many investigations, particularly to introduce constraints in order to overcome the
main problem of FADS, ie., the non-uniqueness of the solution (Barber and Nijran
1981), which prevents the method from being 2 quantitative one (Houston 1984). The
method has been adapted to the analysis of scintigraphic energy image sequences in
1982 (Di Paola ef al 1982b). This so-called factor analysis of spectral studies (FASS)
was at that time useful to assess the methodology, but its use for clinical studies was
limited until these last years {Cavailloles et a/ 1987, Manil et al 1989). Recently, there
has been a fresh interest in approaches conceptually identical to EASS to address the
problem of Compton scatter correction in scintigraphic imaging (Gagnon et al 1989,
Mas et gl 1990), proposed as early as 1987 (Cavailloles et o/ 1987). Here, the
problem is to extract unscattered and scattered spatial components from a sequence
of images acquired at different energies. It has been shown that such a problem could
not be properly solved by factor analysis without taking into account some additional
information (Hannequin et af 1988). As in dynamic studies, the necessity to introduce
a priori knowledge to achieve a proper and unambigucus solution clearly appears. A
new approach to take advantage of avajlable a priori information about the features
of the underlying time or energy components is proposed here. Its efficiency is
demonstrated on simulated data. The benefits of this approach with respect to the
existing ones are discussed (Barber and Nijran 1982, Houston 1986, Samal et af 1987,
Hannequin et af 1988, Nijran and Barber 1988, Buvat e al 1991, Mas er al 1990,
Van Dacle et al 1991).
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2. Method

A medical image scquence can be considered as the combination of a limited number
of fundamental functions, {f;}z=,,... ,» and of their associated spatial distributions,
{ex}x=1,...,q> according to the following additive model:

q
2(i,5) = Y ap(D}f(J) + e(i, 4)- )

k=1

Here, z(i,j) represents the content of pixel, ¢ (z = 1,...,n), in the picture, j
(j =1,...,p) of the initial data set, X. Each row 7 of the matrix X, called a trixel,
is a vector describing the time or energy behaviour within the pixel i. Each column
j corresponds to the jth image of the sequence. The error matrix, E, includes both
noise and modelling errors.

The goal of factor analysis of medical image sequences (FAMIS) is to estimate the
¢ fundamental functions by factors and the spatial distributions by factor images,
assuming g is known. This analysis requires four stages: data preprocessing,
orthogonal analysis, oblique analysis, and factor image computation. As the goal
of the procedure we proposed in this paper is to include a priori knowledge within
the oblique analysis, this stage is fully described. The three others will be mentioned
only briefly.

21. Data preprocessing

To improve signal-to-noise ratio, two data preprocessing stages are performed, which
consist of thresholding and clustering: the contents of neighbouring trixels are
summed, either according to a rectangular segmentation (4 x 4, 8 x 8, ...} (Bazin
et al 1980) or to a stochastic classification (Aurengo 1989). This latter technique
takes into account the similarities of time or energy behaviour of the trixels. At the
end of this stage, let » be the number of clustered trixels, which are now simply
called trixels.

22, Crthogonal analysis

In the case of scintigraphic data, taking into account that the counting statistics follow
Poisson’s law, the optimal orthogonal decomposition is the one of correspondence
analysis, which uses a x* metric (Frouin er a/ 1991). A g principal component
analysis of the matrix X, using the x? metric, leads to a set of g orthogonal factors,
{¢x}r=q,...,q—1» a0d orthogonal factor images, {v;}z-p,.. -1 They correspond to
the best least square approximation of the matrix X, according to the reconstitution
formula
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Ag 2 Ay 2 ... 2 Ay 2 0 are the first g eigenvalues obtained by correspondence
analysis. g will denote the centroid of the trixels, ie. the vector of values z;/z,

j=1...,p.

2.3. Obligue analysis

The components {wy }y.y,.., ;1 Tesulting from the orthogonal analysis define a (g—1)
dimensional subspace, i, called ‘study subspace’ (Barber and Nijran 1982}, from which
the initial data X may be reconstituted with a minimum loss of information in the
least square sense. However, the orthogonal factors and the corresponding orthogonal
factor images have no physiological or physical meaning, since they include negative
values. The oblique analysis is based on the hypothesis that the fundamental functions
{fx}r=,...,q Of equation (1) lie within the subspace generated by i and g. In fact, if
{fi}r=1,..,q are normatized such that 3°7_,; () = 1, it can be shown that f, can
be written as

g-1

fk=g+zbktut’ @)

t=1

Consequently, the oblique analysis consists in searching the set of {f; — g}z=y,. o>
denoted by { fk}kﬂ,_mq, within the study subspace Z/, to obtain the factors
{fr}x=1,...,4- Such a search, called an ‘apex-seeking’ procedure, requires some criteria
to determine automatically and without ambiguity the set of {fi.}.o,, . .- The first
and most commonly used approach is based on non-negativity constraints of both
factors and factor images (Barber 1980, Di Paola et o/ 1982a). Since scintigraphic
images result from counting detected events, the spatial distributions {a,},_, ., of
the decomposition (1), as well as the fundamental functions {f;.};,.., are non-
negative. However, the range of possible solutions satisfying these constraints may be
quite extensive (Barber and Nijran 1981). The final solution will then be one among
many possible solutions.

This non-uniqueness problem is better addressed by taking into account some a
priori knowledge about underlying fundamental functions (Nijran and Barber 1985,
Mas et al 1990) or spatial distributions (Houston 1986, Samal et a/ 1987, Nijran
and Barber 1988, Van Daele et a/ 1990). Our approach constrains the apex-seeking
routine using the available information related to the fundamental functions. It
includes two steps: first, the target apex-seeking procedure determines the r target
factors, {fp}z=y,... » fOr which there is an @ priori knowledge. Then, the g — »
remaining functions are estimated by taking advantage of the correct localization of
the first r ones.

23.1. Target apex-seeking (TAS} procedure. The basic idea of the proposed procedure
is to scan the subspace I to search the point corresponding to a function which best
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fits the expected factor. The matching between one function and the known features,
such as the position of a maximum, or the range wherein the expected factor is equal
to zero, must be quantified. Consequently, it requires that the @ priori information,
8, can be formalized to define a criterion, h{ S, 6), measuring the deviation between
the fanction corresponding to a point, S, of I/ and 6. Any point S with coordinates,
(Bs1s -+ + 3 by(g—1)), defines a profile, ie., a normalized function

g—1

s=g+zbﬁut

t=1

which is similar to equation (2).

The appropriate definition of A(S,#), which depends on the mathematical
description of the available knowledge, is a prerequisite to the use of the proposed
tarpet apex-seeking procedure. This knowledge is not necessarily related to the whole
function, but can concern only a part of it, provided it is sufficient to identify in &/
the corresponding factor.

Starting from any point of ¥, an iterative procedure scans this subspace to find
the point corresponding to the minimization of k. The orthogonal subspace i is a
structured one, i¢. the movement in a parallel direction to a basis vector u, involves
a continuows distortion of the corresponding function. Consequently, the scanning of
U is performed according to the following algorithm (figure 1).

(i) Initialization: m = 0 (jteration index). Start from any point S of i and
compute h(S,8).

(i) m=m+4 1 For k =1to g— 1, move in 2 parallel direction to u; with
a step &; such that §, = limax; b;, — min, b;,], until A reaches a minimum value:
h{(S™,0). The displacement direction (left or right, up or down) is the one which
makes h decrease.

(iii) Ifr(8™,8) & A(S™"1,8), go to (ii) from h(S™,6), else take the function
corresponding to S™~1 as the searched factor. This procedure is repeated to compute
the r target factors {f2}..,... . using for each one an adapted A criterion.

2.3.2. Search for the remaining factors. The determination of the ¢ — » > 1 remaining
factors comprises three steps, each including specific constraints.

23.2.1. Bootstrap. Using the previous estimate of the r target factors, generating a
r-dimensional subspace, R, the g — r remaining factors are first characterized by the
data analysis in a ¢ — » — 1 dimensional space R’ orthogonal to R such that

ReR=U

where €D represents the direct sum. The projection onto the subspace R’ of the
data x(%,7), using the x? metric, leads to a matrix, Y, which is submitted to
a correspondence analysis. Considering the first g — r principal components, the
reconstitution formula gives the following 7(z, 7) estimates (Escofier and Pages 1988):
g¢—r—1

9(i,4) = = ’[
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Figure 1. Hypothetic three factor study: the trixels (@) are projected in the subspace I/
defined by the two frst orthogonal factors ug and 2. From any starting point 5, the
scanning procedure leads to the target factor f1 For one direction w;i{i = 1,2},
displacement is performed with a step §; as long as the minimization criterion A
decreases. Then, the other direction is scanned until 2 minimum with respect to all
the directions is reached. As _f° estimates a fundamental function, which cannot always
be represented by any trixel, it may lie outside the cloud of trixel projections.

where

zﬂ('i) = wU(J) =1 V(sz) and Hy = 1!
L4 T, » @£,
Y Lul(y=1,. ) =1 Vk
z i=1 z

i=1

Hg 2 M1 2 o0 2 Py, 2 0 are the first g — r cigenvalues resulting from the
correspondence analysis.

The g~ r~ 1 principal components, {wg};=y . ,-n—1 explain the variance of the
subspace R'. They generate the subspace W of U which contains the information
not included in 7. The initial estimation of the ¢ — r factors, fr FRPRT f in Wis
performed using the initialization procedure described by Di Paola et al (1982a).

@ 72 +1 corresponds to the trixel projection, W), in W farthest from g, which is
also the centroid of the set of (7, 7);

i) 7° 2 corresponds to the trixel projection, W, in W farthest from Wi;. . ;

(iii) 72 ¢ cOrresponds to the trixel projection, W, in W for which the sum of the
distances to Wy, Wy, ..., W,_;, is maximum;. ..; (iv) f corresponds to the trixel

projection, W, __, in W for which the sum of the distances to W, W,,...,W,___,,

is maximum. As these f2,,,f% ,,...,f) estimates are included in R', which is
orthogonal to R, they have no physical or physiclogical meaning.

23.2.2. Translation. This second step consists in the addition of an & component to
the estimates { fg}kﬂ 1,090 10 give them 2 physic:';ll or phys.iological meaning, Psing
the non-negativity constraint on factor images. This constraint can be geometrically
expressed as follows (Barber 1980): the points representmg trixels are all inside a
convex polytope whose g apices are the g points {fl}.; .. .q+ As the estimates
{ fk}k=,.+1w_'q do not allow us to include all these points, the new estimates



128

(a)

posltivlty domain

{fiz}k=r+1,...,q

I Buvat et al

Aus (b}

Figure 2. Different stages of the search for the two remaining factors of the same study
as in figure 1. (2) Determination of translation vector: all the trixels are projected onto
the vector represented by ff ¢’ is the trixel the projection of which is ihe farthest

from ff and determines the weighting coefficient o1, and consequently the translation
vector 7. {(b) Translation: f-zo and _f}", which have been initialized in the one-dimensional
space W, are translated by the vector r, leading to f} and f}. More trixel projections
are then included in the polytope, whose apices are ff, f% and f_,} (¢) Non-negativity
constraints on factors: as f_.,‘ leaves the positivity domain, it is replaced by the nearest
point lying on the boundary of this domain f?. le, included in the positivity domain, is
unchanged.

are obtained by translating the ¢ — r factors {f0},... +1,..,q DY 2

vector r belonging to If, such that

r=oqfltanfit ...+, fo.

All the trixels < are projected onto the vector represented by fc {(e=1,....7). Let
¢ be the trixel the projection of which is the farthest from fc, Le.

Abibom L\
( m—l m-im _1)
mbzm

is maximum (figure 2(1‘2)).
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Each weighting coefficient, o, is the projection value of the tixel i’ onto the vector
represented by ff, which is equwa]ent to

24_11)\ bz mbcm
=LA b2

m=1 "*m%em

If this translation-ensures that more trixel projections are included in the polytope
(figure 2(b)), the last ¢ — r factors {Fl}p_,q. .,g can contain negative values. Thus,
if fkv =r+1,...,q, leaves the positivity domain resulting from the non-negatwnty
constraint on factors (Di Paola er al 1982a), it is replaced by the nearest point, fZ,
lying on the boundary of this domain (figure 2(c)).

23.2.3. Constmmed iterations. To achieve the final estimation of the fundamental
functions complying at best with non-negativity constraints and a priori knowledge,
an apex-seeking procedure was performed. It includes the following steps.

(i) Initialization: m = 2.

(i) Compute {eP*(%)}zoy,... o sing the following oblique reconstitution formula -
with the x? metwic: 28D = $57_) () F(5) + Therpn P () (), with
Ei:l c’g“(z) = 1

(iii) Compute the number #»™ of negative c¢f*(7).

i) ¥ »™ < n™"L, set the n™ negative ¢*(z) to ¢7*(i)/2 4 ¢, where ¢ is a small
positive value, else take {f0},_, ., and {f{*~1},_ ., . as final factors and exit.

(v) Compute the resulting {f7**'},y .-

(i) For k=1,...,r replace f7**! by ff (target factors). For k= r+1,...,q,
if fett leaves_thé;_ positivity domain, replace it by the nearest point of the boundary
of this domain. For each &', ¥ = 1,...,», if the absolute value of the correlation
between f*! and f¥, increases, rep!ace f""+1 by .

(vid) If { ;" +1}k —rilynng F U b =rtl,...,q TELUIT 1O (ii), else take {f}._i..,
and {f"}zopp1,..q 2 final factors and exit. If these steps have the same ObJeCtS as
those described hy Barber (Barber 1980) and Di Paola (Di Paola et af 1982a), steps
(i), (iv) and (vi) differ. The changes we introduced concern the metric, the target
factors, the non-negativity constraint, and the stopping criteria. A particular case is
if only one factor remains to determine {g— » = 1) after the target apex-seeking; its
first estimation is directly performed in I, according to the conventional initialization
(Di Paola e of 1982a) and is followed by the above described iterative procedure.

2.4. Factor image computation

Factor images are-‘c_omputed by projecting each trixel of the original spatial sampling
onto the set of factors (Di Paola er al 1982a). The contribution of each factor image
is computed as

iy Max[a;(4), 0]
o1 Do max[a(:),0]

Contr(k) =
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3. Numerical experiment

A computer-simulated phantom consisting of three homogeneous rectangular
overlapping spatial distributions, a;, 2, and a;, was used to compare the results
obtained by a conventional ¥FaMIs algorithm and by. FAMIS-TAS. The fundamental
functions associated with each of the three spatial distributions are chosen to
represent spectra (figure 3), as is the case for Compton scatter correction using
EaSS (Buvat ef al 1991): a gaussian photopeak spectrum, f, and two realistic scatter
spectra, f, and f;. The contributions of f;, f, and f; were 30%, 50% and 20%,
respectively. From the outer product 3°3_, a; ® f;, a sequence of 26 images 64 x 64
was computed. Poisson noise was added and the resulting image sequence included
about five million events. This simulated study was processed (i} by factor analysis
using the algorithm of Barber (Barber 1980) as modified by Di Paola et al (1982a),
taking into account non-negativity constraints related to both factors and factor
images, referred to as conventional ramis, and (ii) by FAMIS-TAS. In both cases, a
4 x 4 spatial sampling was used and all the trixels different from zero were included

in the analysis.
100

al

az 3
199 ' 100 ,
/\ 1 1
1 26 1

1 6 26

a

[

fi f2 3

Contr(l)=30% Contr(z2)=58% Contr(3)=28%

Figure 3. Computer simulation of \hree homogeneous rectangular overlapping spatial
distributions ajy, 22 and e and associated fundamental functions fi, f» and fi, with
contr{1) = 30%, conir{2) = 50%, contr(3} = 20%.

4. Results

4.1. Conventional FAMIS

Figure 4 shows the projections of the retained trixels onto the #f subspace for a 3
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Figare 4 Projections of the 158 trixels () onto the I{ subspace, defined by the two
first onhogonal factors, and conventional Famis factor estimates (1 for f1, 2 for f’: and
3 for f3) The positivity domain is also visualized.

factor FAMIS. Let &, and f, be the estimates of a; and fr. As there is no point
corresponding to pure f;, the position of fl cannot be correctly determined by the
iterative process of the conventional FAMIS: f is clearly contaminated by f, and f,
(figure 5). Conversely, f, and f, are properly estimated since some trixels correspond
to pure f, or fs; f, and f; are only slightly distorted, due to noise and initial spatial
sampling. &, is qualitatively a good estimate of o, but the error in the factor f
generates artefacts in 4, and &; which are underestimated in the region wherein
ay is present. This is in agreement with Houston’s results (Houston 1984). The
contribution of 4;, 4, and 43 are equal o 43.0%, 41.3% and 15.7%, respectively,
which are far from the correct ones.

4.2, FAMIS-TAS

The superimposition of original fundamental functions and factors obtained by
conventional FAMIS and FAMIS-Tas are displayed in figure 8. It demonstrates clearly
the better agreement between original and FAMIS-TAS resulting functions.

As a comsequence of the physical knowledge which generally concerns the
photopeak spectrum, it was realistic to assume that the factor fl could be reduced
to zero in some spectral range. Here, it includes the first 15 images. The criterion &
was then defined by

15
h(S,0) = $%(j).

i=1
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Figure 5. Conventicnal FAMIS resujts: factor images, factors and associated contributions:
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Figure 6. Projections of the 158 wrixels (O) onto the I/ subspace, defined by the two
first orthogonal factors, and Famis-TAS factor estimates (1 for fi, 2 for fz and 3 for f3)
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¢/ is scanned as described in section 2.3.1 to search for the point minimizing h and
find out a good estimate of f;. This point lies on the non-negativity boundary, outside
the cloud of trixels. f, and f, are estimated first in W, which is a one-dimensional
space (g— r— 1= 1), and then they are translated by a vector T (cf section 2.3.2.2)
and projected in the positivity domain; two iterations are sufficient to achieve the
final configuration (figure 6). The corresponding factors and factor images are shown
in figure 7; they are very similar to the original model. The slight differences are due
to noise. The estimated contributions of &,, d, and &, are equal to 30%, 49.7% and
20.3%, respectively, which are quite correct.

5. Discussion

Several modifications of factor analysis of medical image sequences have already
been suggested to improve the oblique rotation step, since the accuracy of the
determination of the oblique factors strongly affects the final qualitative and
quantitative results. The aim of these investigations is to find the unique physical
or physiological data decomposition which could not be obtained using only the non-
negativity criteria. Two kinds of approach to rotate the orthogonal factors were
reported. The first one deals with the optimization of a more or less complex
criterion, which is independent of the processed study. The second one aims at
taking into account specific hypotheses by using physical or physiological constraints.
FAMIS-TAS belongs to the latter class of methods.

5.1. Criterion optimization methods

The search of the physical or physiological data decomposition, after the orthogonal
analysis, may be considered as an optimization problem (Bazin et a/ 1980). To restrict
the set of solutions and tend towards the appropriate result, the criterion to minirmize
must include not only terms taking into acount non-negativity of factors and factor
images (Bazin et af 1980), but also other penalty terms. So, Nakamura et al/ (1989)
introduce entropy terms, related to both factors and factor images, whereas Van
Dacle ef af {1991) add to non-negativity terms a term corresponding 1o the Ferguson
criterion and another related to the volume defined by the apices. This kind of
approach has the advantage of being general but the criteria used are not directly
related to a physical or physiological underlying model.

5.2. Consirained methods using a priori knowledge

Barber and Nijran (1981) were the first to explicitly introduce additional a priori
knowledge different from non-negativity to improve FAMIS performances. Then,
different approaches were described to take into account some additional information,
related either to spatial distributions or to fundamental functions. Most of them were
based on specific hypotheses, and then only adapted to a class of studies. This
explains the ever-increasing number of proposed methods with the increasing number
of studies processed by FAMIS.
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5.21. Information about spatial distributions. Different hypotheses about spatial
distributions have already been considered to deal with dynamic renal, hepatic or
gated cardiac studies. Houston (1986, 1988). assumes that the present combinations
of overlapping spatial distributions are known and performs cluster analysis to
individualize them. The reliability of this method depends on the clustering process,
and on the definition of the geometrical configuration of the clusters. It also requires
some knowledge concerning the background spatial distribution to complete the
analysis.

The method of simple structure proposed by Samal e al (1987, 1983, 1989)
assumes the spatial uniformity of the background in factor images. After the manual
selection of a single reference area of pure background, a constrained rotation is
performed, such that no factor image contains pixel values less than the mean value
of the reference area. If the presence of a pure homopeneous background area is
sometimes adequate, the quality of the results can be affected by its accurate location,
which is subject to operator variability. Nijran and Barber (1988) make the suggestion
of manually defining, when possible, regions of interest (ROIs) in which one of the
searched spatial distributions is missing, and to use this knowledge as constraints.
As a consequence, this method may be sensitive to the choice of ROIs. Moreover,
the structures, such as background, which are in the whole field of view, need to be
modelied.

Van Daele et al (1990) estimate the background component, assuming its local
homogeneity, to correct the position of the apices estimated by the conventional
FaMIS. As the authors notice, the proposed background searching method is not
necessarily the best one. Nevertheless, the solution totally depends on this estimation.

5.2.2. Information about fundamental functions. In the case of dynamic studies, the
intersection method suggested by Barber and Nijran (1982, 1985, 1986) necessitates
a theoretical model to describe one or several fundamental functions. For each
modellized function, the intersection of the so-called theory and study spaces
provides the corresponding factor. Unfortunately, the theory vector space generated
by monoexponential functions (e.g., Barber and Nijran 1982) not only contains
monoexponential but also multiexponential functions. Therefore, the factor provided
by the intersection method is not necessarily monoexponential. The determination of
the factors for which there is no model does not take advantage of constraints other
than non-negativity. A further method proposes to introduce a priori knowledge
related to all the fundamental functions present in the dynamic study, using a
compartmental model (Frouin et o/ 1989). All these approaches are strongly
dependent on the description of a model and of its complexity.

In the case of energy-indexed studies, the use of known physical information
about fundamental spectra is attractive. Hannequin er a/ (1988) and Mas et al
(1990) make the suggestion of substituting the theoretical photopeak factor for
the photopeak factor estimated by conventional factor analysis, just before factor
image computation. Such a procedure prevents any comparison of the a priori
knowledge with the experimental data. Moreover, the used theoretical factor is a
rough approximation of the physical spectrum due to coarse energy sampling. We
have proposed (Buvat ez al 1991) to introduce into the experimental data before
FAMIS a theoretical trixel corresponding to the known fundamental function. As in
the previous method, the relevance of the theoretical trixel cannot be verified prior
to the analysis, and the inclusion of a wrong trixel may result in an inappropriate



136 I Buvat et al

orthogonal space. Furthermore, an accurate modelling of the theoretical trixel is
necessary. The technique introduced here to overcome these difficulties consists in
the search, in the study space, for the function which best looks like the expected
factor, by referring to known specific features of the corresponding fundamental
function.

A main advantage of our approach is that the knowledge about the function can
be only partial, provided it is sufficiently specific to unambiguously characterize it, In
the example presented in section 3, a slight change of the boundaries of the spectral
range, wherein the function must be reduced to zero, yields factors not significantly
different from the previous ones. This is a consequence of the presence of many zero
values in the photopeak curve.

TAS results are independent of the initial point of the scanning procedure. Unlike
conventional ¥AMIS, this approach identifies the fundamental functions cotresponding
to totally overlapped spatial distributions. The determination of the remaining
factors, for which no a priori knowledge is available, takes indirect advantage of the
information introduced concerning the other factor(s) in the bootstrap, translation
and iteration procedures. According to Houston’s results (Houston 1984), it must be
emphasized that a correct estimation of all the fundamental functions is essential to
obtain a set of consistent images, even if one does not take an interest in some of
them.

EaMIS-Tas is fufly automatic, which is very advantageous to clinical routine
applications. As for previous cases, FAMIS-TAS remaijns a specific method, since
it is based on knowledge about fundamental functions. However, it includes this
knowledge directly in the experimental data subspace.

6. Conclusion

A new method to improve the results provided by factor analysis of medical image
sequences is described. It is based on a target apex-seeking technique which
performs a convenient integration of & priori information related to some fundamental
functions. It requires a specific but not exhaustive knowledge about some of the
functions to define the corresponding suitable criteria. It allows an optimal estimation
of the factors corresponding to fully overlapped spatial distributions. The method was
applied here on a simulated spectral study as some information about spectra was
directly accessible. The evaluation of FAMIS-TAS using real dynamic and spectral data
is currently under investigation. It must be underlined that FAMIS-TAS is particularly
well adapted to the processing of scintigraphic image sequences for Compton scatter
correction.
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