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Abstract. A statistical model is added to the conventional physical model underlying factor 
analysis of medical image sequences (FAME). It allows a derivarion of the optimal metric to 
be used for the orthogonal decomposition involved in FAME. The oblique analysis of ?AMIS is 
extended to take this optimal metric into accounf The case of scintigraphic image sequences 
is used. We derive in this case that the optimal decomposition is obtained by comspondence 
analysis. A scintigaphic dynamic study illustrates the practical consequences of the use of the 
optimal metric in FAMIS. 

1. Introduction 

Factor analysis of medical image sequences (FAMIS) is recognized as a powerful tool for 
extracting, in a condensed manner, functional or spectral information from dynamic or 
spectral image sequences (Houston 1990). As different methods have been proposed that 
do not yield the same results (see, for instance, Barber 1980, Bazin el al 1980, Di Paola 
el a1 1982, Nijran and Barber 1986, Samal et al 1987, ... ), it is often considered that FAMIS 
has no sound foundations. This prevents FAMIS from being largely distributed and used 
in clinical studies. Consequently, we have undertaken to look into the theoretical basis of 

FAMIS is based on a hear additive model, which assumes that the studied image 
sequence can be resolved into a limited number of fundamental spatial distributions such 
that the signal variation within each distribution is homogeneous. The aim of FAMIS is to 
estimate the underlying fundamental spatial dis!ibutions by factor images and the associated 
so-called fundamental functions (describing the signal variations) by factors. To perform 
such a decomposition, FAMIS includes four stages: 

(i) Data preprocessing to improve the signal to noise ratio. This consists of a clustering 
and a thresholding of the set of trixels associated with the image sequence, one trixel beiig 
defined as the signal variation within one pixel or one cluster of pixels. 

(ii) Orthogonal analysis of the resulting trixels. The goal of this orthogonal analysis 
is to determine a low-dimensional subspace, also called the ‘study subspace’ (Barber and 
Nijran 1982). in which mainly the relevant part of the trixels is represented, without the 
noise. 

(iii) Oblique rotation of the basis vectors of the study subspace to obtain non-orthogonal 
basis vectors, namely the factors, having a physical or physiological meaning. This stage 
is called oblique analysis. 

(iv) Computation of the factor images in the initial spatial sampling using an oblique 

FAMIS. 

~ ~ 

projection (Di Paola el al 1982). 
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Up to now, no particular attention was paid to the choice of the metric to be used in 
the orthogonal and oblique analyses. Different data normalizations were proposed without 
any theoretical justification (Di Paola et a1 1976, Barber 1980, Bazin et a1 1980, Di Paola 
et a1 1982, Nijran and Barber 1986, Sam& et a1 1987, Nijran and Barber 1988, Gagnon et 
a1 1989, Nakamura et ai 1989). 

The optimal normalization requires the introduction of a statistical model for the medical 
image sequences. The solution of this statistical model leads to the expression of the 
optimal metric which determines the normalization of the data to be used for orthogonal 
analysis. In order to preserve the optimal metric for the oblique analysis, a generalization 
of oblique analysis is presented. Though FAMIS has been applied to various modalities 
of functional imaging (Frouin e2 al 1992). it is primarily used in nuclear medicine. The 
case of scintigraphic data is detailed and the corresponding optimal metric is deduced. The 
practical consequences of the use of the optimal metric compared with a conventional one 
are illustrated using a dynamic scintigraphic image sequence. 

The importance of adding a statistical model to the conventional F M S  model and the 
relevance of the proposed statistical model are discussed. 

2. Conventional FAMIS model 

A sequence of P images can be considered as a set of vectors oi (i = 1.. . N )  of P 
components xi j  ( j  = 1 . . . P). xi is called a trixel and represents the variation of the signal 
within a pixel i or a cluster i of pixels in the image sequence indexed by the variable j .  
Let yi be a P-dimensional vector obtained from a transformation g of xi: 

Yi '= g(xi). 

The conventional FAMIS model is based on the following hypothesis (Barber 1980, Di Paola 
et ai 1982): 

with 

i.e. 

F l p  = 1~ (3) 

where F is the (K, P) matrix composed of the fundamental functions fk, I p  is a (P, 1) 
matrix of ones and 1~ is a (K, 1) matrix of ones. uk and fk are the underlying fundamental 
spatial distributions and fundamental functions, respectively. A set {ak, f k ]  is called a 
fundamental structure. 

According to this model, the relevant part Gi of each transformed trixel yi can be 
decomposed on a basis constituted by a limited number K of fundamental functions fk 
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having a physical or physiological meaning. This model is mainly a physical model. It 
does not assume any statistical properties related to the trixel yt or to the error €1. 

Different normalizations g of the trixels have thus been considered without theoretical 
foundation. The principal component analysis of the normalized data does not ensure the 
best separation between signal and noise since no information about the statistical propexties 
of signal and noise is taken into account. It only provides an orthogonal decomposition of 
the covariance matrix of the normalized data. To achieve an optimal separation between 
signal and noise, their statistical properties must be considered and the only way to do this 
is to introduce a statistical model. 

Consequently, in our approach the conventional FAMIS model is split up into a Statistical 
model and a physical one. 

3. A statistical model for PAMIS: the ked-effect model 

A statistical model can be applied to the data if they satisfy all the hypotheses of this 
model. The transformation g ( z , )  = gi of the trixels aims at transforming the data to 
make the application of a statistical model possible. A priori, it does not necessarily 
induce the conventional normalization to unit area (equation (2)). To be consistent with 
the conventional model, the statistical model must state that each transformed trixel 
y; can be decomposed into its fixed part, corresponding to the linear combination of 
fundamental functions and spatial distributions of the conventional model, and a residual 
part, corresponding to the random error. In multivariate analysis, the fixedeffect model 
(Caussinus 1986) fulfils this condition and includes statistical properties of the error. 

3.1. Defrnition of thefrred-effect model 

The fixed-effect model is defined as follows (Caussinus 1986): 

(i) the yi are N independent random vectors defined on a probability space and can be 

(ii) the expectation of g; is fj;: 
written yi = & + ue;, where g; is the fixed effect of yi and uei is the random error, 

that is E ( e i )  = 0; 
(iii) the variance of yi can be written 

var(yi) = (u2/oi)r 

where r is a (P. P) symmetric positive definite matrix which is known or estimated as well 
as the positive weights, 0;. associated with y;; and 

(iv) there exists a ( Q  + 1)-dimensional linear manifold 5 of Rp ( Q  + 1 < P) such that 
all vectors Gi belong to 5. 

The linear manifold 8, the N vectors 5; belonging to 9 and the parameter U have to be 
estimated. 
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3.2. Solution of thefued effect model 
The least-squares estimate of 5 is obtained by minimizing 

where M is a (P, P) symmetric positive definite matrix which defines a metric of Rp. It 
has been shown that the minimum of (4) is reached for S such that (Caussinus 1986): 

(i) the origin of 5 is G, defined by 

and 
(ii) 5 is parallel to the subspace of R p  spanned by the Q eigenvectors uq associated 

with the Q largest eigenvalues Aq of the matrix (Y - lNWD(Y - lNY)M, where Y is the 
( N ,  P) matrix of the trixels yi, Y is the (1, P) matrix of g, IN is an (N, 1) matrix of ones, 
D is the diagonal (N,  N) matrix of the weights wj and denotes the transpose. 
Consequently, Si depends on the metric M. For small enough U ,  the perturbation theory can 
be used to show that the expectation of (4) is minimized when M = J?' (Caussinus 1986). 
Furthermore, when N is large enough, the same result has also been demonstrated using an 
asymptotic study (Fine and Pousse 1992). 

3.3. Application of thefued-effect model to FAMIS orthogonal analysis 

When the fixed-effect model is applied to the transformed trixels yi processed by FAMIS, 
the effect fji represents the relevant part of yi, while the noise is assumed to be the random 
error uei. 5 corresponds to the study subspace in which mainly the relevant part of the 
hixels is represented, without the noise. In this subspace, the relevant part Gi of the oixels 
can be reconstituted using the following formula (Jolliffe 1986): 

i.e. 

Y = 1NY+ VQAQUQ = VAU 

with 

UQ is the (Q, P) matrix composed of the eigenvectors uq of (Y - lNY)'Q(Y - lNY)M, 
VQ is the ( N ,  Q) matrix of the coordinates vq(i) of the trixels in the basis [uQ}~=~...Q 
and AQ is the (Q, Q) diagonal matrix whose diagonal elements are the square roots of the 
eigenvalues Aq. 

UQ and VQ satisfy the following relationships (Jolliffe 1986): 

UpMUb =Id VQDVp =Id VQ = (Y - lNY))MU&'. 
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4. FAMIS physical model 

The relevant part of the trixels issued from the solution of the statistical model is assumed 
to follow a physical model. 

4.1. Defurition of the physical model 

The first hypothesis of the conventional FAMIS model is the linear additive decomposition 
of the relevant part of the transformed trixels (equation (I)). It can be written, in matrix 
form, 

Y = A F  (6) 

where F is the ( K ,  P )  matrix composed of the K fundamental functions and A is the (N, K )  
matrix composed of the K fundamental spatial distributions. The normalization of and 
fk always leads to a normalization for ak. For instance, the conventional unit normalization 
of vi and fk (equation (2)) yields 

i.e. 

A ~ K  IN.  

The conventional FAMlS model includes two other hypotheses: 

of the study subspace minus 1; and 
(i) Q = K - 1, that is the number K of fundamental functions 

Q 

4-1 
(ii) f k = g + c t k q u q  

i.e., in matrix form, 

F=TU 

equal to the, 

where T is a matrix of dimensions (K, Q + 1). i.e. ( K ,  K) ,  defined by 

and TQ is the (K.  Q) matrix of tkq coefficients. 

that the coordinate of each fk on the vector 5 is equal to one. 
This equation states that the fundamental functions belong to the study subspace 8 and 
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4.2. Solution of the physical model: generalization of the oblique analysis 

The oblique analysis consists in finding T, that is K factors in a (K - 1)-dimensional 
subspace. The most common approach to determine T is an iterative apex-seeking procedure 
(Barber 1980, Di Paola et a1 1982) taking account for some constraints related to the 
factors and/or to the factor images. The most frequently used constraints are non-negativity 
constraints and normalization constraints on both factors and factor images. In order to 
be consistent with the previous statistical model, we extend the conventional apex-seeking 
procedure to include the optimal metric used in the orthogonal analysis. 

Given an initial estimation of T (Barber 1980, Di Paola et a1 1982), A is expressed 
from T using relationships (5), (6) and (9): 

V = AF = ATU = VAU 

hence 

AT = VA 

and 

A = VAT-l . (10) 

Non-negativity constraints are first applied to the ak(i) (Barber 1980, Di Paola et a1 1982) 
followed by normahation constraints. For instance, if the conventional normalization is 
used, equation (7) must be satisfied. 

Multiplying both sides of equation (10) on the left by (\PDV)-'V'D, we obtain 

T-I = h-l(\PDV)-'\rDA. (11) 

The matrix T corresponding to the modified A is computed from (1 1). F is deduced from T 
by equation (9). The fk(j) computed values are modified to take non-negativity constraints 
and normalization constraints (equation (3)) into account. Multiplying both sides of equation 
(9) on the right by MU'(UMU')-', we obtain the matrix T corresponding to the modified 
factors 

T = FMU'(UMU')-'. (12) 

A can then be computed from equation (10) and so on. This procedure is repeated until 
a stopping criterion is met (for instance the number of negative ak(i) values falls below a 
user-specified value). Figure 1 summarizes this generalized apex-seeking procedure. 

0. Initial estimation of T. 
1.  Computation of A using A = VAT-' (equation (IO)). 
2. Modification of the ax(i) values using non-negativity and normalization 
constraints related to the a& (e.g. equation (7)). 
3. Computation of T by T-' = A-'(V'DV)-'V'DA (equation (11)). 
4. Computation of F by F = TU (equation (9)). 
5. Modification of the f k ( j )  values using non-negativity and normalization 
constraints related to the fw( j )  (e.g. equation (3)). 
6. Computation of T by T = FMU'(UMU')-' (equation (12)). 
7. Test of stopping criterion and retum to 1 if it is not satisfied, 

Figure 1. Generalized apex-seeking procedure. 
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5. Application to scintigraphic data 

As FAMIS is primarily used in scintigraphy and the statistical properties of scintigraphic data 
are well known, we first apply OUT theoretical approach to this imaging modality. 

5.1. Statistical model for scintigraphic data 
In scintigraphy, each trixel zi corresponds to the realization of P Poisson distributed 
variables of parameters uij (Barrett and Swindell 1981). An approximate expression of 
vjj is uij = u;.u,j/u.. (Kendall and Stuart 1967) where 

P N N P  

U;. = V i j  V , j  = uij and U,. = c uij. 
k l  j=1 j = l  i=l 

wi., WJ and u.. are unknown. They can be replaced by their maximum likelihood estimators 
xi., x.j and x,. respectively, with 

P N N P  

xi. = z x ; j  ~ . j . =  c x j j  and 1.. = ccxij. 
j = I  i=l ;=I j= l  

To be consistent with the fixed-effect model, the aansformation g(zi) = (l/xi,)zf is 
considered. It follows that 

E b i )  = (1Ixi.) E(Xi) = (x.1 l x  ... . . ., x,j/x.., . . . x.p/x..) 
and 

W V i )  = (I/xif)Var(xi) = diag(x.i/xi.x.., . . . , x,j/xi.x.., . . . .x.p/xi.x..). 

5.2. Solution of the statistical model for FAMIS orthogoml analysis 
In the framework of the fixed-effect model, we have 

For U’ to be small, the following identifications are performed: 
U2 = l/x,. mi =xi.Ix.. andr=diag(x.l/x ..,..., x.j/x _.,... ,x.P/x..). 
Then, according to the solution of the fixed-effect model, the origin of 8 is 
jj such that 

( 0 2 / W i ) r  = diag(x.l/xi.x.,, . . . , xJ/xi.x.., . . . .x.p/xi.x..). 

with elements 

8 is parallel to the subspace of Pp spanned by the Q eigenvectors U, associated with the 
Q largest eigenvalues A, of the matrix (Y - l N W D ( Y  - ~NY)M, with 

Y = (x.i/x..3 . . . x.j/x.,v . . . , x.p/x..) 

Each element (i ,  j )  of this matrix is 

- 
D = diag(xl,/x.,, . . . , xi./x.., . . . , xn./x..) 

M = r-l = diag(x../x.l,. . . , x../x.~, . . . ,X../X.~). 

The eigendecomposition of this matrix (Greenacre 1983) corresponds to the eigendecom- 
position performed in correspondence analysis (Benzecri 1973). Consequently, the optimal 
orthogonal decomposition to determine the study subspace for  scintigraphic &a is that used 
in correspondence analysis. 
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53. Solution of the FAMlS physical model by the generalized oblique analysis 
The eigenvectors uq obtained by correspondence analysis are such that (Benzecri 1973) 

YMUL = 0 (13) 

and we also have 

YMF = 1. 

Let us compare the FAME physical model and the result of the orthogonal decomposition. 
From the physical model (equations (6) and (8)), it follows that 

Y=AF=A(I~V+T,U,). 

Multiplying both sides on the right by M F  and using equations (13) and (14), we obtain 

VMF = AIKvMP +ATQUQMp = AIK. 

On the other hand, the orthogonal decomposition is given by equation (5): 

(15) 

V =  ~NV+VQAQUQ. 

Multiplying both sides on the right by M F  and using equations (13) and (14). we obtain 

VMF = lNi%!F+VQAUQMF = IN. (16) 

Equations (15) and (16) lead to 

A ~ K  =IN.  

Consequently, when using the orthogonal decomposition of correspondence analysis, the 
normalization (7) naturally appears, without stating an a priori normalization for f ~ .  When 
correspondence analysis is performed, the equations involved in the iterative scheme are 
simplified. Indeed, since UQMUL = Id and due to the properties (13) and (14), we have 

UMU' = Id. 

Moreover, in correspondence analysis, we have 

I ~ D V Q  = 0 

and 

I',D~N = 1. 

Hence, as WQDVp = Id, we get 

V'DV = Id. 

Finally, equations (1 1) and (12) become respectively 

r1 = A-IV'DA 

and 

T = FMU'. 
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6. Practical consequences of using the optimal metric 

The influence of the choice of the metric involved in FAMIS is illustrated with a dynamic 
scintigraphic hepato-biliary study. 

6.1. Material and method 

A dynamic scintigraphic sequence of 60 90T~m-HIDA hepatic images 128 x 128 (each of one 
second duration) was acquired. Four factor analyses of this sequence were carried out. For 
each analysis, a 4 x 4 pixel clustering was performed, leading to a set of 1024 trixels, and 
three fundamental s t r u a  were searched for. These four analyses differ in the number of 
analysed trixels (corresponding to an intensity thresholding) and in the metric used: either 
the 681 trixels having the higher intensities xi. > 11 or only the 467 trixels such that 
xi. > 1871 were processed (figure 2): and two choices of metric were investigated: 

(i) j j  = (1/N) CL, yij, M = Id, D = (l/N)ld: the orthogonal analysis is the principal 
component analysis (Pa) performed on centred profiles; and 

(ii) j j  = x,j/x.., M = diag(x .. / x . l ,  ..., x , , /x . j ,  ..., x . . Ix .p ) ,D  = diag(xl./x.., ..., 
y./x..9.. . , xN./x..): the orthogonal analysis is the orthogonal decomposition of correspon- 
dence analysis (CA), which is optimal for scintigraphic data 

Combining one thresholding with one metric, the four analyses are denoted PCN681, CN681, 
PW467, and w 4 6 7 .  

6.2. Results 

The percentages of data variance associated with the first four eigenvectors are shown in 
table 1, and the percentages corresponding to the study subspace. The curves in fiw 3 
represent the cumulated percentages of data variance accounted for by the successive 
eigenvectors. 

Table 1. Percentages of data variance Corresponding to the first four eigenvectors, for the 
scintigraphic dynamic hepatic study. When searching for thne factors in FAMIS. the study 
subspace 5 is parallel to the subspace spanned by U, and -2. 

U, U? U? lld U, +U? 

FCAJ681 62.6 4.1 3.6 3.1 66.7 
C1v681 77.2 13.9 1.9 0.7 91.1 
ww 85.0 6.9 2 3  05 91.9 

76.4 15.9 2 2  0.7 52.3 

The factors and associated factor images obtained from the four analyses are displayed 
io figure 4. The three fundamental struct~res correspond to: (i) a vascular factor associated 
with a factor image corresponding essentially to the heart: (ii) a hepatic factor corresponding 
to the image of the liver; and (iii) an intra-hepatic biliary structure. 
The contributions Contr(k) assigned to every fundamental structure (Di Paola et a1 1982) 
are shown in table 2. They are computed from 

where c& represents the value of the pixel i in the factor image k in the initial spatial 
sampling 
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Figure 2. ( a )  Thresholding displayed on ule sum image of the 60 dynamic images: lhe 681 
hixels having the higher intensities xi. > 11 were analysed. ( b )  "hmholding displayed on the 
sum image of the 60 dynamic images: Ue 467 trixels having the higher intensities xi. > 1871 
were analysed. 

6.3. Discussion 

The sensitivity to the chosen metric appears when there are noisy trixels among the data (681 
analysed trixels). In this case, the orthogonal analysis of CA performs a better separation 
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Figure 3. Cumulated percentages of data variance accounted for by the successive eigenvectors 
obtained f” principal component analysis (U) and compndence analysis (+I: (a) analyses 
of the 681 trixels having the higher intensities xi. =- 11; (bj analyses of the 467 nix& having 
the higher intensities xi. > 1871. 

between signal and noise: whereas the study subspace describes 66.7% of the data variance 
when using E A ,  91.1% is represented in the subspace obtained by CA. The curve showing 
the cumulated percentages of data variance quickly reaches a plateau with CA, but slowly 
increases with PCA (figure 3). Final results confirm these observations (figure 4): for 
pcN681, the factors are noisy. Conversely, the factors issued from CN681 are relatively 
smooth. Moreover, the contributions associated with the factor images present noticeable 
differences (table 2): for instance, the ratio Contr(2)/Contr(3) is about five after PW681 and 
only 2.5 after CN681. 

When the data do not include very noisy trixels (467 analysed trixels), the metric does 
not play such an important part The results of the two orthogonal decompositions are 
similar when considering at least two eigenvectors. The final factors and factor images are 
also quite similar, as are the contributions. pcM467 and W467 results are close to those 
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Figure 4. FAMIS results: lhe factors are superimposed on the corresponding factor Images. "ee 
fundamenhi smctures were estimated F1 (top left): vascular structyre. F2 (top nghl): hepatic 
structure. F3 (bnom left): inm-hepatic biliary s l~c tun .  ( a )  mal results: (b)  CAJ681 results: 
(C) KM467 resula: ( d )  cm61 results. 
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Table 2. Percentage contributions associakd with the estimated structures for the scintigraphic 
dynamic hepatic study. Shucture 1: vascular structure, "re 2: hepatic struchue. structure 
3 intra-hepatic biliary structure. 

structure1 structure2 structure3 

W 6 8 1  1.6 81.7 16.6 
w681 3.3 68.8 21.9 
pcAJ4bl 35 65.3 31.2 
w461 3.9 62.1 33.4 

obtained with CN681. 

I .  Discussion 

An important stage of FAMIS is the orthogonal decomposition of the data Its aim is to 
determine a study subspace in which the whole information underlying the N trixels is 
represented, without the noise. 'The problem of whether or not the set of trixels should 
be normalized in some way is an important issue which has not been properly resolved' 
(Houston and Nijran 1989). Up to now, various normalizations have been suggested. The 
most widespread technique consists in performing a PCA of the centred profiles of trixels, 
yi - e  = (l/.q.)xi - ( l /N) ~ ~ l ( l / x i . ) z i .  The metric is then the identity metric and the 
same weight 1/N is assigned to every trixel (Barber 1980, Di Paola et al 1982). Other 
methods have also been proposed: 

(i) PCA of the raw data, 0;. first centred (Gagnon et a1 1989) or not (Bazin et a1 
1980, Nijran and Barber 1988). In all these cases, the following oblique analysis is not 
the conventional apex-seeking procedure as described by Barber (1980) and Di Paola er a1 
(1982). 

(ii) FCA of the profiles without centring (Nijran and Barber 1986). Here, the FAMIS model 
does not assume the coordinate of the factors on to be equal to one in the decomposition 
(8) and the K factors are searched for in a K-dimensional study subspace rather than in a 
(K - I)-dimensional subspace as in conventional FAMIS. 

(iii) PCA of the standardized trixels, (xi - Z)/s,, where 

The orthogonal decomposition is thus performed on the correlation matrix (Samal et al 
1987, 1988). Such a standardization allows the introduction of an original oblique rotation 
algorithm based on the concept of simple structure (Samal et al 1987). 

(iv) PCA of normalized trixels [ l / ( ~ ~ = ! x $ * " ] z i  et nl 1989). The 
determination of the factors and the factor unages is based on the maximum-entropy 
principle and requires the normalization of the trixels. However, the choice of euclidean 
normalization is not argued. 

In the absence of theoretical arguments, practical algorithmic considerations often 
induce the adopted normalization. In fact, the choice of the metric involved in the 
eigendecomposition leads to a particular normalization. A theoretical basis for the selection 
of a metric requires a statistical modelling of the data, Up to now, such a statistical 
modelling was ignored and only the physical model was considered. The choice of a 
particular statistical model results from two considerations: 
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(i) The statistical model must be consistent with the physical one. The fixed-effect 
model satisfies this requirement since it describes each trixel as the sum of its fixed part 
and a random part. Refemng to the conventional model, the fixed part is identified with 
the linear combination of the fundamental functions and the spatial distributions. 

(ii) The statistical properties of the model must be compatible with the a priori 
knowledge related to the processed data. The fixedeffect model is appropriate to describe 
the trixels. Indeed, they can reasonably be considered to be independent random vectors 
since a trixel gi cannot be predicted from the observation of any other trixel vi,, if gi and 
yp correspond to any location in the image. 

The fixed-effect model requires the variance of the trixels to be known or to be estimated. 
The statistical properties of the trixels must then be studied. They depend on the imaging 
modality (scintigraphy, CT, MRI.. .). In scintigraphy, it is well known that the number 
of optical photons liberated in a scintillator of an Anger camera can be considered as a 
Poisson random variable (Barrett and Swindell 1981). As the variance wij of a Poisson 
distributed variable depends on both i and j ,  it is inconsistent with the fixedeffect model. 
wij must then be replaced with an expression where i and j are separated. The best 
first-order approximation of uij is ui,u.j/w.. (Kendall and Stuart 1967) and it makes the 
fixed-effect model suitable (Caussinus 1986). The variance matrix remains unknown but 
can be estimated using maximum-likelihood estimators. I? is then identified and the optimal 
metric is deduced. It appears that the optimal metric to process scintigraphic data is not 
the commonly used identity metric, but that corresponding to CA. Furthermore, FAME using 
CA does not require an a priori normalization constraint on the factors (equation (3)). It 
naturally results from the comparison of the FAMIS physical model (equation (6)) with the 
orthogonal decomposition of the trixels (equation (5)). 

To be consistent throughout FAMIS, the optimal metric I?' must also be considered 
during the following oblique analysis. Whereas CA has already been performed for FAMIS 
orthogonal decomposition without referring to any statistical model (Di Paola et al 1976), 

had not previously been intxoduced in the oblique rotation stage. We show that the 
conventional apex-seeking procedure can be extended to take I?' into account, without 
losing the advantage of searching for K factors in a (K - 1)-dimensional subspace. This 
fcature is attractive from a practical point of view, since the operator can easily visualize and 
supervise the progress of the analysis, when 2 4  factors are searched (Frouin er a1 1992). 
As FAMIS is often used in an interactive way to control the end of the iterative apex-seeking 
procedure (Frouin etnl 1992) the search for K factors in a (K - 1)-dimensional subspace 
is convenient. 

In scintigraphy, the practical consequences of the use of the optimal metric I?' rathex 
than the identity metric appear when processing noisy data. As shown with an example of 
hepatic study, FAMIS results are less sensitive to the thresholding, that is to the inclusion of 
noisy trixels among the analysed trixels, when using the r-l metric. This greater stability 
is mainly the consequence of a better separation between signal and noise provided by the 
orthogonal decomposition. When the processed data do not include very noisy trixels, FAMS 
results become similar using either r-' or the identity metric. 

8. Conclusion 

The conventional model underlying factor analysis of medical image sequences is revised 
and split up into a statistical model and a physical one. The introduction of a statistical 
model allows us to unambiguously determine the optimal metric to be used for the orthogonal 
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decomposition involved in FAMIS. This metric depends on the expression of the data variance. 
The conventional apex-seeking procedure solving the oblique analysis of FAMIS is extended 
to take the optimal metric into account. For scintigraphic data, the variance can be estimated 
and so the optimal mehic is deduced. The optimal orthogonal decomposition is obtained 
by correspondence analysis. 

It is shown by means of a scintigraphic dynamic hepatic study that using the optimal 
metric makes FAMIS results less sensitive to the inclusion of noisy data and increases the 
stability of FAMIS results with respect to the choice of the set of analysed trixels. 

The determination of the optimal mehic for data issued from other imaging modalities 
requires the study of the statistical properties of the acquired or reconsmcted signal. More 
efficient processing of dynamic MRI, CT, SPECT and PET studies by FAMS is currently under 
investigation. 
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