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Abstract. A statistical model is added to the conventional physical model underlying factor
analysis of medical image sequences (Famis). It allows a derivation of the optimal metric to
be used for the orthogonal decomposition involved in ramis. The oblique analysis of EAMIS is
extended to take this optimat metric into account. The case of scintigraphic image sequences
is used. We derive in this case that the optimal decompositicn is obtained by correspondence
analysis. A scintigraphic dynamic study illustrates the practical consequences of the vse of the
optimal metric in FAMIS.

1. Introduction

Factor analysis of medical image sequences (FAMIS) is recognized as a powerful tool for
extracting, in a condensed manner, functional or spectral information from dynamic or
spectral image sequences (Houston 1990). As different methods have been proposed that
do not yield the same results (see, for instance, Barber 1980, Bazin er af 1980, Di Pacla
et al 1982, Nijran and Barber 1986, Samal et af 1987....), it is often considered that FAMIS
has no sound foundations. This prevents FAMIS from being largely distributed and used
in clinical studies. Consequently, we have undertaken to look into the theoretical basis of
FAMIS.

EAMIS is based on a linear additive model, which assumes that the studied image
sequence can be resolved into a limited number of fundamental spatial distributions such
that the signal variation within each distribution is homogeneous. The aim of FAMIS is to
estimate the underlying fundamental spatial disiributions by factor images and the associated
so-called fundamental functions (describing the signal variations) by factors. To perform
such a decomposition, FAMIS includes four stages:

(i) Data preprocessing to improve the signal to noise ratio. This consists of a clustering
and a thresholding of the set of trixels associated with the image sequence, one trixel being
defined as the signal variation within one pixel or one cluster of pixels.

(ii) Orthogonal analysis of the resulting trixels. The goal of this orthogonal analysis
is 10 determine a low-dimensional subspace, also called the ‘study subspace’ (Barber and
Nijran 1982), in which mainly the relevant part of the trixels is represented, without the
noise.

(iii) Oblique rotation of the basis vectors of the study subspace to obtain non-orthogonal
basis vectors, namely the factors, having a physical or physiological meaning. This stage
is called oblique analysis.

(iv) Computation of the factor images in the initial spatial sampling using an oblique
projection (Di Paola et al 1982).
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Up to now, no particular attention was paid to the choice of the metric to be used in
the orthogonal and oblique analyses. Different data normalizations were proposed without
any theoretical justification (Di Paola et al 1976, Barber 1980, Bazin et a! 1980, Di Paola
et al 1982, Nijran and Barber 1986, Samal et o/ 1987, Nijran and Barber 1988, Gagnon et
al 1989, Nakamura et al 1989).

The optimal nommalization requires the introduction of a statistical model for the medical
image sequences. The solution of this statistical model leads to the expression of the
optimal metric which determines the normalization of the data to be used for orthogonal
analysis. In order to preserve the optimal mefric for the oblique analysis, a generalization
of oblique analysis is presented. Though FAMIS has been applied to various modalities
of functional imaging (Frouin et al 1992), it is primarily used in nuclear medicine. The
case of scintigraphic data is detailed and the corresponding optimal metric is deduced. The
practical consequences of the use of the optimal metric compared with a conventional one
are illustrated using a dynamic scintigraphic image sequence.

The importance of adding a statistical model to the conventional FAMIS model and the
relevance of the proposed statistical model are discussed.

2. Conventional FAMIS model

A sequence of P images can be considered as a set of vectors @; (f = 1...N) of P
components x;; (j = 1... P). x; is called a trixel and represents the variation of the signal
within a pixel { or a cluster / of pixels in the image sequence indexed by the variable j.
Let y4; be a P-dimensional vector obtained from a transformation g of o;:

¥ = gl@:).

The conventional FAMIS model is based on the following hypothesis (Barber 1980, Di Paola
et al 1982):

K
vi=dit+e=3y adfite Vi 1)
k=1
with
£ P
Y fly =) wmiH=1 @
=1 j=1
i.e
Flp =1g &)

where F is the (K, P) matrix composed of the fundamental functions fi, 17 is a2 (P, 1)
matrix of ones and 14 is a (K, 1) matrix of ones. a; and f; are the underlying fundamental
spatial distributions and fundamental functions, respectively. A set {ay, fi} is called a
fundamental structure.

According to this model, the relevant part i; of each transformed trixel 7; can be
decomposed on a basis constituted by a limited number K of fundamental functions f;



A statistical model for optimal metric in FAMIS 1067

having a physical or physiological meaning. This model is mainly a physical model. It
does not assume any statistical properties related to the trixel y; or to the error ¢;.

Different normalizations g of the trixels have thus been considered without theoretical
foundation. The principal component analysis of the normalized data does not ensure the
best separation between signal and noise since no information about the statistical properties
of signal and noige is taken into account. It only provides an orthogonal decomposition of
the covariance matrix of the normalized data. To achieve an optimal separation between
signal and noise, their statistical properties must be considered and the only way to do this
is to introduce a statistical model.

Consequently, in our approach the conventional FAMIS model is split up into a statistical
model and a physical one.

3. A statistical model for FAMIS: the fixed-effect model

A statistical model can be applied to the data if they satisfy all the hypotheses of this
model. The transformation g(x;) = %; of the trixels aims at transforming the data to
make the application of a statistical model possible. A priori, it does not necessarily
induce the conventional normalization to unit area (equation (2)). To be consistent with
the conventional model, the statistical model must state that each transformed trixel
y; can be decomposed into its fixed part, corresponding to the linear combination of
fundamental functions and spatial distributions of the conventional model, and a residual
part, corresponding to the random error. In multivariate analysis, the fixed-effect model
(Caussinus 1986) fulfils this condition and includes statistical properties of the error.

3.1. Definition of the fixed-effect model

The fixed-effect model is defined as follows (Caussinus 1986):

(i) the y; are N independent random vectors defined on a probability space and can be
written ¥; = §; + oe;, where 4; is the fixed effect of y; and oe; is the random errorn;
(ii) the expectation of y; is #;:

E(y) =4

that is E(g;) = 0;
(iii) the variance of y; can be written

Var(y;) = (0% /)T

where I is a (£, P) symmetric positive definite matrix which is known or estimated as well
as the positive weights, wy;, associated with z;; and

(iv) there exists a (Q + 1)-dimensional linear manifold S of R (Q +1 < P) such that
all vectors §j; belong to S.

The linear manifold S, the N vectors §; belonging to S and the parameter o have to be
estimated.
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3.2. Solution of the fixed effect model

The least-squares estimate of § is obtained by minimizing

N
> oy — Gl )
i=1
where M is a (P, P) symmetric positive definite matrix which defines a metric of RF. It
has been shown that the minimum of (4) is reached for S such that (Caussinus 1986):

(i) the origin of § is ¢, defined by

N N
y= (I/Ew:‘) > o
i=1 f=I

and

(i) S is paraliel to the subspace of R” spanned by the Q eigenvectors u, associated
with the Q largest eigenvalues A, of the matrix (Y — 14 Y)'D(Y — ixY)M, where ¥ is the
(N, P) matrix of the trixels v, Y is the (1, P) matrix of 4, 1y is an (N, 1) matrix of ones,
D is the diagonal (N, N} matrix of the weights «; and ! denotes the transpose.

Consequently, S depends on the metric M. For small enough o, the perturbation theory can
be used to show that the expectation of (4) is minimized when M = I'~! (Caussinus 1986).
Furthermore, when N is large enough, the same result has also been demonstrated using an
asymptotic study (Fine and Pousse 1952).

3.3. Application of the fixed-effect model to FAMIS orthogonal analysis

When the fixed-effect model is applied to the transformed trixels y; processed by FAMIS,
the effect 4; represents the relevant part of y;, while the noise is assumed to be the random
error oe;. S corresponds to the study subspace in which mainly the relevant part of the
trixels is represented, without the noise. In this subspace, the relevant part 3; of the trixels
can be reconstituted using the following formula (Jolliffe 1986):

g _
G=0+ 2 v Aueliiu,
g=l
ie.

Y=14¥+VgA U, = VAU (5)

1
=1: — ... Up — 1 0
V_(i VQ) U_( Uo ) A_(O AQ)'

Uy is the (@, P) matrix composed of the eigenvectors u, of (Y — 1 vOIDY — 1yYOM,
Vg is the (N, Q) matrix of the coordinates v, (i) of the trixels in the basis {ugly=1..0

and Ag is the (Q, Q) diagonal matrix whose diagonal elements are the square roots of the
eigenvalues A,.

Uy and V satisfy the following relationships (Jolliffe 1986):
' UgMU, =1d  ViDVpo=Id  Vp=(Y - 1yHMULAS.

with
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4. FAMIS physical model

The relevant part of the trixels issued from the solution of the statistical model is assumed
to follow a physical model.

4.1. Definition of the physical model

The first hypothesis of the conventional FAMIS model is the linear additive decomposition
of the relevant part of the transformed trixels (equation (1)}. It can be written, in matrix
form,

Y=AF (6)
where F is the (K, £) matrix composed of the K fundamental functions and A is the (¥, X)
matrix composed of the K fundamental spatial distributions. The normalization of g; and

Fi always leads to a normalization for a;. For instance, the conventional unit normalization
of y; and f; (equation (2)) yields

K
3 aiy=1
k=1
ie.

Al =1y, G

The conventional FAMIS model includes two other hypotheses:

(iy @ = K —1, that is the number K of fundamental functions is equal to the dimension
of the study subspace minus 1; and

g
(ii) Fe=0+ tigt, ®)
g=I

i.e., in matrix form,
F=TU 9)
where T is a matrix of dimensions (K, Q + 1), i.e. (K, K)), defined by

1
T=1{: TQ
i

and Ty is the (K, Q) matrix of #, coefficients.
This equation states that the fundamental functions belong to the study subspace S and
that the coordinate of each f on the vector ¥ is equal to one.
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4.2, Solution of the physical model: generalization of the obligue analysis

The oblique analysis consists in finding T, that is X factors in a (K — 1)-dimensional
subspace. The most common approach to determine T is an iterative apex-seeking procedure
(Barber 1980, Di Paola et @l 1982) taking account for some constraints related to the
factors and/or to the factor images. The most frequently used constraints are non-negativity
constraints and normalization constraints on both factors and factor images. In order to
be consistent with the previous statistical model, we extend the conventional apex-seeking
procedure to include the optimal metric used in the orthogonal analysis.

Given an initial estimation of T (Barber 1980, Di Pacla et a! 1982), A is expressed
from T using relationships (5), (6) and (9):

¥ = AF = ATU = VAU
hence
AT =VA
and
A=VAT, (10)

Non-negativity constraints are first applied to the a; (i) (Barber 1980, Di Paola et al 1982)
followed by normalization constraints. For instance, if the conventional normalization is
used, equation (7) must be satisfied,

Multiplying both sides of equation (10) on the left by (V'DV)~'V'D, we obtain

T'= A~ (V'DV)"'V'DA. (1D

The matrix T corresponding to the modified A is computed from (11). F is deduced from T
by equation (9). The f;(j) computed values are modified to take non-negativity constraints
and normalization constraints (equation (3)) into account. Multiplying both sides of equation
(9) on the right by MU'(UMU")~!, we obtain the matrix T corresponding to the modified
factors

T = FMU'(UMU" . (12)

A can then be computed from equation (10} and so on. This procedure is repeated until
a stopping criterion is met (for instance the number of negative a. (i) values falls below a
user-specified value). Figure | summarizes this generalized apex-seeking procedure.

0. Initial estimation of T.

1. Computation of A using A = VAT™! {equation (10)).

2. Modification of the a (i) values using non-negativity and normalization
constraints related to the a, (i) (e.g. equation (7)).

3. Computation of T by T~! = A~/ (V'DV)~"V'DA (equation (11)).

4. Computation of F by F = TU (equation (9)).

5. Modification of the fi (/) values using non-negativity and normalization
constraints related to the fi.(j) (e.g. equation (3)).

6. Computation of T by T = FMU'(UMU")~! (equation (12)).

7. Test of stopping criterion and return to 1 if it is not satisfied.

Figure 1. Generalized apex-secking procedure.
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5. Application to scintigraphic data

As FAMIS is primarily used in scintigraphy and the statistical properties of scintigraphic data
are well known, we first apply our theoretical approach to this imaging modality.
5.1. Statistical model for scintigraphic data

In scintigraphy, each trixel @; corresponds to the realization of P Poisson distributed
variables of parameters v;; (Barrett and Swindell 1981). An approximate expression of
vy Is wy = vev /v, (Kendall and Swuart 1967) where

P N N P
Vv = Zv,-j V= Zv,-j and v, = ZZVU.
J=1 i=1 i=] j=1

v, v; and v_ are unknown. They can be replaced by their maximum likelthood estimators
x;, % ; and x  respectively, with

P N N
X = inj X ;= Zx,-j and X = Z inj.
J=1 i=1 i=1 j=l

To be consistent with the fixed-effect model, the transformation g(z:) = (1/x;)x: is
considered. It follows that

Ely) = (V/x ) E(@:) = (xafx, ... xjfx, ..., xp/x)
and

Var(y;) = (1/xP)Var(z;) = diag(x.1/Xix_ - o0 X j/XiX 0o oo s Xp /XX,

3.2. Solution of the statistical model for FAMIS orthogonal analysis
In the framework of the fixed-effect model, we have

(02/@)T = diag(X.1 /XX, 0o oo X j[XiXor ooy Xp[XiX).
For o2 to be small, the following identifications are performed;
ot=1/x, w = x;/%. and T = diag(x.1/%., .., X j/%., ... X.p/X.).

Then, according to the solution of the fixed-effect model, the origin of S is ¥ with elements
¥; such that

= (1) S - 2 2
= i WiYij = =T
=1 /=l = e X
S is parallel to the subspace of R spanned by the Q eigenvectors u, associated with the
Q largest eigenvalues A, of the matrix (Y — 1,YYD(Y — 15Y)M, with

? = (x.l/x..s . ,x.j/x..v teey x.P/x..) D = djag(xl-/x..v ‘e vxi./x..! ey xN./x..)
M=T" =diag(x_/x1,..., X [Ejyeea X [XP).
Each element (i, j) of this matrix is

N
Z Xgi — XXX\ f Xk —Xe.Xj/%.
Xk, X.; '

k=1

The eigendecomposition of this matrix (Greenacre 1983) corresponds to the eigendecom-
position performed in correspondence analysis (Benzecri 1973). Consequently, the optimal
orthogonal decomposition to determine the study subspace for scintigraphic data is that used
in correspondence analysis.
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5.3. Solution of the FAMIS physical model by the generalized obligue analysis

The eigenvectors u, obtained by correspondence analysis are such that (Benzecri 1973)
YMU, =0 (13)
and we also have
YMY' = 1. : o ' ' (14)

Let us compare the FAMIS physical model and the result of the orthogonal decomposition.
From the physical model (equations (6) and (8)), it follows that

Y = AF = A(1, ¥ + T Up).
Multiplying both sides on the right by MY* and using equations (13) and (14), we obtain
YMY' = Al YMY' + AT U MY = Al (15)
On the other hand, the orthogonal decomposition is given by equation (5):
¥ = 1xY+ VoaoUo. ) '
Multiplying both sides on the right by MY" and using equations (13) and (14), we obtain
YMY' = 1, YMY + VoAUMY = 1y, ' (16)
Equattons (15) and (16) lead to
Alg =1y

Consequently, when using the orthogonal decomposition of correspondence analysis, the
normalization (7) naturally appears, without stating an & priori normalization for f;. When
correspondence analysis is performed, the equations involved in the iterative scheme are
simplified. Indeed, since UgMUY, = Id and due to the properties (13) and (14), we have

UMU' =Id.

Moreover, in comespondence analysis, we have
1yDVg =0

and
1yDiy =1.

Hence, as VDV = Id, we get
VDV =1d.

Finally, equations (11) and (12) become respectively
T'=A"'VDA

and

T =FMU'.
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6. Practical consequences of using the optimal metric

The influence of the choice of the metric involved in FAMIS is illustrated with 2 dynamic
scintigraphic hepato-biliary study.

6.1. Material and method

A dynamic scintigraphic sequence of 60 *Tc™-HIDA hepatic images 128 x 128 (each of one
second duration) was acquired. Four factor analyses of this sequence were carried out. For
each analysis, a 4 x 4 pixel clustering was performed, leading to a set of 1024 trixels, and
three fundamental structures were searched for. These four analyses differ in the number of
analysed trixels (corresponding to an intensity thresholding) and in the metric used: either
the 681 trixels having the higher intensities x; > 11 or only the 467 trixels such that
x;. > 1871 were processed (figure 2); and two choices of metric were investigated:

@)y = (1/N) Efil vij. M =1d, D = (1/N)Id: the orthogonal analysis is the principal
component analysis (PCA) performed on centred profiles; and

(li) 5’-}' = x.j/x--! M = diag(x__/x_l, ey x../x.j! e x../x.P)! D = diag(xl./x..s teey
Xi./x.,...,xy fx ). the orthogonal analysis is the orthogonal decomposition of correspon-
dence analysis (CA), which is optimal for scintigraphic data.

Combining one thresholding with one metric, the four analyses are denoted PCA/681, CA/681,
PCA/M67, and CA/467.

6.2. Resuits

The percentages of data variance associated with the first four eigenvectors are shown in
table 1, and the percentages corresponding to the study subspace. The curves in figure 3
represent the cumulated percentages of data variance accounted for by the successive
eigenvectors.

Table 1. Percentages of data variance corresponding to the first fonr cigenvectors, for the
scintigraphic dynamic hepatic study., When searching for three factors in Famis, the study
subspace S is parallel to the subspace spanned by w; and ug,

w) U2 u3 w4 w1 + o

PCA/G81 62.6 4.1 36 3.1 66.7
CA/681 77.2 13.9 1.9 0.7 91.1
pcams? 850 69 23 05 919
CAMBT 76.4 159 2.2 0.7 92.3

The factors and associated factor images obtained from the four analyses are displayed
in figure 4. The three fundamental structures correspond to: (i) a vascular factor associated
with a factor image corresponding essentially to the heart; (ii) a hepatic factor corresponding
to the image of the liver; and (iii) an intra-hepatic biliary structure.

The contributions Contr(k) assigned to every fundamental structure (Di Paola ¢t al 1982)
are shown in table 2. They are computed from

Contr(k) = Z Max(cy (i), 0) / Z Z Max(ci (i), 0)
i k i

where ¢; () represents the value of the pixel { in the factor image % in the initial spatial
sampling



H Benali et al

1074

O ZOOZ T T T
O L TOZOTZOTOTOTOTOTOZOT0N
FOZEOTOZOOTZOZOHOTOHH 0
AP
T DIOELDDLBBLLDDDD
WO OOZIZOTOZOZOTOTOT0%
FOTOTOZOTTOZOZOTOTOZOZOTO
BRI
OUOTOZOTOTOTOTOTOTOTOZ0N
OTOT TN
T IR
I ZOZOTOZOZTOTOTOT O

B I S T OTZTOTOZOT OO0
_ OHTOZOZZOTOTOH
OHLOZOL

T T LI T T R
ROZOZOZOZOZOZ LT ZOZOZOZOHN
FOZTOZOZOZOZZOTNZOZOZOZOIN
WO TOTO T SOTOZOTOTOTON
I
RO ZOTOL ZOTOTOZ0T0%0

P AOZOZOUOTOZ OO

W EDOZOZOTOTOTTOTZOTOZOT00%
RITTOZOZOT T TOTIZITOTZO0Te
FEZOTOZOZOZ T ZOTOTOO

R IZOZOZOZ T OO
RO
OROTOHOZOZ OTOZOZOZOZ0
OTOTOTOZZOTOTOTOZOZO

i
| | DXDIXIXD
X
I

O]
=<

R
I

A
>

<]

&
X
0

XX
RIXIAL<IR

>4

O
A

<
]
]
| X
]| DX
]
u
]
]

" .amn
TR0
M T T RN

]
3
1]
=
e
i
B
o
o
2
B

(a)

: the 681

ic images

(b) Thresholding displayed on the

the 467 trixels having the higher intensities x;, > 1871
trixels among the data (681

isy

hen there are no

analysed trixels). In this case, the orthogonal analysis of CA performs a better separation

ic appears Wi

trl

N

(a) Thresholding displayed on the sum image of the 60 dynam

ure 2
trixels having the higher intensities x; > 11 were analysed

sum image of the 60 dynamic images

were analysed.

Fig
The sensitivity to the chosen me

6.3. Discussion



A statisiical model for optimal metric in FAMIS 1075

% 100 -

90 4

80 -

70 -

70 -

60 r T . ; r T T v T y r
0 10 20 30 40 30 60

Figure 3. Cumulated percentages of data variance accounted for by the successive eigenvectors
obtained from principal component analysis (0) and correspondence analysis (+): (@) analyses
of the 681 trixels having the higher intensities x;, > 11; () analyses of the 467 &ixels having
the higher infensities x; > 1871,

between signal and noise: whereas the study subspace describes 86.7% of the data variance
when using PCA, 91,1% is represented in the subspace obtained by CA, The curve showing
the cumulated percentages of data variance quickly reaches a plateau with Ca, but slowly
increases with Pca (figure 3). Final results confinm these observations (figure 4): for
PCAs681, the factors are noisy. Conversely, the factors issued from CA/81 are relatively
smooth. Moreover, the contributions associated with the factor images present noticeable
differences (table 2); for instance, the ratio Contr(2)/Contr(3) is about five after PCA/681 and
only 2.5 after CA/681.

When the data do not include very noisy trixels (467 analysed trixels), the metric does
not play such an important part. The results of the two orthogonal decompositions are
similar when considering at least two eigenvectors. The final factors and factor images are
also quite similar, as are the contributions. PCA/467 and CA/M67 results are close to those
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(a)

(b

Figure 4. vamis results: the factors are superimposed on the corresponding factor images. Three
fundamental structures were estimated: F1 (top left): vascular structure, F2 (top right): hepatic
structure, F3 (bottom left): intra-hepatic biliary structure. (a) pcasssi results; (b) CA/681 results;
{c) PCA/46T results; (d) CAs467 results.
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Table 2, Percentage contributions associated with the estimated structures for the scintigraphic
dynamic hepatic study. Stucture 1 vascular structure, structure 2: hepatic structure, structure
3: intra-hepatic biliary structure.

Structure 1 Structure 2 Structure 3

PCASES1 1.6 81.7 16,6
CA/68] 3.3 68.8 27.9
pcase7T 3.5 65.3 31.2
CAMET 39 62.7 334

obtained with CA/81.

7. Discussion

An important stage of FAMIS is the orthogonal decomposition of the data. Its aim is to
determine a study subspace in which the whole information underlying the N trixels is
represented, without the noise. ‘The problem of whether or not the set of trixels should
be normalized in some way is an important issue which has not been properly resolved’
{Houston and Nijran 1989). Up to now, various normalizations have been suggested. The
most widespread technique consists in performing a PCA of the centred profiles of trixels,
¥ —7=(1/x)x — (1/N} Z:-V:[(I/x,-_):c,v. The metric is then the identity metric and the
same weight 1/N is assigned to every trixel (Barber 1980, Di Paola et al 1982). Other
methods have also been proposed:

(i) pca of the raw data, x;, first centred (Gagnon et ol 1989) or not (Bazin et al
1980, Nijran and Barber 1988). In all these cases, the following oblique analysis is not
the conventional apex-seeking procedure as described by Barber (1980) and Di Paola et af
(1982). '

(ii) PCA of the profiles without centring (Nijran and Barber 1986), Here, the FAMIS model
does not assume the coordinate of the factors on 4 to be equal to one in the decomposition
(8) and the K factors are searched for in a K-dimensional study subspace rather than in a
(K — 1)-dimensional subspace as in conventional FAMIS.

(ifi) PCA of the standardized trixels, (z; — &)/s;, where

1 & L , 1/2

T = -E’- &T; §j = I:—]\:; ;(x.-j —xj) :| .

The orthogonal decompasition is thus performed on the correlation matrix (Samal e al
1987, 1988). Such a standardization allows the introduction of an original oblique rotation
algorithm based on the concept of simple structure (Samal et o/ 1987).

(iv) pca of normalized trixels [1/( fxlx,?j)”z}m; (Nakamura et ol 1989). The
determination of the factors and the facior images is based on the maximum-entropy
principle and requires the normalization of the trixels. However, the choice of euclidean
normalization is not argued.

In the absence of theoretical arguments, practical algorithmic considerations often
induce the adopted normalization. In fact, the choice of the metric involved in the
eigendecomposition leads to a particular normalization. A theoretical basis for the selection
of a metric requires a statistical modelling of the data. Up to now, such a statistical
maodelling was ignored and only the physical model was considered. The choice of a
particular statistical model results from two considerations:
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(i) The statistical model must be consistent with the physical one. The fixed-effect
maodel satisfies this requirement since it describes each trixel as the sum of its fixed part
and a random part, Referring to the conventional model, the fixed part is identified with
the lnear combination of the fundamental functions and the spatial distributions.

(ii) The statistical properties of the model must be compatible with the a priori
knowledge related to the processed data. The fixed-effect model is appropriate to describe
the trixels. Indeed, they can reasonably be considered to be independent random vectors
since a trixel ¥; cannot be predicted from the observation of any other trixel gy, if y; and
Y correspond to any location in the image.

The fixed-effect model requires the variance of the trixels to be known or to be estimated.
The statistical properties of the trixels must then be studied. They depend on the imaging
modality (scintigraphy, CT, MRL..). In scintigraphy, it is well known that the number
of optical photons liberated in a scintillator of an Anger camera can be considered as a
Poisson random variable (Barrett and Swindell 1981). As the variance vi; of a Poisson
distributed variable depends on both i and j, it is inconsistent with the fixed-effect model.
v;; must then be replaced with an expression where / and j are separated. The best
first-order approximation of v; is viv;/v. (Kendall and Stuart 1967) and it makes the
fixed-effect model suitable (Caussinus 1986). The variance matrix remains unknown but
can be estimated using maximum-likelihood estimators. I' is then identified and the optimal
metric is deduced. It appears that the optimal metric to process scintigraphic data is not
the commonly used identity metric, but that corresponding to CA. Furthermore, FAMIS using
CA does not require an @ priori normalization constraint on the factors (equation. (3}). It
naturally results from the comparison of the FAMIS physical model (equation (6)) with the
orthogonal decomposition of the trixels {(equation (5)).

To be consistent throughout FAMIS, the optimal metric I'™" must also be considered
during the following oblique analysis. Whereas CA has already been performed for FAMIS
orthogonal decomposition without referring to any statistical model (Di Paola ez al 1976),
F~! had not previously been introduced in the oblique rotation stage, We show that the
conventional apex-seeking procedure can be extended to take I'"! into account, without
losing the advantage of searching for K factors in a (K — 1)-dimensional subspace. This
feature is attractive from a practical point of view, since the operator can easily visualize and
supervise the progress of the analysis, when 2—4 factors are searched (Frouin er al 1992).
As FAMIS is often used in an interactive way to control the end of the iterative apex-seeking
procedure (Frouin ef al 1992) the search for X factors in a (K — 1})-dimensional subspace
is convenient.

In scintigraphy, the practical consequences of the use of the optimal metric I'™! rather
than the identity metric appear when processing noisy data. As shown with an exampie of
hepatic study, FAMIS results are less sensitive to the thresholding, that is to the inclusion of
noisy trixels among the analysed trixels, when using the I'™! metric. This greater stability
is mainly the consequence of a better separation between signal and noise provided by the
orthogonal decomposition. When the processed data do not include very noisy trixels, FAMIS
results become similar using either T~! or the identity metric.

8. Conclusion

The conventional model underlying factor analysis of medical image sequences is revised
and split up into a statistical model and a physical one. The introduction of a statistical
model allows us to unambiguously determine the optimal metric to be used for the orthogonal
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decomposition involved in FAMIS. This metric depends on the expression of the data variance.
The conventional apex-seeking procedure solving the oblique analysis of FAMIS is extended
to take the optimal metric into account. For scintigraphic data, the variance can be estimated
and so the optimal metric is deduced. The optimal orthogeonal decomposition is obtained
by correspondence analysis.

It is shown by means of a scintigraphic dynamic hepatic study that using the optimal
metric makes FAMIS results less sensitive to the inclusion of noisy data and increases the
stability of FaMIs results with respect to the choice of the set of analysed trixels.

The determination of the optimal metric for data issued from other imaging modalities
requires the study of the statistical properties of the acquired or reconstructed signal. More
efficient processing of dynamic MRI, CT, SPECT and PET studies by FAMIS is currently under
investigation.
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