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Abstract. From a time or energy image sequence, factor analysis of medical image sequences
(FAMIS) estimates factors, representing kinetics or spectra in a given physiological compartment,
and associated factor images, showing the compartments corresponding to each curve. In
this paper, we show that the statistical properties of factor images and associated factors
can be determined using a well known result from elementary probability theory. Numerical
experiments are conducted to demonstrate that the variance observed in factor images can be
predicted when the statistical properties of the original data are known. It is shown how these
theoretical results can be used to relax the non-negativity constraints during FAMIS oblique
analysis and to improve the quantitative interpretation of the factor images by associating a
confidence interval with each pixel value.

1. Introduction

Factor analysis of medical image sequences (FAMIS) is a powerful method for estimating
kinetics and associated compartments from a temporal image sequence (e.g. Barber 1980,
Di Paola et al 1982, Houston and Sampson 1997, Samalet al 1987). It has also been
demonstrated to be useful for scatter correction in planar scintigraphy and single photon
emission computed tomography (SPECT) by means of the analysis of spectral image
sequences (Buvatet al 1995). From an image sequence, FAMIS estimates a small number
(typically two to four) of curves (kinetics or spectra), termed factors, and associated factor
images (representing compartments), describing the image sequence using an underlying
linear model. For instance, in the case of dynamic13N ammonia PET studies, right
ventricular, left ventricular and myocardial compartments can be separated and the factors
correspond to the time activity curves (TAC) associated with each compartment (Wuet al
1995). For SPECT scatter correction, a compartment represents the image of primary
photons while the associated curve is the scatter-free spectrum. The other compartments
represent scatter images and are associated with scatter spectra (Buvatet al 1995).

One issue which has not been studied so far concerns the statistical properties of the
factors and factor images. As the factors and factor images can be the input of further
processing, such as compartmental analysis for time series processing or tomographic
reconstruction for SPECT scatter correction, determining the statistical properties of the
signal in the factors and factor images would be useful, for instance, to associate a confidence
interval with each pixel value in the factor images or with each curve point in the factors.

† E-mail address: buvat@imed.jussieu.fr

0031-9155/98/061695+17$19.50c© 1998 IOP Publishing Ltd 1695



1696 I Buvat et al

The importance of associating confidence intervals with the factor analysis parameters has
already been underlined (Samalet al 1991).

In this paper, we derive the statistical properties of factors and factor images using a
well known result from elementary probability theory. Analytical simulations demonstrate
that the variance of each pixel value in the factor images can actually be predicted from the
original image sequence. It is shown how these results can be used to introduce the notion of
confidence interval when interpreting factor images and to take into account the uncertainty
regarding pixel values and factor values for relaxing the non-negativity constraints used in
the oblique rotation step involved in FAMIS.

2. Theory

In this section, the FAMIS model is presented and the method used to solve the model
is described. The statistical properties of the factor images and factors are derived and it
is shown how the oblique analysis can be modified to take into account these statistical
properties.

2.1. The FAMIS model

Using a unified formalism (Benaliet al 1994), the FAMIS model can be written

xij = x..

K

K∑
k=1

ãk(i)f̃k(j)+ eij . (1)

In this expression,xij is the signal intensity of pixeli in imagej of the sequence andeij
is a random error, corresponding to measurement noise. The total signal intensity in the
image sequencex.. is defined by

x.. =
N∑
i=1

P∑
j=1

xij

whereN is the number of pixels in an image andP is the number of images in the sequence.
Equation (1) states that the curvexi = {xij }j=1,P , termed trixeli, associated with each pixel
i can be expressed as a linear combination of a small numberK of fundamental curves
{f̃k(j)}j=1,P weighted by the coefficients̃ak(i). A symmetrical (or dual) interpretation of
this model (Benaliet al 1994, Samalet al 1988) is that each imagexj = {xij }i=1,N of the
sequence can be expressed as a linear combination ofK fundamental images{ãk(i)}i=1,N ,
representing compartments, weighted by coefficientsf̃k(j).

The problem to be solved is: given the initial image sequence{xij }i=1,N and j=1,P and
assuming thatK is known, find the fundamental images{ãk(i)}i=1,N and the associated
fundamental curves{f̃k(j)}j=1,P . The estimated fundamental images are termed factor
images, while the estimated fundamental curves are termed factors.

2.2. Solution of the model

Solving the model involves several steps which have been described and discussed in detail
previously (see, for instance, Di Paolaet al 1982, Frouinet al 1992). Only the relationships
necessary for the demonstrations of this paper will be presented here. The other steps
involved in FAMIS will only be briefly mentioned.
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2.2.1. Pre-processing.The first step of FAMIS consists of grouping pixels together, usually
using a geometrical pattern (e.g. 4× 4 blocks of pixels), in each image of the sequence.
This corresponds to using a coarser spatial sampling. All variables corresponding to this
coarse spatial sampling will be denoted by an asterisk (∗). To reduce the influence of noise
and irrelevant background signal, a thresholding procedure is then performed, so that only
trixels with an intensityx∗i. greater than a given threshold are further analysed. The trixel
intensityx∗i. of trixel i is defined by

x∗i. =
P∑
j=1

x∗ij .

2.2.2. Orthogonal analysis.The second step of FAMIS solves a statistical model, the fixed
effect model (Caussinus 1986), to estimate the noise-free componentx∗ij − e∗ij = x̃∗ij (Benali
et al 1993). The fixed effect model states that the observed signalx∗ij is the sum of a fixed
component (non-random or noise-free component)x̃∗ij and a random errore∗ij . Solving the
fixed effect model yields a low-dimensional subspace ofRP , called study subspaceS, such
that the projection of the original trixelx∗ij onto this subspace gives the noise-free component
x̃∗ij . The study subspaceS is obtained using an orthogonal decomposition performed with the
appropriate metrics, derived from the statistical properties of the original data. For instance,
it has been shown that for scintigraphic data which are Poisson distributed, the appropriate
orthogonal decomposition was that of correspondence analysis (Benaliet al 1993). In that
case, the noise-free trixels are given by

x̃∗ij =
x∗i.x.j
x..
+

K−1∑
q=1

x∗i.x.j
x..

1√
λq
ϕq(j)ψ

∗
q (i) (2)

where the eigenvaluesλq , the eigenvectorsϕq and the eigenimagesψ∗q result from the
orthogonal decomposition and

x.j =
N∑
i=1

xij .

The result of the orthogonal decomposition gives a basis ofK − 1 orthogonal eigenvectors
{ϕq(j)}j=1,P which span the study subspaceS in which the noise-free trixels can be
estimated.

2.2.3. Oblique analysis. The next step, called oblique analysis, estimates the fundamental
curves{f̃k(j)}j=1,P and the fundamental images{ã∗k (i)}i=1,N . The basic hypothesis is that
the fundamental curves and the fundamental images belong to the study spaceS resulting
from the orthogonal analysis. Two dual models can be considered (Benaliet al 1994): a
model pertaining to the fundamental curves (called the curve model) and a model pertaining
to the fundamental images (called the image model) (see the appendix). Either model can
be solved in an iterative manner, using non-negativity constraints, normalization constraints
and a priori knowledge (see the appendix). Briefly, the iterative procedure consists of
starting with a first set of factors and in deriving the corresponding factor images given
the trixel x∗ij . These images are then modified to meet non-negativity, normalization and
a priori constraints and, using these new images, the corresponding factors are deduced.
These new factors are modified to meet the non-negativity, normalization anda priori
constraints and, after these modifications, new corresponding factor images are deduced.
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This process is repeated and when it stops, either the factors or the factor images meeting
the non-negativity, normalization anda priori constraints are known.

2.3. Statistical properties of factor images and factors

2.3.1. Factor images. At the end of the iterative process, assuming the factors are known,
the corresponding factor images are deduced by projecting the original noisy trixelsxij onto
the factors{f̃k(j)}j=1,P . The projection operation reads

ak(i) =
P∑
j=1

xij f̃
′
k(j) (3)

where thef̃ ′k(j) are the elements of the matrix̃F (F̃ t F̃ )−1 and F̃ is the P × K matrix
of the {f̃k(j)}. The statistical properties of the factor imagesak(i) can be derived from
equation (3). Indeed,ak(i) can be written

ak(i) =
P∑
j=1

(x̃ij + eij )f̃ ′k(j) =
P∑
j=1

x̃ij f̃
′
k(j)+

P∑
j=1

eij f̃
′
k(j) = ãk(i)+ εki . (4)

In this expression, the first term̃ak(i) is the non-random part, while the second term is
random, because of the random nature of the original signalxij . In the case of Poisson data
xij of parameterνij , as when dealing with scintigraphic data, two cases can be considered:

(i) If xij is greater than 30,xij can be considered as Gaussian distributed.ak(i) is
therefore a linear combination of Gaussian variables and is Gaussian distributed.

(ii) If xij is less than 30,xij is Poisson distributed. However, ifP is large enough
(P > 30), the central limit theorem applies so that the sum overj of random errors with
the same law is Gaussian distributed. The resultingak(i) is therefore Gaussian distributed.

The third case, corresponding toxij < 30 andP < 30, will be studied in section 4 and
further commented upon in the discussion.

If ak(i) is Gaussian distributed, it is entirely characterized by its first- and second-order
moments. Using equation (3), the variance ofak(i) can be expressed as a function of the
variance of the original data by

Var[ak(i)] = σ 2(i) =
P∑
j=1

Var[xij ]f̃
′2
k (j). (5)

There are no covariance terms since thexij are assumed to be independent variables.
Equation (5) corresponds to the well known result from elementary probability theory stating
that the variance of a weighted sum of random variables is the squared weighted sum of
the variances of the variables. In our context, this means that for a set of factorsf̃k(j), the
variance of the factor images can be deduced from the variance of the original data. For a
Poisson variablexij of parameterνij , Var[xij ] = νij . A classical estimate forνij is xij and
therefore equation (5) reduces to

Var[ak(i)] =
P∑
j=1

xij f̃
′2
k (j). (6)

Using this relationship, a variance value can be associated with the pixel contents of each
factor image.
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2.3.2. Factors. Considering the dual formalism of FAMIS, and assuming that the factor
imagesãk(i) are known at the end of the iterative process, the factors can be deduced by

fk(j) =
N∑
i=1

xij ã
′
k(i) (7)

where theã′k(i) are the elements of the matrix̃A (Ãt Ã)−1 and Ã is theN × K matrix
of the ãk(i). The statistical properties of the factors can then be determined using a
similar demonstration to that used to derive the statistical properties of the factor images
(equation (4)). Ifxij > 30 orN large enough, the latter always being true, we obtain that
(i) the valuesfk(j) are Gaussian distributed and (ii) the variance Var[fk(j)] of fk(j) is

Var[fk(j)] = σ 2(j) =
N∑
i=1

Var[xij ]ã
′2
k (i) (8)

which reduces to

Var[fk(j)] =
N∑
i=1

xij ã
′2
k (i) (9)

for Poisson data.
Note that depending on what one is interested in (variance of the factor images or

variance of the factors), one should assume either that the factors are not random to deduce
the statistical properties of the associated factor images given the random original trixels
xij , or that the factor images are not random to determine the variance of the associated
factors given the random original data.

2.4. Practical implications

Knowing the statistical properties of the factors and factor images can be taken advantage
of in at least two different ways: (i) to introduce the notion of confidence intervals when
interpreting the factor images and (ii) to introduce the notion of confidence intervals in the
iterative procedure of oblique analysis.

2.4.1. Associating a confidence interval to the factor image pixel values.Equation (9)
shows that, for given factors̃fk(j), the variance of each pixel value in the factor images
can be deduced. As the factor image pixel values are Gaussian distributed with a known
variance Var[ak(i)] = σ 2(i), a confidence interval [ak(i) − cσ (i); ak(i) + cσ (i)] can be
associated with each pixel valueak(i), wherec depends on the type I error. For instance,
for a type I errorα = 0.05, c = 1.96. A straightforward use of this confidence interval can
be a thresholding procedure, in which all pixel values which are not significantly different
from zero are set to zero. In other words, if [ak(i) − cσ (i)] 6 0 thenak(i) = 0. The
practical consequences of such an operation will be illustrated in section 4.

2.4.2. Relaxing the non-negativity constraints in the oblique analysis.In the oblique
analysis, at each iteration, factor images are calculated using equation (3), except that the
preprocessed trixelsx∗ij are used instead of the original trixelsxij . Therefore, the variance
Var[a∗k (i)] = σ 2(i) of the factor images{a∗k (i)}i=1,N is given by

Var[a∗k (i)] =
P∑
j=1

Var[x∗ij ]f̃
′2
k (j).
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As a result, a confidence interval [a∗k (i) − cσ (i); a∗k (i) + cσ (i)] can be associated with
each pixel valuea∗k (i). Given this confidence interval, the non-negativity constraints, which
conventionally consist of setting to zero all pixel values less than zero, can be relaxed so
that only the pixel valuessignificantly less than zero are set to zero, i.e.

if [ a∗k (i)+ cσ (i)] < 0 then a∗k (i) = 0.

Similarly, using equation (8), a confidence interval [fk(j)−cσ (j); fk(j)+cσ (j)] can be
associated with each factor valuefk(j). Given this confidence interval, the non-negativity
constraints, which conventionally consist of replacing by zero all factor values less than
zero, can be relaxed so that only the factor valuessignificantly less than zero are set to
zero, i.e.

if [ fk(j)+ cσ (j)] < 0 then fk(j) = 0.

3. Materials and methods

Numerical simulations have been performed (i) to check the validity of the theoretical results
regarding the statistical properties of the factor images and to study the domain of validity
of these results and (ii) to investigate the practical consequences of the theoretical results.

3.1. Statistical properties of the factor images

3.1.1. Statistical distribution. A two-compartment phantom (figure 1(a)) was used to study
the nature of noise in the factor images. The phantom consisted of two non-overlapping
homogeneous rectangles A1 and A2, with an area of 1200 pixels each. The two fundamental
curvesf̃1 and f̃2 associated with these fundamental images were a constant curve and a
monotonically increasing curve. The same contribution was given to each compartment,
i.e. the total signal intensity in each compartment was the same. Using these fundamental
components, five image sequences were created by varying the total number of counts
x.. and the number of imagesP in the sequence. The parameters of the simulations are
summarized in table 1. Poisson noise was added to each image. For eachx.., the mean
value ofxij in the sequence is given in table 1. Each image sequence was processed with
FAMIS using the following protocol: 4× 4 pixel grouping; all trixels with intensity greater
than 30 were analysed; the two factors were set by projecting the known fundamental curves
into the study space, so that no variability due to an arbitrary number of iterations would
be introduced. Setting the factors guaranteed that they would be very close to the true
fundamental curves. No iterations were performed. For each analysis, two factor images
were obtained, one corresponding to each compartment.

Figure 1. Fundamental images used for (a) simulations 1 to 6, (b) simulation 7.
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Table 1. Characteristics of the different simulations.

Simulation no a1 a2 f̃1 f̃2 x.. Meanxij P

1 A1 A2 f̃1(j) = C1 f̃2(j) = 2j 5 600 000 77 30
2 A1 A2 f̃1(j) = C1 f̃2(j) = 2j 720 000 10 30
3 A1 A2 f̃1(j) = C1 f̃2(j) = 4j − 2 2 800 000 77 15
4 A1 A2 f̃1(j) = C1 f̃2(j) = 4j − 2 360 000 10 15
5 A1 A2 f̃1(j) = C1 f̃2(j) = 12j − 6 120 000 10 5
6 A1 A2 f̃1(j) = 300 exp(−0.1j) f̃2(j) = 100j0.25 2 800 000 39 30
7 R1 R2 f̃1(j) = 300 exp(−0.1j) f̃2(j) = 100j0.25 2 800 000 42 30

As the simulated compartments presented a uniform signal and because the estimated
factors were very close to the true fundamental curves, the number of counts in the factor
images should theoretically be identical in each pixel of a compartment. The statistical
distribution of noise in the factor images could therefore be investigated by looking at the
distribution of pixel values in each compartment. The Gaussian nature of noise in each
compartment was tested using a Kolmogorov–Smirnov test (Kendall and Stuart 1979).

3.1.2. Variance in the factor images.To test whether the variance observed in the factor
images could be predicted by the theoretical relationship (6), a ‘variance image’ was
calculated using equation (6) for each factor image. Using these variance images, the mean
variance value in each compartment was calculated. This mean value gave thetheoretical
estimate of the variance of the Gaussian distribution associated with the compartment. On
the other hand, using the factor images, the mean and variance of the pixel values were
calculated for each compartment. This gave theobservedvariance in the factor images.
The theoretical and observed variance values were then compared. This comparison was
performed for the five numerical simulations described above. In addition, as the theory
predicts that the variance depends on the factor shape, another simulation with different
curve shapes was performed. An image sequence was created by using the fundamental
distributions A1 and A2 (figure 1(a)) associated with curves̃f1(j) = 300 exp(−0.1j) and
f̃2(j) = 100j0.25 respectively (simulation 6 in table 1). This sequence was processed using
the same FAMIS protocol as that described above. Equation (6) also indicates that the
variance in the factor images is a function of the estimated factors and is not a function of
the true underlying fundamental curves. To check whether this was indeed the case, another
simulation (simulation 7 in table 1) was performed so that the estimated factors would be
biased. The fundamental spatial distributions were two overlapping rectangles R1 and R2
(figure 1(b)) and the associated curves were the same as those used for simulation 6. Using
this image sequence, two FAMIS were performed. The same clustering and thresholding
procedures as those described above were used. In the first analysis, the two factors were
set using the known fundamental curves and no iterations were performed. In the second
analysis, the factors were not seta priori and five iterations were used to estimate the
fundamental curves.

3.2. Practical implications

3.2.1. Associating a confidence interval with the factor image pixel values.For all FAMIS
which were performed, each factor image was thresholded so that all pixels with values
not significantly different from zero were set to zero. The number of non-zero pixels that
should theoretically be zero was noted, before and after thresholding the factor images.
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3.2.2. Relaxing the non-negativity constraints in the oblique analysis.A simulation was
performed using three rectangular non-overlapping compartments, of 240 pixels each, with a
uniform signal intensity. The curves associated with these compartments weref̃1(j) = 2j ,
f̃2(j) = 300 exp(−0.1j) andf̃3(j) = 100j0.25, for j = 1 to 30 and the three compartments
represented 33%, 34% and 33% of the total signal intensity respectively. Using these
compartments and curves, a sequence of 30 images with 400 000 counts in total was created
and Poisson noise was added. The mean number of counts per pixel was 18. Two FAMIS
were performed, each using a 4× 4 pixel grouping and analysing trixels with intensity
greater than 30. In the first analysis, factors were estimated in an iterative manner using the
conventional non-negativity constraints (without taking into account the confidence interval
associated with factor and factor image values) and 37 iterations were performed. The
second analysis was also performed using 37 iterations, but non-negativity constraints were
relaxed so that only the values significantly less than zero were set to zero during the oblique
analysis. In both analyses, the resulting factor images were thresholded using the variance
values, so that all values not significantly different from zero were set to zero.

4. Results

4.1. Statistical properties of the factor images

4.1.1. Statistical distribution. The mean and standard deviation of the signal in each
compartment of the factor images are summarized in table 2 for the different simulations.
The critical value for the Kolmogorov–Smirnov test was 0.039 atp = 0.05. In all cases,
the observed statistics was less than 0.039, meaning that the statistical distribution of the
signal in each compartment did not significantly depart from a Gaussian distribution. As
an example, the histogram of pixels values in compartment 1 for simulation 1 is shown in
figure 2.

Figure 2. Histogram of pixel values in compartment 1 for simulation 1.

4.1.2. Variance in the factor images.The variances measured in the factor images for
the different compartments and simulations are given in table 3, as a function of the
variance values predicted from the theory (equation (6)). For the second FAMIS performed
on simulation 7, where the factors were not seta priori, the factors and factor images



Statistical properties of factors and factor images in FAMIS 1703

Table 2. Mean signal and associated standard deviation in each compartment (cpt) and associated
Kolmogorov–Smirnov (KS) test values.

Simulation cpt 1 cpt 2
no (mean± sd) KS test (mean± sd) KS test

1 2324± 99 0.004 03 2324± 85 0.003 03
2 300± 36 0.002 00 298± 31 0.003 03
3 1163± 67 0.003 10 1162± 62 0.004 40
4 150± 25 0.006 13 148± 21 0.006 43
5 50± 14 0.009 13 50± 13 0.005 80

Table 3. Observed variance and variance predicted from the theory in the different compartments
(cpt) for the different simulations.

Variance
Simulation Observed predicted from
no cpt variance theory

1 1 9893 9743± 298
1 2 7183 7491± 204
2 1 1290 1265± 108
2 2 975 966± 75
3 1 4432 4661± 197
3 2 3793 3506± 145
4 1 638 602± 75
4 2 445 449± 49
5 1 205 207± 44
5 2 168 155± 30
6 1 2287 2378± 107
6 2 1762 1732± 61
7—FAMIS 1 1 1608 1636± 523
7—FAMIS 1 2 3589 3782± 97
7—FAMIS 2 1—ROI 1 3485 3593± 128
7—FAMIS 2 1—ROI 2 1628 1671± 106
7—FAMIS 2 2 5831 6145± 157

were biased compared with the true fundamental structures (figure 3). In the first factor
image, the theoretical and observed variance were compared in two different regions of
interest (figure 4), while in the second factor image, they were compared only in a region
corresponding to the second compartment. A plot of the observed variance against the
theoretical variance for all simulations is shown in figure 5.

4.2. Practical implications

4.2.1. Associating a confidence interval to the factor image pixel values.The numbers
of pixels with non-zero values in regions where there should theoretically be zero for the
different factor images and simulations are given in table 4 before and after thresholding the
factor images. Before thresholding, for the factor image representing mainly compartment
k, there were a large number of non-zero pixels in the region corresponding to the other
compartment. After thresholding, this number was strongly reduced and there only remained
between 0% and 4% of the non-zero pixels observed before thresholding.
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Figure 3. Factor images obtained for simulation 7 when not fixing the factors. The true
compartments are shown in figure 1(b).

Figure 4. Regions of interest (hatched areas) used to calculate the variance in the biased factor
images shown in figure 3(a).

Figure 5. Observed variance in the factor images as a function of the variance predicted from
the theory.

4.2.2. Relaxing the non-negativity constraints.The factors estimated using the two
FAMIS performed for the three-compartment simulations are superimposed with the true
fundamental curves in figure 6. Whennot relaxing the non-negativity constraints, the
iterative algorithm actually diverged around iteration 30, yielding poor curve estimates
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Table 4. Number of non-zero pixels in regions where there should be zero for the different
simulations, before and after thresholding the factor images using the estimated variance values.

Simulation No of non-zero values No of non-zero values
no Image before thresholding after thresholding

1 1 1196 20
1 2 1190 24
2 1 1184 32
2 2 1183 44
3 1 1192 32
3 2 1183 26
4 1 1178 37
4 2 1182 35
5 1 1159 3
5 2 1153 30
6 1 1182 24
6 2 1191 31
7—FAMIS 1 1 0 0
7—FAMIS 1 2 1490 56

Figure 6. Estimated factors for the three-compartment simulations. Full curves: original
fundamental curves. Broken curves: factors obtained when not using the relaxed non-negativity
constraints. Open circles: factors estimated using the relaxed non-negativity constraints.

(broken curves). When relaxing the non-negativity constraints, the solution remained stable
from iteration 30. For each factor image and each compartment, figure 7 shows the
theoretical and the observed mean values for the two analyses, before and after thresholding
the factor images, by taking into account the variance value associated with each pixel of the
factor images. When not relaxing the non-negativity constraints, the mean number of counts
was underestimated by 14% in compartment 1 (factor image 1), by 33% in compartment 2
(factor image 2) and by 5% in compartment 3 (factor image 3). In addition, before
thresholding the factor images using the confidence intervals, there was substantial apparent
signal in compartments 1 and 2 in factor image 3. Thresholding the factor images reduced
this signal. When relaxing the non-negativity constraints during the oblique analysis, the
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Figure 7. Mean values measured in the different compartments and the different factor images
for the three-compartment simulation.

mean numbers of counts were underestimated by 2% in compartments 1 and 3, and it
was overestimated by 2% in compartment 2. For the factor imagek corresponding to
compartmentk, there was almost no signal in the other compartments.

5. Discussion

The aim of FAMIS is to estimate (time or energy) curves and associated compartments from
an image sequence. Most often, the resulting factors and factor images are further analysed,
either only visually, or for quantitative purpose. From a quantitative point of view, factors
can be used for compartmental analyses (Samalet al 1993) or factor images can be used to
estimate signal intensity in a given compartment. For interpreting factors or factor images
quantitatively, it would therefore be useful to associate ‘confidence intervals’ with the factor
values and with the factor image pixel values.

This paper derived the statistical properties of factors and factor images. The case
of scintigraphic data for which the signal is Poisson distributed was considered in the
simulations. However, equations (3) and (7) from which the statistical properties of factor
images and factors are deduced apply whatever the statistical properties of the original data.
For Gaussian data, for instance, equation (3) shows that the factor images would also be
Gaussian. Characterizing the variance of the factors and factor images requires the variance
of the original trixelsxij to be known. In the case of Poisson dataxij of parameters
νij , the solution is trivial since Var[xij ] = νij which can be well approximated byxij . It is
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therefore straightforward to calculate the variance values associated with pixel or factor value
(equations (6) and (9)). For Gaussian data, the variance values could also be theoretically
calculated using equations (5) and (8) provided one can estimate the variance of the original
trixels xij . Note that equations (5) and (8) only apply when the noiseeij associated with the
original trixelsxij is not spatially correlated, making the covariance terms equal to zero. In
that case, equations (5) and (8) are nothing other than the elementary result from probability
theory which states that the variance of a weighted sum of random variables is equal to
the squared weighted sum of the variances of the variables. For spatially correlated noise,
equations (5) and (8) would contain covariance terms which should be estimated to make
calculation of the factor and factor image variance reliable. In the case of Poisson data,
the numerical simulations demonstrated the validity of the theoretical results, namely that
the signal is Gaussian distributed in the factor images (table 2 and figure 2), and that the
variance associated with each pixel value can be predicted using equation (6) (table 3 and
figure 5). The Gaussian nature of the signal in factor images is theoretically guaranteed if
eitherxij or the number of imagesP is greater than 30. The experimental results showed
that in agreement with the theory, the signal is Gaussian forxij > 30 even isP is low
(simulation 3), or forP > 30 if xij < 30 (simulation 2). As a result, the signal is also
Gaussian when bothxij > 30 andP > 30 (simulation 1). Furthermore, it was found that the
signal in the factor images remained Gaussian when bothP andxij were low (simulations 4
and 5). This is probably because bothxij and P values contribute to the convergence
towards the Gaussian asymptotic results. From a practical point of view, factor images are
therefore always Gaussian for scintigraphic data. Another important characteristic is that
the variance associated with each pixel value in the factor images does not depend on the
true fundamental curves. It is entirely determined by the variance of the original trixels
xij and by the estimated factors̃fk. If the factors are biased estimates of the underlying
fundamental curves (simulation 7, FAMIS 2), the variance values depend on the bias (since
they are calculated from the estimated factors), but can be estimated without estimating the
bias (table 3). This means that variance values can be systematically associated with factor
images, even when the bias that may affect the factors is unknown (which is what happens
most often).

The same theoretical derivations apply for associating variance values with factors
(equations (7) and (8)). For Poisson data, factors are therefore Gaussian distributed, since
the number of trixelsN is always greater than 30. For Gaussian initial data, factors would
also be Gaussian distributed. A confidence interval can be associated with each factor value
using equation (8). Again, variance can be associated with factors without knowing the bias
that may affect the factor images.

Note that if the statistical distribution of the original data was unknown, or if the
statistical distribution of the factor images or factors was unknown, the only way to estimate
the variance of the factor analysis parameters would be to replicate the same experiment a
large number of times.

It is important to underline that one cannot associate variance values with factorsand
factor images simultaneously. Indeed, either the factors are assumed to be non-random and
the variance of the factor images is deduced from the projection of the random original
trixels onto the non-random factors, or the factor images are assumed to be non-random
and the variance of the factors is deduced from the projection of the random original trixels
onto the images.

We have presented two applications for which knowledge of the statistical properties of
factors and factor images can be used to advantage. A straightforward use of the variance
associated with each pixel value in the factor images is to determine whether the pixel value
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is significantly different from zero. If it is not, it can be replaced by zero. This thresholding
operation greatly reduced the signal present in the factor images in regions where signal
should be zero (table 4). On the other hand, it did not affect signal in regions where it
was high enough (figure 7) and therefore significant. The relevance of thresholding may
be questionable in regions of intrinsic low-intensity signal, where weak signal could be
partially cancelled by thresholding. To make thresholding more robust, it might be worth
using a spatial model during the thresholding operation. For instance, deciding whether a
pixel should be set to zero could depend not only on the pixel value and associated variance,
but also on the values and variances observed in neighbouring pixels.

A second application concerns the oblique analysis procedure. The conventional oblique
analysis algorithm is based on non-negativity constraints: negative values in factors and in
factor images are set to zero in turn in the iterative algorithm until the solution meets the
non-negativity constraints ‘reasonably well’. This algorithm can be seen as an iterative
forward/backward estimation technique. Calculation of the factor images corresponds to
a forward estimation, given the original trixels and assuming that the factors are known.
The backward step estimates the factors given the original random trixels and the known
factor images. At each step, non-negativity constraints should ensure that the number of
negative values in factors or factor images decrease. A flaw in this approach, however, is
that all negative values are set to zero, whether they are significantly negative or not. As
shown using the three-compartment simulation, this can cause the algorithm to diverge. On
the other hand, using the ‘relaxed’ non-negativity constraints to account for the confidence
interval associated with each factor or factor image value prevents the algorithm from
diverging. A solution is achieved where all negative values are not significantly different
from zero so that neither factor images nor factors are modified. Another related, although
less dramatic, phenomenon was observed in the case of trixels with a high level of noise
(typically xij less than 30). In such cases, the cloud of points in the study space (i.e. the
βkq coordinates, see the appendix) corresponding to a compartment is spread out because of
noise. For each compartment, the conventional oblique analysis algorithm withstrict non-
negativity constraints finds a solution corresponding to the extreme points of the clouds,
i.e. at the edge of the clusters corresponding to the different compartments, while the true
solution rather lies at the centre of gravity of each cloud of points. Using the relaxed non-
negativity constraints prevents this effect and gives a solution inside the cloud of points,
i.e. close to the true solution.

6. Conclusion

We have demonstrated that the statistical properties of factors and factor images can be
theoretically derived from the statistical properties of the initial data. Using simulations, we
showed that in the case of Poisson data, the experimental results were consistent with those
predicted by the theory. The advantages of accounting for the variance associated with factor
values or factor image pixel values were demonstrated in two instances: for thresholding
factor images so that false signal coming from noise can be removed, and for relaxing
the non-negativity constraints in the oblique analysis procedure involved in FAMIS. This
relaxation method has been shown to prevent the iterative oblique analysis algorithm from
diverging on a numerical simulation. Other potential applications of the results presented
in this paper include adaptive factor image restoration based on the statistical properties of
the factor images. Further theoretical studies will also concern the variance estimates of
factors and factor images for original data with spatially correlated noise.
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Appendix

In this appendix, we present the FAMIS oblique analysis model and the algorithm used to
solve it. Two dual models can be considered (Benaliet al 1994): a model pertaining to
the fundamental curves (called the curve model) and a model pertaining to the fundamental
images (called the image model). Both models assume that the fundamental curves and
the fundamental images belong to the study spaceS resulting from the orthogonal analysis.
The curve model assumes that the fundamental curves can be written:

f̃k(j) = x.j

x..
+

K−1∑
q=1

1

x..
βkqϕq(j) (A1)

where theβkq are the coordinates of the fundamental curvef̃k in the study space. Using
this model, the fundamental images are given by

ã∗k (i) = γk0
x∗i
x..
+

K−1∑
q=1

1

x..
γkqψ

∗
q (i) (A2)

where theγkq are the coordinates of the fundamental imageã∗k in the study space. The
image model can be deduced from the curve model by substituting variablej for variable
i. It assumes that the fundamental images can be written

ã∗k (i) =
x∗.i
x..
+

K−1∑
q=1

1

x..
γkqψ

∗
q (i). (A3)

The fundamental curves are then given by:

f̃k(j) = βk0
x.j

x..
+

K−1∑
q=1

1

x..
βkqϕq(j). (A4)

Either model is solved in an iterative manner, using non-negativity constraints,
normalization constraints anda priori knowledge. We give here the relationships holding
for the curve model and the image model when correspondence analysis is used for the
orthogonal analysis. If another orthogonal decomposition is performed, the gist of the
oblique analysis is basically the same but the relationships (especially those related to
normalization) are different.

In the curve model, the fundamental image coordinatesγkq are related to the fundamental
curve coordinatesβkq by

βγ t = KId (A5)

whereβ is theK ×K matrix of βkq with the first column{βk0}k=1,K being set to 1 andγ
is theK ×K matrix of γkq with the first column{γk0}k=1,K being set to 1. Id is theK ×K
identity matrix.

Moreover, one can show that the following ‘normalization’ constraints hold:

K∑
k=1

βkqγk0 = 0 ∀q = 1,K − 1 (A6)

K∑
k=1

γkq = 0 ∀q = 1,K − 1 (A7)
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and
K∑
k=1

γk0 = K. (A8)

In the image model, the fundamental image coordinatesγkq are also related to the
fundamental curve coordinatesβkq by equation (A5). The ‘normalization’ constraints are

K∑
k=1

γkqβk0 = 0 ∀q = 1,K − 1 (A9)

K∑
k=1

βkq = 0 ∀q = 1,K − 1 (A10)

and
K∑
k=1

βk0 = K. (A11)

When the curve model is used, the algorithm is as shown below:

(1) Initialization of the coordinatesβkq of the fundamental curvẽfk. βk0 = 1 for all
curvesf̃k.

(2) Calculation of the correspondingγkq using equation (A1).
(3) If some of theγkq are knowna priori, substitution of the corresponding estimated

γkq values by the known valuesγkq .
(4) Normalization of theγkq so that equations (A3) and (A4) are verified.
(5) Non-negativity constraints on the factor images: the images{a∗k (i)}i=1,N

corresponding to theγkq values are calculated. Ifa∗k (i) < 0, a∗k (i) is set to zero. After these
substitutions, the newγkq are deduced and normalized so that equations (A3) and (A4) are
verified.

(6) Calculation of the curve coordinatesβkq corresponding to the new image coordinates
γkq using equation (A1).

(7) If some of theβkq are knowna priori, substitution of the corresponding estimated
βkq values by the known valuesβkq .

(8) Non-negativity constraints on the factors: the images{fk(j)}j=1,P corresponding
to the γkq values are calculated. Iffk(j) < 0, thenfk(j) is set to zero. After these
substitutions, the newβkq are deduced and normalized so thatβk0 = 1.

(9) Back to step (2).

The algorithm starts from an initial estimate of the factor coordinates (step (1)). The
corresponding factor image coordinates are deduced (step (2)). In some applications, some
factor images may be knowna priori . In this case, the corresponding estimated factor
images are replaced by the known factor images (step (3)). After this substitution, the
normalization constraints are applied to make sure that the set of factor image coordinates
is consistent (step (4)). The next step checks that, given the factors, the associated factor
images contain only non-negative values. If they do not, all negative values are replaced by
zero. Again, the normalization constraints are applied to ensure that the resulting set of factor
image coordinates is consistent (step (5)). Using these new factor images, the corresponding
factors are then calculated (step (6)). If some factors are knowna priori , the corresponding
estimated factors are replaced by the known factors (step (7)). All negative factor values
are replaced by zero (step (8)). After these substitutions, the factors are normalized so that
the set of factor coordinates is consistent with the normalization constraints. The resulting
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factors can then be used to get new estimates of the fundamental images. The procedure
is repeated until a stopping criterion is met. The stopping criterion can be: (i) a default
number of iterations; (ii) a number of negative values in the factor images or in the factors
less than a given threshold; (iii) a change between two consecutive factor images or factor
coordinate estimates less than a given threshold.

When solving the image model instead of the curve model (Benaliet al 1994), the
iterative procedure is the same except that it starts from an estimate of the factor images.
Furthermore, the normalization constraints are those related to the image model, i.e.
corresponding to equations (A10) and (A11), instead of being those given by equations (A7)
and (A8).
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