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AbstracL m e  aim of factor analysis of medical image sequences (FAMIS) is to estimale a 
timiled number of physical or physiological fundamental functions. Its oblique mtation 
stage strongly aEects lhe quality and the interpretation of Ihe resulting estimates (factors 
and factor images). A new target spa-seeking method which integrates physical or 
physiological knowledge in this stage is described. ' W s  knowledge mncems some of the 
fundamental functions and =CIS on the determination of all the factors. A simulated 
spectral study illustrates the method. We discuss its properties in mmparison with the 
other approaches using a priori physical or physiological information. 

1. Introduction 

In nuclear medicine, factor analysis of dynamic structures (FADS) is now considered 
as a powerful mol to process time image sequences (Houston 1990). It gives rise to 
many investigations, particularly to introduce constraints in order to overcome the 
main problem of FADS, ie., the non-uniqueness of the solution (Barber and Nijran 
1981), which prevents the method from being a quantitative one (Houston 1984). The 
method has been adapted to the analysis of scintigraphic energy image sequences in 
1982 (Di Paola er a1 1982b). This so-called factor analysis of spectral studies (FASS) 
was at that time useful to assess the methodology, but its use for clinical studies was 
limited until these last years (Cavailloles et a1 1987, Manil et a1 1989). Recently, there 
has been a fresh interest in approaches conceptually identical to FASS to address the 
problem of Compton scatter correction in scintigraphic imaging (Gagnon et a1 1989, 
Mas et a1 1990), proposed as early as 1987 (Cavailloles et a1 1987). Here, the 
problem is to extract unscattered and scattered spatial components from a sequence 
of images acquired at different energies. It has been shown that such a problem could 
not be properly solved by factor analysis without taking into account some additional 
information (Hannequin et nl 1988). As in dynamic studies, the necessity to introduce 
apriori knowledge to achieve a proper and unambiguous solution clearly appears. A 
new approach to take advantage of available a priori information about the features 
of the underlying time or energy components is proposed here. Its efficiency is 
demonstrated on simulated data. The benefits of this approach with respect to the 
existing ones are discussed (Barber and Nijran 1982, Houston 1986, Samal et a1 1987, 
Hannequin et ul 1988, Nijran and Barber 1988, Buvat et a1 1991, Mas et nl 1990, 
Van Daele et a1 1991). 
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2. Method 

A medical image sequence can be considered as the combination of a limited number 
of fundamental functions, {fk}k=1,.,,,9, and of their associated spatial distributions, 
{ C Z ~ } ~ = ~ , . , , , ~ ,  according to the following additive model: 

Here, x ( i , j )  represents the content of pixel, i (i = 1 , .  . . , n), in the picture, j 
( j  = 1,. . . , p ) ,  of the initial data set, X. Each row i of the matrix X, called a trixel, 
is a vector describing the time or energy behaviour Within the pixel i. Each column 
j corresponds to the j th  image of the sequence. The error matrix, E, includes both 
noise and modelling errors. 

The goal of factor analysis of medical image sequences (FAMIS) is to estimate the 
q fundamental functions by factors and the spatial distributions by factor images, 
assuming q is !mown. This analysis requires four stages: data preprocessing, 
orthogonal analysis, oblique analysis, and factor image computation. As the goal 
of the procedure we proposed in this paper is to include a priori knowledge within 
the oblique analysis, this stage is fully described. The three others Will be mentioned 
only briefly. 

21. Data preprocessing 

'Ib improve signal-to-noise ratio, two data preprocessing stages are performed, which 
consist of thresholding and clustering: the contents of neighbouring trixels are 
summed, either according to a rectangular segmentation (4 x 4, 8 x 8, ...) (Bazin 
et a1 1980) or to a stochastic classification (Aurengo 1989). This latter technique 
takas into account the similarities of time or energy behaviour of the trixels. At the 
end of this stage, let n be the number of clustered trixels, which are now simply 
called trixels. 

22. Grthogonal ana[ysi.s 

In the case of scintigraphic data, taking into account thar the counting statistics follow 
Poisson's law, the optimal orthogonal decomposition is the one of correspondence 
analysis, which uses a xz metric (Frouin er al 1991). A q principal component 
analysis of the matrix X, using the x2 metric, leads to a set of q orthogonal factors, 
{uk]k=u ,,,,, q - l ,  and orthogonal factor images, { v ~ ) ~ = ~  ,.,_, 9-l. They correspond to 
the best least square approximation of the matrix X, according to the reconstitution 
formula 

with 

u u ( j ) = v U ( i ) = l  V(i , j )andX,=l  
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A, 2 A, 2 . . . 2 A,-l 2 0 are the first q eigenvalues obtained by correspondence 
analysis. g will denote the centroid of the aiuels, i.e. the vector of values xj/x, 
j = 1,. . . , p .  

23. Oblique anaiysk 

The components {%}k=l ,..., q-1 resulting from the orthogonal analysis define a (4-1) 
dimensional subspace, U, called 'study subspace' (Barber and Nijran 1982), from which 
the initial data X may be reconstituted with a minimum loss of information in the 
least square sense. However, the orthogonal factors and the corresponding orthogonal 
factor images have no physiological or physical meaning, since they include negative 
values. The oblique analysis is based on the hypothesis that the fundamental functions 
{fk)k=l,,,,,q of equation (1) lie within the subspace generated by U and g. In fact, if 
{fk}k=l,...,q are normalized such that Cp,, f k ( j )  = 1, it can be shown that fk can 
be ulitten as 

q-1 

fk = g + C b k t u t .  (2) 
t=l  

ConsequentlJ;, the oblique analysis consists in searching the set of { fk - g}k= l , , , , , q ,  
denoted by {fk}k=l,.,,,q, within the study subspace U, to obtain the factors 
{ f k } k = l , . . , , , .  Such a search, called an 'apex-seeking' procedure, requires some criteria 
to determine automatically and without ambiguity the set of (fk}k=l,,..,q. The first 
and most commonly used approach is based on non-negativity constraints of both 
factors and factor images (Barber 1980, Di Paola et a1 1982a). Since scintigraphic 
images result from counting detected events, the spatial distributions { u ~ } ~ = ~ , , , , , ~  of 
the decomposition (l), as well as the fundamental functions { fk}k=l,.,,,q are non- 
negative. However, the range of possible solutions satisfying these constraints may be 
quite extensive (Barber and Nijran 1981). The mal solution will then be one among 
many possible solutions. 

This non-uniqueness problem is better addressed by taking into account some a 
p b r i  bowledge about underlying fundamental functions (Nijran and Barber 1985, 
Mas er a1 1990) or spatial distributions (Houston 1986, Samal et a1 1987, Nijran 
and Barber 1988, Van Daele et d 1990). Our approach constrains the apex-seeking 
routine using the available information related to the fundamental functions. It 
includes two steps: first, the target apex-seeking procedure determines the T target 
factors, {f;},=, ,..., J., for which there is an a priori knowledge. Then, the q - T 

remaining functions are estimated by taking advantage of the correct localization of 
the first r ones. 

2.3.1. Erg@ aper-seeking (TAS) procedure. The basic idea of the  proposed procedure 
is to scan the subspace U to search the point corresponding to a function which best 
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fits the expected factor. The matching between one function and the known features, 
such as the position of a maximum, or the range wherein the expected factor is equal 
to zero, must be quantified. Consequently, it requires that the U priori information, 
0, can be formalized to define a criterion, h( S, e), measuring the deviation between 
the function corresponding to a point, S, of U and 6'. Any point S with coordinates, 
( b a l , .  . . , b8+ll), defines a profile, i.e., a normalized function 

t=l 

which is similar to equation (2). 
The appropriate definition of h( S, e), which depends on the mathematical 

description of the available knowledge, is a prerequisite to the use of the proposed 
target apex-seeking procedure. This knowledge is not necessarily related to the whole 
function, but can concern only a part of it, provided it is sufficient to identify in U 
the corresponding factor. 

Starting from any point of U, an iterative procedure scans this subspace to find 
the point corresponding to the minimization of h. The orthogonal subspace U is a 
structured one, ie. the movement in a parallel direction to a basis vector uk involves 
a continuous distortion of the corresponding function. Consequently, the scanning of 
U is performed according to the following algorithm (figure 1). 

(i) Initialization: m = 0 (iteration index). Start from any point S of U and 
compute h( S, 0). 

(ii) m = m + 1. For k = 1 to q - 1, move in a parallel direction to uk with 
a step 6, such that sk = ;[maxi bik -mini bik] ,  until h reaches a minimum value: 
h(S", 0). The displacement direction (left or right, up or down) is the one which 
makes h decrease. 

(iu) Ifh(Sm,O) f h(S"-',B), go to (ii) from h(S",B), else take the function 
corresponding to Sm-' as the searched factor. This procedure is repeated to compute 
the T target factors {.fi}k=l,,.,,7, using for each one an adapted h criterion. 

23.2. Search for fhe remainingfucfors. The determination of the q - r > 1 remaining 
factors comprises three steps, each including specific constraints. 

23.2.1. Booh&up. Using the previous estimate of the T target factors, generating a 
rdimensional subspace, R, the q - r remaining factors are first characterized by the 
data analysis in a q - T - 1 dimensional space R' orthogonal to 'R such that 

R'CBR=U 

where @ represents the direct sum. The projection onto the subspace 'R' of the 
data x(i , j) ,  using the x2 metric, leads to a matrix, Y, which is submitted to 
a correspondence analysis. Considering the first q - T principal components, the 
reconstitution formula gives the following $(i, j )  estimates (Escofier and Pages 1988): 
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Feure 1. Hypothetic three factor study: Ole lrixels (0) are projected in the subspace U 
defined by the two first onhogonal facmls u1 and ut. From any staning p i n t  S, the 
scanning procedure leads to the larget factor f!. For one direction ui ( i  = 1,2), 
displacement h performed with a step 6; as long as the minimization criterion 6 
decreases. ?hen, the other dkrection h scanned until a minimum with respect to all 
the directions is reached. As f," estimates a fundamental function, which cannot always 
be represented by any d e l ,  il may lie oulside the cloud of tmel projections. 

where 

zu(i) = q ( j )  = 1 V(i,j)andpO = 1, 

p0 2 p1 2 . . . 2 pq-p-, 2 0 are the first q - T eigenvalues resulting from the 
correspondence analysis. 

The q-r -1  principal components, {wk]k.l ,,,,, q-,.-l explain the variance of the 
subspace R'. They generate the subspace W of U which contains the information 
not included in R. The initial estimation of the q - r factors, . . . , f:, in W is 
performed using the initialization procedure described by Di Paola et ai (1982a). 

(i) f:+l corresponds to the aixel projection, W,, in W farthest from g,  which is 
also the centroid of the set of D( i, j ) ;  

(ii) f!+2 corresponds to the trixel projection, W,, in W farthest from Wl;. . .; 
(iii) corresponds to the aixel projection, W,, in W for which the sum of the 

distances to W,, W,, . . . , W+,, is maximum;. . .; (iv) f: corresponds to the trixel 
projection, Wq-,, in W for which the sum of the distances to W, , W,, . . . , Wq-,.-,, 
is maximum. As these f:+l, f:+,,. . . , f: estimates are included in R', which is 
orthogonal to R, they have no physical or physiological meaning. 

23.2.2 Panslation. This second step consists in the addition of an R component to 
the estimates {fi}k.r+l,,,,,q, to give them a physical or physiological meaning, using 
the non-negativity constraint on factor images. This constraint can be geometrically 
expressed as follows (Barber 1980): the points representing aixels are all inside a 
convex polytope whose q apices are the q points {f:}k=l,,,.,q. As the estimates 

the new estimates {fk)k.r+l,.,,,q -0 do not allow us to include all these points, 
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Figure 2. Different stages of the Search for the WO remaining factors OE the same study 
as in 6gure 1. (a) Determin?tion o l  translalion vectoc all the trixek are projected onto 
the vector represented by $. i' is the vbel the projection of which is the fanhest 
from f! and determines the weighting coeficient q, and consequently the translation 
wctor r. (6) 'lhnslation: f; and f!, which have teen initialized in the one-dimensional 
space W, are vanslated by the vector r, leading lo &? and fi. More trixel projections 
are then included in lhe polylope. whose apices are ff, fi and f:. (c) Non-negativity 
mnstminls on facton: as fj leaves the positivity domain, it is replaced by the nearest 
point iying on the boundaty of this domain f:. fi, included in the positivity domain, is 
unchanged. 

{f;},,,,, ,...,* are obtained by translating the q - T factors {fi}k.T+l ,,_,, ~ by a 
vector 7 belonging to U, such that 

7 = + a2f;+. . . + CYv f?. 
A11 the t k e k  i are projected onto the vector represented by f: (C = 1,. . . , T). Let 
i' be the trixel the projection of which is the farthest from f:, i.e. 

is maximum (figure ;?(a)). 
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Each weighting coefficient, a,., is the projection value of the trixel i' onto the vector 
represented by f!, which is equivalent to 

If this translation ensures that more trixel projections are included in the polytope 
(figure w)), the last P - r factors ~i~>k=,.+l,...,q can contain negative values. Thus, 
if fl, k = r+ 1,. . . , q, leaves the positivity domain resulting from the non-negativity 
constraint on factors @i Paola d ai 1982a), it is replaced by the nearest point, ,f:, 
lying on the boundaly of this domain (figure 2(c)). 

23.23. Comlrahed iteratiom. 'lb achieve the final estimation of the fundamental 
functions complying at best with non-negativity constraints and a priori knowledge, 
an apex-seeking procedure was performed. It includes the following steps. 

(i) Initialization: m = 2. 
(ii) Compute {CT(~)}~=~ , . . . , ~  using the following oblique reconstitution formula 

= E' k=lCF(i)fk(j) + C L + ,  CF( i ) f k " ( j )>  with with the x2 metric: 
c;=lcT(i) = 1. 

(iii) Compute the number 1)" of negative cF(i). 
(iv) If vm < set the qm negative c y ( i )  to c T ( i ) / 2 + ~ ,  where E is a small 

positive value, else take {f!},=, ,..., ~ and {fP-llk=T+l,...,q as final factors and exit. 
(v) Compute the resulting {fP+1}3k=1, 
(vi) For Iz = 1, . . . , P repIace fr+' by f! (target factors). For k = P + 1, . . . , q, 

if frt' leaves the positivity domain, replace it by the nearest point of the boundaty 
of this domain. For each k', IC' = 1, . . . , P, if the absolute value of the correlation 
between fr+' and fi, increases, replace f?+' by ,fr. 
and { f r L . + l , . . . , g  as final factors and exlt. If these steps have the Same objects as 
those described by Barber (Barber 1980) and Di Paola (Di Paola et af 1982a), steps 
(i), (iv) and (vi) differ. The changes we introduced concern the metric, the target 
factors, the non-negativity constraint, and the stopping criteria. A particular case is 
if only one factor remains to determine ( q  - T = 1) after the target apex-seeking; its 
fist estimation is directly performed in U, according to the conventional initialization 
(Di F'aola ef al 198%) and is followed by the above described iterative procedure. 

m If {fr+'lk=?.+I ,..., q f I f k  L+! ,_.., q m u r n  to (io7 else take {fko)kl( ... ( P 

24. Factor image computation 

Factor images are computed by projecting each trixel of the original spatial sampling 
onto the set of factors (Di Paola er al 1982a). The contribution of each factor image 
is computed as 
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3. Numerical experiment 

A computer-simulated phantom consisting of three homogeneous rectangular 
overlapping spatial distributions, al, a2 and as, was used to compare the results 
obtained by a conventional FAMIS algorithm and by. FAMIS-TAS. The fundamental 
functions associated with each of the three spatial distributions are chosen to 
represent spectra (figure 3), as is the case for Compton scatter correction using 
FASS (Buvat et a1 1991): a gaussian photopeak spectrum, fi, and two realistic scatter 
spectra, fz and f3. The contributions of f,, fz and f3 were 30%, 50% and 20%, 
respectively. From the outer product E$ a; @ f;, a sequence of 26 images 64 x 64 
was computed. Poisson noise was added and the resulting image sequence included 
about five million events. This simulated study was processed (i) by factor analysis 
using the algorithm of Barber (Barber 1980) as modified by Di F'aola et a1 (1982a), 
taking into account non-negativity constraints related to both factors and factor 
images, referred to as conventional FAMIS, and (ii) by FAMIS-TAS. In both cases, a 
4 x 4 spatial sampling was used and all the trixels different from zero were included 
in the analysis. 

a1 a 2  a3 

1 25 I 26 

fl f 2  f 3  

ContrCl)-30% C o n t r ( 2 ) = 5 0 %  C o n t r ( 3 ) = 2 8 %  

Figure 3. Computer simulation of ihree homogeneous rectangular werlapping spatial 
distribulions al. a2 and a) and associated fundamental functions f,, f2 and f3, with 
contr(1) = 30%, anrr(2) = 50%, anIr(3) = 79%. 

4. Results 

4.1. Conventional PAMIS 

Figure 4 shows the projections of the retained trixels onto the U subspace for a 3 
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Finre 4 Projections of the 158 trixels (0) onto the U subspace, defi?ed by th? two 
Bat oqhogonal factors, and mnventional FAME factor eclimates (1 for fl, 2 lor fr and 
3 for A). The positivity domain is also visualized. 

factor FAME. Let 8, and f, be the estimates of ak and fk. As there is no point 
corresponding to pure fl, the position of fl cannot be correctly determined by the 
iterative process of the conventional FAMIS: fl is clearly contaminated by fi and f3 
(figure 5). Conversely, f, and f3 are properly estimated since some trixels correspond 
to pure fi or f3; f, and f; are only slightly distorted, due to noise and initial spatial 
sampling. 8, is qualitatively a good estimate of al but the error in the factor fl 
generates artefacts in 8, and &, which are underestimated in the region wherein 
a, is present. This is in agreement with Houston’s results (Houston 1984). The 
contribution of fil, 8, and 8, are equal to 43.0%, 41.3% and 15.7%, respectively, 
which are far from the correct ones. 

4.2. PAMIS-TAS 

The superimposition of original fundamental functions and factors obtained by 
conventional FAMIS and FAMIS-TAS are displayed in figure 8. It demonstrates clearly 
the better agreement between original and FAMIS-TAS resulting functions. 

As a consequence of the physical knowledge which generally concerns the 
photopeak spectrum, it was realistic to assume that the factor fl could be reduced 
to zero in some spectral range. Here, it includes the first 15 images. The criterion h 
was then defined by 
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I 25 I x - ~ 
I 

15.7% anergy 41.2X energy 

I11 

388 n 

42.82 anergy 

Figure 5. Convent[onal FAMIS  sub: factor images, factors and associated mntributions: 
1, b3, f3; n, 82, fz; 111, 2%- f t .  

Figure b Projections of h e  I58 llixels (0) onto the U subspace, detned by the y o  
first orthogonal factors, and FAMlsTAS factor eaimates (I for fl, 2 for f2 and 3 for f,). 
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20.3% energy 49.6% energg 

0 
1 25 

29 3% e n e r g y  
Figure 7. F ~ M I S T A ~  resulls: factor images, bctors, and associated contribulions I ,  t), 
f3; n, 22, fz: 111, irl, fl. 

N - M l I W  

z i e h  148 -- . . . . . . . C O " T I Q R  F M I S  

I ZS 
fa  '".'nu 

FAMlS factors (. . . . . .) and FAMISTAS factors (. ---). 

FRnIS-Tffi ____ 70 
.... 

0 '.,e*. 

Figure 8. Superimposition of orthogonal fundamental functions (-), conventional 
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U is scanned as described in section 23.1 to search for the point minimizing h and 
find out a good estimate of f,. This point lies on the non-negativity boundary, outside 
the cloud of aixels. fi and f3 are estimated first in W ,  which is a one-dimensional 
space ( q  - 1'- 1 = l), and then they are translated by a vector T (cf section 2.3.2.2) 
and projected in the positivity domain; two iterations are sufficient to achieve the 
final configuration (figure 6). The corresponding factors and factor images are shown 
in figure 7; they are very similar to the original model. The slight differences are due 
to noise. The estimated contributions of il, i2 and i,, are equal to 30%, 49.7% and 
20.3%, respectively, which are quite correct. 

5. Discussion 

Several modifications of factor analysis of medical image sequences have already 
been suggested to improve the oblique rotation step, since the accuracy of the 
determination of the oblique factors strongly affects the final qualitative and 
quantitative results. The aim of these investigations is to find the unique physical 
or physiological data decomposition which could not be obtained using only the non- 
negativity criteria. Xvo kinds of approach to rotate the orthogonal factors were 
reported. The first one deals with the optimization of a more or less complex 
criterion, which is independent of the processed study. The second one aims at 
taking into account specific hypotheses by using physical or physiological constraints. 
FAMIS-TAS belongs to the latter class of methods. 

5.1. Criterion optimkatwn methods 

The search of the physical or physiological data decomposition, after the orthogonal 
analysis, may be considered as an optimization problem (Bazin er a1 1980). Tb restrict 
the set of solutions and tend towards the appropriate result, the criterion to minimize 
must include not only terms taking into acount non-negativity of factors and factor 
images (Bazin et a1 1980), but also other penalty terms. So, Nakamura er a1 (1989) 
introduce entropy terms, related to both factors and factor images, whereas Van 
Daele et a1 (1991) add to non-negativity terms a term corresponding to the Ferguson 
criterion and another related to the volume defined by the apices. This kind of 
approach has the advantage of being general but the criteria used are not directly 
related to a physical or physiological underlying model. 

5.2. Constrained methods using a priori knowledge 

Barber and Nijran (1981) were the first to explicitly introduce additional a priori 
knowledge different from non-negativity to improve FAMlS performances. Then, 
different approaches were described to take into account some additional information, 
related either to spatial distributions or to fundamental functions. Most of them were 
based on specific hypotheses, and then only adapted to a class of studies. This 
explains the ever-increasing number of proposed methods with the increasing number 
Of Studies processed by FAMIS. 
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5.2.1. Information about spatial distributions. Different hypotheses about spatial 
distributions have already been considered to deal with dynamic renal, hepatic or 
gated cardiac studies. Houston (1986, 1988) assumes that the present combinations 
of overlapping spatial distributions are known and performs cluster analysis to 
individualize them. The reliability of this method depends on the clustering process, 
and on the definition of the geometrical configuration of the clusters. It also requires 
some knowledge concerning the background spatial distribution to complete the 
analysis. 

The method of simple structure proposed by Samal et a1 (1987, 1988, 1989) 
assumes the spatial uniformity of the background in factor images. After the manual 
selection of a single reference area of pure background, a constrained rotation is 
performed, such that no factor image contains pixel values less than the mean value 
of the reference area. If the presence of a pure homogeneous background area is 
sometimes adequate, the quality of the results can be affected by its accurate location, 
which is subject to operator variability. Nijran and Barber (1988) make the suggestion 
of manually defining, when possible, regions of interest (ROIS) in which one of the 
searched spatial distributions is missing, and to use this knowledge as constraints. 
As a consequence, this method may be sensitive to the choice of ROIs. Moreover, 
the structures, such as background, which are in the whole field of view, need to be 
modelled. 

Van Daele et a1 (1990) estimate the background component, assuming its local 
homogeneity, to correct the position of the apices estimated by the conventional 
FAMIS. As the authors notice, the proposed background searching method is not 
necessarily the best one. Nevertheless, the solution totally depends on this estimation. 

5.2.2. Information about fundamental functiom. In the case of dynamic studies, the 
intersection method suggested by Barber and Nijran (1982, 1985, 1986) necessitates 
a theoretical model to describe one or several fundamental functions. For each 
modellized function, the intersection of the so-called theory and study spaces 
provides the corresponding factor. Unfortunately, the theory vector space generated 
by monoexponential functions (e.g., Barber and Nijran 1982) not only contains 
monoexponential but also multiexponential functions. Therefore, the factor provided 
by the intersection method is not necessarily monoexponential. The determination of 
the factors for which there is no model does not take advantage of constraints other 
than non-negativity. A further method proposes to introduce U priori knowledge 
related to all the fundamental functions present in the dynamic study, using a 
comparbnental model (Frouin a a1 1989). All these approzches are strongly 
dependent on the description of a model and of its complexity. 

In the case of energy-indexed studies, the use of known physical information 
about fundamental spectra is attractive. Hannequin et uf (1988) and Mas et ul 
(1990) make the suggestion of substituting the theoretical photopeak factor for 
the photopeak factor estimated by conventional factor analysis, just before factor 
image computation. Such a procedure prevents any comparison of the a priori 
knowledge with the experimental data. Moreover, the used theoretical factor is a 
rough approximation of the physical spectrum due to coarse energy sampling. We 
have proposed (Buvat et a1 1991) to introduce into the experimental data before 
FAMIS a theoretical trixel corresponding to the known fundamental function. As in 
the previous method, the relevance of the theoretical trixel cannot be verified prior 
to the analysis, and the inclusion of a wrong trixel may result in an inappropriate 
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orthogonal space. Furthermore, an accurate modelling of the theoretical mixel is 
necessary. The technique introduced here to overcome these difficulties consists in 
the search, in the study space, for the function which hest looks like the expected 
factor, by referring to known specific features of the corresponding fundamental 
function. 

A main advantage of our approach is that the knowledge about the function can 
be only partial, provided it is sufficiently specific to unambiguously characterize it. In 
the example presented in section 3, a slight change of the boundaries of the spectral 
range, wherein the function must be reduced to zero, yields factors not significantly 
different from the previous ones. This is a consequence of the presence of many zero 
values in the photopeak curve. 

ms results are independent of the initial point of the scanning procedure. Unlike 
conventional FAMIS, this approach identifies the fundamental functions corresponding 
to totally overlapped spatial distributions. The determination of the remaining 
factors, for which no a priori knowledge is available, takes indirect advantage of the 
information introduced concerning the other factor@) in the bootstrap, translation 
and iteration procedures. According to Houston's results (Houston 1984), it must be 
emphasized that a correct estimation of all the fundamental functions is essential to 
obtain a set of consistent images, even if one does not take an interest in some of 
them. 

FAMIS-TAS is fully automatic, which is very advantageous to clinical routine 
applications. As for previous cases, FmIs-TAs remains a specific method, since 
it is based on howledge about fundamental functions. However, it includes this 
knowledge directly in the experimental data subspace. 

6. Conclusion 

A new method to improve the results provided by factor analysis of medical image 
sequences is described. It is based on a target apex-seeking technique which 
performs a convenient integration of upriori information related to some fundamental 
functions. It requires a specific but not exhaustive knowledge about some of the 
functions to define the corresponding suitable criteria. It allows an optimal estimation 
of the factors corresponding to fully overlapped spatial distributions. The method was 
applied here on a simulated spectral study as some information about spectra was 
directly accessible. The evaluation of FAMis-TAS using real dynamic and spectral data 
is currently under investigation. It must be underlined that FAMIS-TAS is particularly 
well adapted to the processing of scintigraphic image sequences for Compton scatter 
correction. 
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