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Abstract. In SPECT, both the noise affecting the data and the discretization of the inverse
Radon transform are responsible for the ill-posed nature of the reconstruction. To constrain
the problem, we propose a regularized backprojection method (RBP) which takes advantage
of the relationships existing between the continuity properties of the projections and those of
the reconstructed object. The RBP method involves two stages: first, a statistical model (the
fixed-effect model) is used to estimate the noise-free part of the projections. Then, the filtered
projections are reconstructed using a backprojection algorithm (spline filtered backprojection)
which ensures that the reconstructed object belongs to a space consistent with that containing
the projections. The method is illustrated using analytical simulations, and the RBP approach is
compared to the conventional filtered backprojection. The effect on the reconstructed slices of
the parameters involved in RBP is studied in terms of spatial resolution, homogeneity in uniform
regions and quantification. It is shown that appropriate combinations of these parameters yield
a better compromise between homogeneity and spatial resolution than conventional FBP, with
similar quantification performances.

1. Introduction

Tomographic reconstruction is a well known ill-posed inverse problem. Analytic
reconstruction algorithms are derived from the Radon theory which applies to continuous
signals (Radon 1917). However, the discrete inverse problem is unstable because the discrete
inverse Radon operator does not present suitable properties of linearity and shift-invariance.
Yet, it has been shown that the inverse Radon transform between appropriate regular spaces
(Sobolev spaces) is continuous (Louis 1980, Natterer 1986): if the projections present the
regularity properties which make them belong to a given Sobolev space, one can relate this
space to the Sobolev space which the reconstructed object belongs to. In the following, this
theorem will be termed the ‘space correspondence theorem’.

In SPECT, in addition to the intrinsic discrete nature of the detected signal, noise
also contributes to the ill-posedness of the reconstruction. Conventional approaches
to tomographic reconstruction in the presence of noise include backprojecting filtered
projections (Budingeret al 1979), modelling noise in iterative reconstruction schemes
(Lange and Carson 1984) and using restoration filters such as the Wiener filter (see, e.g.,
King et al 1984). None of these methods, however, explicitly address the ill-posed nature
of the reconstruction problem due to the signal discretization.

In this paper, we introduce a regularized backprojection method (RBP) to address
the ill-posed nature of tomographic reconstruction in SPECT, by dealing with both the
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problems of noise and discretization. The aim of the RBP method is to ensure that the
space correspondence theorem (relating the projection Sobolev space and the object Sobolev
space) is satisfied. Using both the continuity and the statistical properties of the projections,
a statistical model is proposed to estimate the noise-free part of the projections belonging
to a given Sobolev space. The filtered projections are then reconstructed using the spline
filtered backprojection algorithm (Guédon and Bizais 1991, 1994), which ensures that the
reconstructed object belongs to the Sobolev space corresponding to the projection space.

Section 2 presents the theory underlying the regularized backprojection method. Sections
3 and 4 illustrate the method using analytical simulations, with a particular emphasis on how
the parameters involved in the RBP affect the spatial resolution, the signal homogeneity in
uniform regions and the absolute quantification in the reconstructed slices.

2. Theory

This section describes the regularized backprojection method, which takes advantage of the
space correspondence theorem by means of two steps: a statistical model is first solved
(sections 2.1 and 2.2) so that the noise affecting the tomographic data can be filtered while
ensuring that the filtered projections belong to the desired Sobolev space. It is then shown
(section 2.3) that performing the reconstruction using the spline filtered backprojection
algorithm leads to an object belonging to the Sobolev space consistent with the projection
space.

2.1. Statistical model for noise filtering

The filtering procedure is based upon an additive model called the fixed-effect model
(Caussinus 1986), initially proposed in the statistical field of multidimensional data analysis.
In a previous paper (Benaliet al 1994), we described how the fixed-effect model could be
used to deal with noisy tomographic data. In this paper, the model is specifically adapted to
SPECT in the framework of the space correspondence theorem, and uses both the continuity
and the statistical properties of the acquired projections asa priori knowledge.

2.1.1. Fixed-effect model.For a given slice, letP be the (N, T ) acquired sinogram, where
N is the number of projections andT is the number of bins per 1D projection. The elements
of P are denoted byPik, wherei = 1, N and k = 1, T . The T -vectorPi represents the
variation of the signal along the bins within the projectioni.

A tomographic acquisition device is characterized by a finite spatial response function.
If there were no noise, the acquired projections should therefore be continuous functions
along the projection bins, sampled at a numberT of projection bins. The intrinsic regularity
of Pik along the bins of projectionsk can be modelled by assuming thatPi belongs to the
Sobolev vector spaceH(m). The Sobolev spaceH(m), m real, is defined as a space of
functions having absolutely continuous derivatives up to orderm − 1, and such that the
square of themth derivative has a finite integral (Adams 1975).

The fixed-effect model is defined in a Sobolev space as follows.

(1) The vectorsPi are defined on a probability space and can be written

Pi = P̂i + Ei
whereP̂i is the non-random part (fixed part) ofPi , andEi is a random error. In this model,
the fixed partP̂i represents the noise-free projections.
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(2) The random errorsEi are assumed not to depend onP̂i , i.e., the expectation ofPi
is given by

E[Pi ] = P̂i .
(3) The random errorsEi are also assumed to be independent from one projection to

another. For any projectioni, the variance ofEi alongk can be written

E[Et
i Ei ] =

1

N
0

where t denotes the transpose and0 is the covariance matrix of errors, which is supposed
to be known and not to depend oni. 0 is a (T , T ) symmetric positive definite matrix.

(4) There is aQ-dimensional subspaceH(m)
Q of H(m) (Q < T ) such that allP̂i belong

to H(m)
Q .

In summary, the fixed-effect model assumes that the noise-free part of the signal belongs
to a subspace of the space which the acquired signal belongs to. It models the continuity
properties of the data by means of the Sobolev spaceH(m) and assumes that the first- and
the second-order properties of the noise are known.

2.1.2. Properties of the noise.In SPECT, noise is distributed according to Poisson statistics.
Consequently, the covariance matrix of the errorsEi depends oni. As the fixed-effect model
assumes that0 does not depend oni, the following square root transform of the acquired
dataPi is performed:

Pik 7→
√
Pik + 3

8.

This conventional transformation changes a Poisson variable into an asymptotic Gaussian
variable with a known asymptotic variance. The covariance matrix0 should not depend on
i any more and is given by (Rao 1985)

0 ≈ 1
4I

whereI is the (T , T ) identity matrix.

2.2. Solution of the model

To solve the fixed-effect model, the subspaceH(m)
Q containing the noise-free part̂Pi of the

dataPi must be estimated. The noise-free sinogram is then given by the projection ofPi
onto the subspaceH(m)

Q .

2.2.1. DeterminingH(m)
Q . As shown by Besse (1988), the least-square estimate ofH

(m)
Q is

obtained by minimizing the expression

< = 1

N

N∑
i=1

E
[
|P γi − P̂i |20−1

]
(1)

whereP γi ∈ H(m) is the smoothed version ofPi , and is the solution of

P
γ

i = arg inf
h∈H(m)

{ T∑
k=1

[Pik − hk]2+ γ
T∑
k=1

h
(m)
k 1k

}
. (2)

1k is the size of a projection bin,h is a function ofH(m) with sampleshk andh(m) is its
mth derivative. It should be noted that expression (2) represents a trade-off between the
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fidelity to the dataPi , as represented by the first term, and the smoothness of the solution, as
represented by the second term.γ > 0 is the smoothing parameter controlling this trade-off
between fidelity and smoothness (Besse 1988). Schoenberg (1964) showed that the solution
P
γ

i of equation (2) is a spline function, piecewise polynomial of degree 2m − 1, in each
interval [k, k + 1], with the pieces joined at the knotsk so thath has 2m − 2 continuous
derivatives. For instance, cubic spline functions, piecewise polynomials of degree three, are
obtained withm = 2.

The solution of the minimization problem given by equation (1) is obtained
using a Principal Component Analysis of smoothing spline functions, involving the
eigendecomposition of the matrixW0−1 (Caussinus 1986, Benaliet al 1994); W is the
(T , T ) covariance matrix calculated by

W = 1

N
(P γ − P̄ γ )t(P γ − P̄ γ )

where the elements of the matrixP γ are theP γik, and the elements of the mean matrixP̄ γ

are theP̄ γik defined by

P̄
γ

ik =
1

N

N∑
i ′=1

P
γ

i ′k.

The subspaceH(m)
Q is then spanned by the mean projectionP̄ γ and the firstQ eigenvectors

U
q

k associated with the largestQ eigenvaluesλq of the matrixW0−1.

2.2.2. Estimating the noise-free sinogram.The orthogonal projection ofP γi onto the
subspaceH(m)

Q leads to the filtered sinogram̃P γi estimating the noise-free sinogram̂Pi :

P̃
γ

ik = P̄ γik +
Q∑
q=1

√
λqV

q

i U
q

k

where the principal componentsV qi are given by

V
q

i =
1√
λq

T∑
k=1

([P γik − P̄ γik]Uq

k ).

The final filtered sinogram is then obtained by performing the inverse transform:

P̃
γ

ik 7→ [P̃ γik]
2− 3

8.

It should be noted that ifP̃ γi belongs toH(m), [P̃ γi ]2 also belongs toH(m). As the final
projection space is known, the space correspondence theorem can be applied.

2.3. Reconstruction model

The fixed-effect model not only deals with the problem of noise, but also allows the
first condition of the space correspondence theorem to be satisfied by ensuring that the
filtered projections belong to a Sobolev space. However, reconstruction from noise-free
projections remains an ill-posed problem because of the finite number of projections. Yet, the
space correspondence theorem states that the inverse Radon transform between appropriate
Sobolev spaces is continuous and, more precisely, that the inverse Radon transform of a set
of projections belonging toH(m) is an object belonging toH(m−1/2) (Louis 1980, Natterer
1986). As the projections̃P γi were modelled with spline functions of order 2m−1, it follows
that the object belonging toH(m−1/2) can be modelled with spline functions of order 2m−2.
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The reconstruction problem is then no longer ill-posed, provided that the continuous inverse
Radon transform is discretized in such a way that the linearity and shift-invariance properties
of the continuous operator are maintained (Guédon and Bizais 1991).

The spline filtered backprojection (SFBP) algorithm proposed by Guédon and Bizais
(1991, 1994) was initially developed to account for the relationships existing between the
continuous and discrete versions of the standard FBP reconstruction method. It operates
slice by slice (i.e., 2D reconstruction) and forces the reconstructed object to belong to a
function space in which the inverse Radon transform is continuous, e.g., a Sobolev space.
We adapted this method to reconstruct an object belonging toH(m−1/2). The SFBP algorithm
then derives the optimal spline ramp filter, which consists of the convolution of the infinite
ramp filter with spline functions of order 2m− 2.

The projections P̃ γi are filtered using this optimal spline ramp filter and then
backprojected to obtain the reconstructed object belonging toH(m−1/2). The SFBP algorithm
is therefore a straightforward method to be used for the reconstruction of an object belonging
to the desired Sobolev space. The combination ‘filtering/SFBP’ performed in consistent
Sobolev spaces is what we call the regularized backprojection (RBP).

Figure 1 gives a synopsis of the processing steps, from the acquired data to the
reconstructed object. In summary, RBP requires two steps: a noise filtering procedure
followed by a consistent reconstruction algorithm (SFBP). Three parameters in total are
involved in the noise filtering step: the projection Sobolev space dimensionm, the smoothing
parameterγ (equation (2)) and the dimensionQ of the Sobolev subspaceH(m)

Q .

Figure 1. Regularized filtered backprojection (RBP): summary of the processing steps. The
dotted arrows show the steps in which parameters are involved.

3. Materials and methods

3.1. Data simulation

The effectiveness of the proposed approach was assessed using analytical simulations. All
phantoms described below consisted of a single cross-section generated using the RECLBL
library (Huesmanet al 1977). In each case 128 equally spaced projections along a 360◦
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circular orbit were calculated for a parallel geometry, with 128 bins per projection, using
a projector of the RECLBL library. The projector did not take into account attenuation
nor scatter, but was modified to account for a depth-dependent detector response function
corresponding to that of an LEHR collimator. The detector response was assumed to be
a symmetric Gaussian function with a standard deviation varying linearly with the source
depth. The pixel size was 4.14 mm. Poisson noise was added to the calculated projections.

3.1.1. Homogeneity and spatial resolution phantom.A first simulation was conducted to
study how the spatial resolution and the signal homogeneity in uniform regions would
change when filtering the sinogram with differentγ andQ values. The phantom was a
homogeneous ellipse including nine one-pixel spots (figure 2(a)). The spots:background
count ratio was 20:1. The mean number of counts per pixel in the resulting noisy sinogram
was approximately 150.

Figure 2. (a) Simulated spatial resolution phantom; the straight line represents the level of
the horizontal profile shown in figure 7. (b) Reconstructed slice obtained with FBP-HAN.
(c) Reconstructed slice obtained with RBP [γ = 10−4, Q = 45].

3.1.2. Quantification phantom.An elliptical phantom was generated with homogeneous
regions of various count levels large enough to avoid partial volume effects and to perform
statistical tests between ROIs (figure 3(a)). The noisy sinogram resulting from this numerical
simulation is shown in figure 3(b). The mean number of counts per pixel in that sinogram
was approximately 90.

3.2. Data analysis

3.2.1. Image reconstruction.The following reconstruction schemes were compared:

(1) filtered backprojection (FBP) using the conventional Hann (FBP-HAN, cut-off
frequency: 0.5 pixel−1) and Butterworth filters (order: 4, cut-off frequency: 0.25 pixel−1)
(as the reconstructed images with these two filters were never significantly different, only
the FBP-HAN results are presented in section 4) and

(2) regularized backprojection (RBP) withγ varying from 10−7 to 10−2 andQ varying
from 10 to 50. Cubic spline filters were used to model the continuity of the projections (i.e.,
m = 2), and the spline filter used to reconstruct the object was calculated using quadratic
spline functions to be consistent with the spline reconstruction model.

Depth-dependent blurring was not compensated for.
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3.2.2. Homogeneity and spatial resolution phantom.For the spatial resolution phantom,
the variance was calculated in a large region of interest (238 pixels) drawn in the background
ellipse to characterize the signal homogeneity in the reconstructed background.

As the size of the simulated spots was smaller than twice the FWHM of the detector
response function, the number of counts measured at the theoretical centre of the spot
was directly related to the real size of the reconstructed spot (Hoffmanet al 1979), i.e.,
to the spatial resolution in the reconstructed image. The spatial resolution was therefore
characterized by measuring the number of counts at the centre of the spots as a function of
γ andQ. The same measures were performed on the FBP images.

3.2.3. Quantification phantom.The reconstructions were normalized to ensure that the
total number of counts in the reconstructed slice was equal to the total number of counts
in the sinogram, so that absolute quantitative analysis could be performed. The average
number of events per pixel and the corresponding standard deviation were calculated in
four rectangular ROIs (238 pixels each) with intrinsic uniform count density (figure 3(c)).

Figure 3. (a) Simulated quantification phantom with the region:background concentration ratios
equal to 0:1, 2:1, 4:1 from left to right. (b) Noisy sinogram. (c) Regions of interest used for
absolute quantification.

4. Results

4.1. Homogeneity and spatial resolution phantom

Figure 4 shows the variance values measured in the background ROI, for differentγ andQ
values. As expected, the higherγ and the lowerQ, the more homogeneous the background
signal. F -tests comparing the variance values in the background ROI obtained using RBP
and FBP-HAN reconstructions are summarized in figure 5(a). The lightest area corresponds
to the [γ,Q] combinations for which the background signal in the RBP images was more
homogeneous than the background signal in the FBP-HAN images.

Figure 6 shows the mean number of counts calculated over the nine points in the
reconstructed images; as previously mentioned, due to the partial volume effect, this mean
count level characterized a mean spatial resolution in the images. The higherγ and the
lowerQ, the lower the number of counts, i.e., the worse the spatial resolution.

Results of thet-tests comparing the mean count level obtained using RBP reconstructions
and FBP-HAN reconstruction are summarized in figure 5(b). The darkest area corresponds
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Figure 4. Variance values measured in the background ROI of the spatial resolution phantom
as a function ofQ andγ .

Figure 5. Results of the statistical tests for the spatial resolution phantom. (a)F -tests comparing
RBP variance in the background ROI with FBP-HAN variance. (b)t-tests comparing RBP mean
count level over the nine points with FBP-HAN mean count level. The area inside the dashed
line represents the [γ,Q] combination yielding a greater background homogeneity with no
significant loss in spatial resolution.

to the [γ,Q] values for which the spatial resolution in the RBP images is as good as for
the FBP-HAN images. Combining the results of theF -tests andt-tests given in figure 5
showed that the choice [γ = 10−4, Q > 45] led to a reconstruction where the background
signal was more homogeneous than with a conventional FBP-HAN reconstruction, with
no significant loss in spatial resolution. This result can be clearly seen on the horizontal
profile drawn through the central spots (figure 7) for the FBP-HAN reconstruction and the
RBP [γ = 10−4, Q = 45] reconstruction. Figures 2(b) and 2(c) show the corresponding
reconstructed slices.
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Figure 6. Mean count level over the nine reconstructed spots in the spatial resolution phantom
as a function ofQ andγ .

Figure 7. Dotted line: theoretical horizontal profile through the central spots of the spatial
resolution phantom. Solid line: corresponding profiles obtained on the reconstructed slices
using FBP-HAN (a) and RBP [γ = 10−4, Q = 45] (b).

4.2. Quantification phantom

Figure 8 summarizes the results obtained when comparing the variance values measured
in ROIs drawn on the FBP-HAN and RBP images. For allQ values, the variance with
γ > 10−3 was significantly lower than the variance obtained with FBP-HAN and the
corresponding values were not represented for clarity. The lightest areas correspond to the
[γ,Q] values for which the variance values in the ROIs were significantly lower in RBP
images than in FBP-HAN images.
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Figure 8. Results of theF -tests comparing the variance values measured in the RBP
reconstructed slice with those measured in the FBP-HAN reconstructed slice.

Figure 9. Results of theZ-tests comparing the mean values in the RBP reconstructed slice with
the theoretical mean.

Figure 9 summarizes the results of theZ-tests comparing the means in the ROIs drawn
on RBP images with the theoretical values. The darkest areas correspond to [γ,Q] values
for which the count level in the RBP ROIs was correctly restored. FBP-HAN mean was
significantly lower than the theoretical mean in ROI 1 (p < 0.05), but not significantly
different in the other ROIs.

In summary, the choice [γ = 10−4, Q > 45] yielded a reconstruction where absolute
quantification was equivalent to that obtained with FBP-HAN, but with a significantly lower
variance in ROIs 1 and 3. Figure 10 shows the count level values obtained for the FBP-
HAN and RBP [γ = 10−4, Q = 45] reconstructions; the corresponding reconstructed slices
are shown in figure 11.
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Figure 10. Mean±1 standard deviation measured in the ROIs for the quantification phantom.

Figure 11. (a) Filtered sinogram of the quantification phantom with [γ = 10−4, Q = 45].
Reconstructed slices obtained using FBP-HAN (b) and RBP [γ = 10−4, Q = 45] (c).

5. Discussion

There are basically two reasons for the ill-posed nature of tomographic reconstruction
in general, and in SPECT in particular: the noise affecting the acquired data and the
discretization of the inverse Radon transform. In this paper, we propose a regularized
backprojection method addressing both problems. We show that these two issues can be
consistently dealt with by applying the space correspondence theorem.

Noise is dealt with using the fixed-effect model, which permits us to account for
two kinds of a priori knowledge: (1) SPECT events are Poisson distributed; (2) noise-
free projections should intrinsically present a certain regularity because of the limited
spatial resolution of the imaging system. This model describes the projections as a linear
combination of a noise-free component and an error. As the model assumes that the
covariance of the error does not depend on the projections, a square-root transform of
the initial SPECT data is first used; the covariance matrix of the resulting errors should then
not depend on the projections any more (0 ≈ 0.25I ). The model also assumes that the data
belong to a Sobolev space, consistent with the fact that the projections should present a
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certain regularity or smoothness due to the limited spatial resolution of the imaging system.
Projecting the data onto the Sobolev space involves using spline functions, with an order
to be determined. In this study, a Sobolev space of orderm = 2 was chosen: cubic splines
are mainly used because they are easily calculated (Harwell 1990) and give in general
satisfactory results (Reinsch 1967). The fixed-effect model in Sobolev space is solved
using a Principal Component Analysis to estimate the noise-free part of the projections.
Solving the fixed-effect model in a Sobolev space after the square-root transformation is
equivalent to a non-linear filtering of the original projections. It has been shown that this
approach leads to a better estimation of the noise-free sinogram than spline smoothing alone
or linear filtering alone (Benaliet al 1994).

To deal with the ill-posed nature of the reconstruction, the discretization of the inverse
Radon transform was optimized by performing the reconstruction of the filtered projections
using the SFBP algorithm. The relevance of adding continuity constraints in the spline ramp
filter was discussed by Guédon and Bizais (1991, 1994). In this paper, we pointed out that
this method could be used in the particular context of the space correspondence theorem;
the main point is that in the framework of the space correspondence theorem, choosing the
spline orderm involved in the fixed-effect model completely determines the filter to be used
for the reconstruction: using cubic splines (m = 2) in the fixed-effect model implies using
quadratic splines for the reconstruction filter (see figure 1).

In addition to the spline order, two other parameters must be chosen when solving the
fixed-effect model: (1) the smoothing parameterγ used when fitting the projections using
spline functions: the higherγ , the smoother the projections, as illustrated by the numerical
simulations (in that respect, 1/γ is analogous to the cut-off frequency of the ramp filter
(Wahba 1990)); (2) the second parameter is the dimensionQ of the Sobolev subspace.Q
represents the dimension of the subspace containing the noise-free component. The smaller
Q, the greater the filtering; in other words, the higherQ, the better the spatial resolution in
the reconstructed image.

The challenge is therefore to determine a combination of [γ,Q] which will actually
remove noise without losing any relevant information. This challenge is similar to
determining the appropriate cut-off frequency and/or order of a filter when using
conventional FBP, or the regularization parameter in iterative schemes. Several methods
have been suggested for choosingQ (Besse 1988, Wold 1978), or the combination [γ,Q]
using cross-validation methods (Craven and Wahba 1979). In the case of Principal-
Component Analysis, however, the theory of perturbations showed that the cross-validation
methods are the same than those using conventional criteria (Besse and Ferre 1993), such
as percentage of explained variance described by Joliffe (1986). For the spatial resolution
phantom and the quantification phantom presented in this study, the percentage of explained
variance ranged from 95% to 99.8% for 106 Q 6 50 and did not prove to be useful to
determine the appropriateQ value. Nevertheless, the numerical experiments reported in this
paper showed that, for the simulated phantoms, it was possible to find a [γ,Q] combination
yielding a better trade-off between signal homogeneity in uniform regions, count level
restoration and spatial resolution than that with a conventional FBP reconstruction. The
aim of this paper was mainly to describe a consistent reconstruction theory and to assess
its feasibility. The method was thus only compared with FBP using conventional filters
(Hannfc = 0.5 pixel−1 and Butterworth, order 4,fc = 0.25 pixel−1) because (1) the SFBP
reconstruction method was initially developed to improve standard FBP reconstruction;
(2) FBP is the most commonly used method in clinical practice. Further work is necessary
to determine whether there is always a [γ,Q] combination that would provide a better
‘noise/quantification/spatial resolution’ trade-off than optimized FBP reconstructions, for any
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object and noise level. Moreover, as the filtering method models the statistical properties
of the signal, RBP should also be compared with other reconstruction methods taking
the statistical properties of the data into account, such as ML–EM. Performing the RBP
reconstruction took about 30 s using a Ultra1 SunSPARC workstation, while an FBP-HAN
reconstruction took about 7 s. However, the RBP algorithm could be optimized to run
faster.

In the spatial resolution phantom, a mean number of counts was calculated over the nine
spots to characterize the spatial resolution using the partial volume effect. This calculation
was relevant because the count level of every spot behaved the same way for the different
[γ,Q] combinations. The differences between the spots, mainly shape differences, were
not considered individually in this study.

Quantification in ROI 1 of the quantification phantom showed that the count level was
significantly different from the theoretical value. The same experiment was conducted
without simulating the detector response function, and the mean count level in ROI 1 was
not significantly different from the theoretical mean. This emphasizes the necessity of
compensating for the depth-dependent blurring to achieve accurate quantification.

In this paper, the method was validated using simulated projections where only the
detector response and the acquisition noise were modelled. However, the RBP method
has already been applied to the reconstruction of attenuation maps from short-duration
transmission tomographic acquisitions. Indeed, the statistical properties and continuity
properties of transmission projections are the same as those of emission projections
(Pélégrini et al 1996). We are also currently applying the method to Monte Carlo
simulations, which are corrupted by noise, attenuation, scatter and variable geometric point
spread function. A whole protocol involving RBP and allowing for scatter, variable point
spread function and attenuation compensation is under investigation (El Fakhriet al 1997).

6. Conclusion

In SPECT, both the noise affecting the data and the discretization of the inverse Radon
transform make the problem of reconstruction ill-posed. In this paper, we showed that these
two issues could be consistently dealt with in the framework of the space correspondence
theorem, using a regularized backprojection method. Noise-free projections belonging to a
given Sobolev space are first estimated using the fixed-effect model. The SFBP algorithm
is then used to obtain a reconstructed object belonging to the Sobolev space consistent with
the projection Sobolev space, according to the space correspondence theorem. In addition to
the Sobolev space dimension, the model involves two parameters. The respective influence
of these parameters was studied using numerical simulations. An optimal way to determine
their values is still under investigation. The feasibility of the method has been shown and
the RBP approach has been compared to conventional FBP results. Further studies will
include the detailed comparison with different reconstruction algorithms and the extension
of the two-dimensional model to full three-dimensional reconstruction.
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Benali H, Gúedon J P, Buvat I, Ṕelégrini M, Bizais Y and Di Paola R 1994 A statistical model for tomographic

reconstruction methods using spline functionsProc. SPIE2299242–51
Besse P 1988 Spline functions and optimal metric in linear principal component analysisComponent and

Correspondence Analysised J L A VanRijckevorsel and J De Leeuw (London: Wiley) pp 81–103
Besse P and Ferre L 1993 Sur l’usage de la validation croisée en analyse en composantes principalesRevue Stat.

Appl. 41 71–6
Budinger T F, Gullberg G T and Huesman R H 1979 Emission computed tomographyImage Reconstruction from

Projections, Implementation and Applicationsed G T Herman (Berlin: Springer) pp 147–246
Caussinus H 1986 Models and uses of principal component analysisMultidimensional Data Analysised J De Leeuw

(Leiden: DSWO) pp 149–70
Craven P and Wahba G 1979 Smoothing noisy data with spline functions. Estimating the correct degree of

smoothing by the method of generalized cross-validationNumer. Math.31 377–403
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Pélégrini M, de Dreuille O, Benali H, Bendriem B, Almeida P, Trebossen R, Buvat I and Di Paola R 1996 Fast

quantitative measurement of attenuation map in SPECT using statistic-based sinogram regularizationJ. Nucl.
Med. 37 217P

Radon J 1917̈Uber die Bestimmung von Funktionen durch ihre Integralwerte längs gewisser Mannigfaltigkeiten
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