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Abstract
Knowledge of the statistical properties of reconstructed single photon emission
computed tomography (SPECT) and positron emission tomography (PET)
images would be helpful for optimizing acquisition and image processing
protocols. We describe a non-parametric bootstrap approach to accurately
estimate the statistical properties of SPECT or PET images whatever the noise
properties in the projections and the reconstruction algorithm. Using analytical
simulations and real PET data, this method is shown to accurately predict the
statistical properties, including the variance and covariance, of reconstructed
pixel values for both linear (filtered backprojection) and non-linear (ordered
subset expectation maximization) reconstruction algorithms.

1. Introduction

A general method for characterizing the noise properties (amplitude, spatial distribution
and correlation) of single photon emission computed tomography (SPECT) and positron
emission tomography (PET) images would be useful to optimize acquisition and processing
protocols, by studying the effect of factors such as the injected dose, the reconstruction
algorithm or various corrections (e.g., scatter, attenuation, random). Noise estimates in
reconstructed images could also be introduced into quantitative data analysis to account for
the uncertainty of region of interest (ROI) values (Huesman and Mazoyer 1987) or when
using algorithmic observers for evaluation purposes (Barrett 1990, Myers et al 1985). For
images reconstructed with filtered backprojection (FBP) in emission tomography, analytical
derivations have been proposed to predict the variance of pixel or ROI values given the
statistical properties of the projections (e.g., Alpert et al 1982, Budinger et al 1977, 1978,
Carson et al 1993, Huesman 1984, Palmer et al 1986, Wilson et al 1994). For non-linear
reconstruction algorithms such as maximum likelihood expectation maximization (MLEM)
and block-iterative reconstruction algorithms, approximations are required to analytically
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deduce the statistical properties of the reconstructed images from those of the projections
(Barrett et al 1994, Fessler 1996, Kadrmas et al 1999, Qi and Leahy 2000, Soares et al 2000,
Wang and Gindhi 1997, Wilson et al 1994). For FBP as well as for iterative reconstruction,
many approaches assume Poisson noise in the projections. As some processing steps (e.g.,
scatter or random correction, interpolation) make the noise non-Poisson, their statistical effects
have sometimes been incorporated in the analysis of error propagation, especially in PET, using
simplifying assumptions (e.g., Carson et al 1993, Qi and Leahy 2000). A bootstrap approach
has been suggested to investigate the statistical properties of PET images but it also assumed
that the recorded counts were Poisson distributed (Haynor and Woods 1989).

Numerical simulations or empirical measurements of several replicated sinograms have
been used for tracking the propagation of statistical errors in specific configurations (e.g.,
Alpert et al 1991, Budinger et al 1978, Riddell et al 2001, Wilson and Tsui 1993). However,
for realistic simulated data such as Monte Carlo simulations or for real data, the number of
replicates has to be kept small from a practical point of view, while several hundred replicates
would be needed for achieving a good statistical precision. Furthermore, for clinical data,
usually only one realization is available.

In this study, we propose a non-parametric bootstrap method to characterize the statistical
properties of SPECT or PET images from a small number of replicates, or even from a
single acquisition, for any linear or non-linear reconstruction method and any type of noise in
the projections. The non-parametric nature of the proposed bootstrap method makes it possible
to study the statistical properties of SPECT and PET images when the sinograms used for the
reconstruction are no longer Poisson distributed due to preprocessing steps.

2. Theory

2.1. The bootstrap approach

The bootstrap approach is a computer-based statistical method for determining the accuracy
of a statistic θ (e.g., median) estimated from experimental data (Efron and Tibshirani 1993).
It requires an experimental sample x = (x1, . . . , xN) whose empirical distribution estimates an
unknown distribution F. In this sample, each measurement xi is considered as an independent
random realization of the variable that follows distribution F. Under its simplest form, the
bootstrap uses what is called a plug-in principle:

• Given the empirical sample x = (x1, . . . , xN), draw B independent bootstrap samples
xb∗ = (

xb∗
1 , . . . , xb∗

N

)
of N elements xb∗

i each. Each element xb∗
i is obtained by randomly

drawing with replacement one element xi from the original empirical sample x. Note that
the number of elements in each bootstrap sample is identical to the number of elements
in the original empirical sample.

• For each bootstrap sample xb∗, calculate the statistic of interest θ(xb∗), which is called a
bootstrap replication of θ .

• The set of bootstrap replications {θ(xb∗)}b=1,B yields the bootstrap distribution of θ , from
which the statistical behaviour of θ can be inferred. For instance, the bootstrap variance
M2 (moment of order 2) of θ is

M2 =
[∑B

b=1

(
θ(xb∗) − M1

)2 /
(B − 1)

]
(1)

where M1 = ∑B
b=1 θ(xb∗)/B is the mean of θ over the B bootstrap replications.

For more details about the bootstrap approach, we refer the reader to Efron and Tibshirani
(1993).
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2.2. Using the bootstrap concept to generate bootstrap sub-sinograms

When characterizing the statistical properties of a specific SPECT or PET image or of
a parameter derived from it, the statistic of interest, θ , is the reconstructed image itself.
Using the bootstrap approach therefore requires obtaining B bootstrap reconstructed images,
θ(xb∗), to derive the statistical distribution of the reconstructed image or of the parameter
derived from it. These B bootstrap reconstructed images can be obtained from B bootstrap
sinograms, xb∗. The problem therefore lies in generating bootstrap sinograms representative
of sinograms that would be obtained if one could repeat an acquisition a large number of
times. In the conventional bootstrap approach, the trick is to consider an experimental sample,
x = (x1, . . . , xN), whose empirical distribution estimates the unknown distribution F of xi , to
generate bootstrap samples (cf section 2.1). Similarly, a sample of empirical sinograms, whose
empirical distribution will estimate the unknown distribution of the sinograms, is required to
generate bootstrap sinograms. Such a sample can be obtained by collecting the data in a gated
fashion, so as to distribute the C counts detected during the whole acquisition over N gates to
obtain N statistically independent realizations of sinograms of about C/N counts (Riddell et al
2001). These realizations are called sub-sinograms in the following as they include N times
fewer counts than the total number of acquired counts. Alternatively, the data can be acquired
in list-mode and reformatted into N statistically independent sub-sinograms. This set of sub-
sinograms gives a rough estimate of the statistical distribution of the sub-sinograms that will
be taken advantage of in the non-parametric bootstrap approach.

Each empirical sub-sinogram of about C/N counts is an (A,K) matrix, where A and K are
the numbers of projection angles and acquisition bins, respectively. A bootstrap sub-sinogram
is generated by randomly drawing each row j (corresponding to a specific angle, j = 1, . . . , A)
among the N realizations of row j given by the N empirical sub-sinograms. Rows j and j ′ of a
bootstrap sub-sinogram can thus come from different empirical sub-sinograms. Drawing rows
as a whole instead of pixel values is a key step to properly account for the noise correlation
potentially present within a row without having to make any assumption about the type of
noise correlation that may exist. On the other hand, as noise is not correlated from one row to
another, row j ′ can be drawn independently of row j . Using this method, any number, B, of
bootstrap sub-sinograms can be randomly generated among the NA possible combinations.

2.3. Deriving the statistical properties of reconstructed SPECT and PET images

Bootstrap sub-sinograms can be readily used to derive the statistical properties of the
corresponding sub-images (‘sub’ means that they include only about C/N counts) using
the plug-in principle (Efron and Tibshirani 1993). Each of the B bootstrap sub-sinograms
is first reconstructed independently. The resulting B sub-images can then be used to derive
any information regarding the statistical properties of the sub-image reconstructed from a
sub-sinogram. For instance, the moment of order k, Mk (i), in pixel i is

Mk(i) =
[∑B

b=1

(
θ(xb∗)i − θ

¯
∗
i

)k/
(B − 1)

]
, (2)

where θ(xb∗)i is the value of pixel i in the sub-image reconstructed from the bootstrap sub-
sinogram b∗ and θ

¯
∗

i is the mean value of pixel i over the B reconstructed sub-images.
To estimate the statistical properties of the image reconstructed from the total acquisition

of C counts, B/N bootstrap sinograms of about C counts—as opposed to B bootstrap sub-
sinograms of about C/N counts—are first calculated by summing the bootstrap sub-sinograms
N by N. B/N bootstrap images of about C counts are then reconstructed from these B/N
bootstrap sinograms. Using the resulting B/N reconstructed bootstrap images, the moment of
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different orders can be estimated using equation (2), in which the average is calculated over
the B/N reconstructed images only. M2(i) for instance gives the pixel-by-pixel variance of the
reconstructed pixel values.

When applied to the sub-images, the proposed bootstrap approach does not include any
assumption about the statistical properties of the projections or about the propagation of errors
during reconstruction. It is thus valid whatever the statistical properties of the projections
and the linear or non-linear reconstruction algorithm. However, it only yields the statistical
properties of the sub-image for which replicated sub-sinograms were acquired or simulated,
and not of the image reconstructed from the sum of the replicated sub-sinograms.

When applying the bootstrap approach to the images (as opposed to the sub-images),
the total acquisition of C counts does not have to be replicated. However, it is assumed that
a sinogram of C counts is identical to a sum of N sinograms of C/N counts that would be
acquired in the same conditions. This implies that the on-line corrections (such as randoms
correction in PET) that might be applied to the detected events have to be additive (e.g., the
number of randoms subtracted from a C count acquisition should be identical to the sum of
the number of randoms subtracted from each of the N acquisitions of C/N counts). This
assumption is needed to estimate sinograms of C counts from the measured sub-sinograms
of C/N counts. Indeed, when using non-linear reconstruction algorithms, the statistical
properties of reconstructed images including C counts cannot be easily deduced from the
statistical properties of reconstructed images including C/N counts as is the case for linear
reconstruction algorithms. They thus have to be derived from the reconstruction of sinograms
including C counts, hence such sinograms have to be calculated from those of C/N counts.
If some sinogram processing is non-additive, the bootstrap should be applied to the sub-
sinograms before these undergo any non-additive correction, and non-additive corrections
should be applied to the C-count bootstrap sinograms resulting from the summing of N
uncorrected C/N-count bootstrap sub-sinograms.

3. Materials and methods

The proposed bootstrap approach was validated by studying whether it accurately predicted
the statistical properties of both sub-images and images. Analytical simulations for which the
statistical properties of the noise could be fully controlled and PET data including empirical
noise were used and three different reconstruction schemes were considered.

3.1. Analytical simulations

A SPECT acquisition (128 parallel projections over 360◦, 128 bins per projection) of a 2D
elliptical object with three elliptical regions of uniform activity (figure 1) was simulated using
the RECLBL library (Huesman et al 1977). The activity ratios in the three inner ellipses
with respect to the background corresponding to the largest ellipse were 0:1, 2:1 and 4:1,
respectively. Attenuation, scatter and detector response function were not simulated. The
noise-free 128 × 128 sinogram included 77 911 counts, with an average value (±1 standard
deviation) in non-zero pixels of 5.6 ± 2.9. Thirty noisy realizations of the sinogram were
simulated using Poisson noise. Thirty noisy realizations of the sinogram were also obtained
using Gaussian noise with a constant variance over all pixels equal to 8.

3.2. Real PET data

A cardiac phantom (Data Spectrum, Chapel Hill, NC) was considered, with FDG activity in
the left ventricle (LV) wall (99.9 MBq ml−1), no activity in the LV cavity and the lungs and
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Figure 1. Simulated object. Activity ratios with respect to the background (large ellipse) were 0:1
(left ellipse), 2:1 (middle ellipse) and 4:1 (right ellipse).

background activity in the rest of the phantom representing the soft tissues (13.32 Mq ml−1).
A 15 min static PET acquisition of the phantom was performed on a GE-Advance machine
operating in 2D mode. The data were acquired as a 40 image fake gated sequence, i.e. not
gating on the cardiac cycle but using a pulse generator with a 1 s period. The resulting images
thus represented 40 statistically independent replicates of a 22.5 s acquisition. The sinograms
were corrected for dead time and random. A 32 min long transmission scan of the phantom was
also acquired after the emission scan to get the attenuation coefficient factors that were used
to correct the sinograms for attenuation before reconstruction. For this study, the sinogram
(281 acquisition bins and 336 projection directions) corresponding to a single slice through the
cardiac compartment of the phantom was considered, without and with attenuation correction,
yielding two data sets presenting different noise properties, as attenuation correction alters the
noise properties. Without attenuation correction, the total number of counts in the sinograms
was 144 500 with an average pixel value in non-zero pixels of 2.5 ± 1.8. After attenuation
correction, the average pixel value in non-zero pixels was 25 ± 21.

3.3. Statistical properties of the reconstructed sub-images

To check that the statistical properties of the sub-images were accurately predicted using the
bootstrap approach, a gold standard was obtained by simulating 1000 noisy realizations of
the analytical ellipsoidal phantom affected by Poisson noise and Gaussian noise. For each
type of noise, the 1000 noisy sub-sinograms were reconstructed using three schemes: filtered
backprojection with a Ramp filter (cut-off frequency of 0.5 pixel−1) (FBP-Ramp), FBP with
a Hann filter (cut-off frequency of 0.3 pixel−1) (FBP-Hann) and ordered subset expectation
maximization with eight subsets and three iterations (OSEM24). For each type of noise
in the sinograms and each reconstruction scheme, the statistical properties of reconstructed
pixel values were characterized from these 1000 reconstructed sub-images using: (1) the
histograms of reconstructed pixel values in specific regions of interest; (2) the moment of
order 2 (variance); (3) the moment of order 3 divided by M2(i)3/2 which corresponds to
the skewness coefficients characterizing the departure of the observed statistical distribution
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from a symmetrical statistical distribution and (4) the one-dimensional (1D) local covariance
at a specific image position i (Wilson et al 1994), obtained by plotting the elements of the
covariance matrix

M2(i, i + d) =
∑K

k=1
[imagek(i) − M1(i)][imagek(i + d) − M1(i + d)]/K, (3)

where imagek(i) is the value of pixel i in the kth reconstructed sub-image, M1(i) is the mean
value of pixel i over all reconstructed sub-images, imagek(i + d) is the value of pixel i shifted
by d pixels in the x direction and M1(i + d) is the mean value over all reconstructed sub-images
of pixel i shifted by d pixels in the x (horizontal) direction. K is the number of sub-images in
the sample, i.e. K = 1000 for the gold standard.

These figures of merit were compared to the corresponding figures of merit calculated
from the images obtained using the bootstrap approach. For each type of noise, 30 noisy sub-
sinograms were used to generate 1000 bootstrap sub-sinograms. These were reconstructed
using the three schemes previously described and the statistical properties of the resulting
bootstrap sub-images were characterized using the figures of merit.

For the PET cardiac data without and with attenuation correction, the 40 empirical
replicates were reconstructed using the three reconstruction schemes. For each reconstruction
scheme, the 40 resulting sub-images were used to get an estimate of the statistical properties of
the reconstructed sub-images, providing an imperfect ‘gold standard’, due to the small number
of available empirical replicates. These statistical properties were compared to those estimated
using the bootstrap approach: for each of the two data sets (without and with attenuation
correction), 1000 bootstrap sub-sinograms were calculated from the 40 sub-sinograms and
reconstructed. The statistical properties of the resulting sub-images were then characterized.

3.4. Statistical properties of the reconstructed images

Validation of the accurate prediction of the statistical properties of images (as opposed to sub-
images) was performed using numerical simulations only, as only in that case could a gold
standard be easily obtained. For Poisson or Gaussian noise, 1000 noisy realizations of a noise-
free sinogram including 30 times more counts than the sinogram described in section 3.1 were
generated. These noisy realizations were reconstructed using the three reconstruction schemes
and the statistical properties of the resulting images were characterized using the moments
corresponding to the variance and the skewness. On the other hand, 30 000 bootstrap sub-
sinograms were calculated from the 30 noisy sub-sinograms and then grouped 30 by 30 to
yield 1000 bootstrap sinograms. These 1000 bootstrap sinograms were reconstructed using
the three reconstruction schemes and the statistical properties of the reconstructed images
were derived.

4. Results and discussion

4.1. Statistical properties of reconstructed sub-images

4.1.1. Simulations. For the analytical simulation with Gaussian noise reconstructed with
FBP-Ramp, figure 2(b) shows an example of the histograms of reconstructed pixel values
obtained using the 1000 noisy sub-sinograms that were simulated (gold standard), using the
1000 bootstrap sub-sinograms calculated from 30 noisy sub-sinograms only and using 30 noisy
sub-sinograms only without bootstrap. The first two histograms were calculated using 9000
pixel values corresponding to a 9-pixel region of interest drawn in the coldest ellipse and to the
1000 values obtained for each pixel from the 1000 reconstructed images. The last histogram
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Figure 2. Examples of sub-images reconstructed using FBP-Ramp from the analytical simulation
including Gaussian noise (a) and reconstructed using OSEM24 from the analytical simulation
including Poisson noise (c). Parts (b) and (d) show histograms of pixel values in a 9-pixel region of
interest located in the cold ellipse: the distribution of pixel values as estimated using the bootstrap
from 30 noisy replicates (open circles) agreed well with the distribution of pixel values obtained
using 1000 noisy replicates (plain line). The distributions of pixel values derived from 30 noisy
sinograms only without using the bootstrap (diamonds) were much noisier than those obtained
from the same 30 sinograms but using the bootstrap (open circles), demonstrating the enhanced
statistical power resulting from the use of the bootstrap.

was calculated using 270 pixel values only (9-pixel region of interest times 30 reconstructed
images) and was therefore normalized to be compared to the other two. There was an excellent
agreement between the gold standard and the bootstrap histograms, demonstrating that the
bootstrap approach accurately predicted the full statistical distribution of reconstructed pixel
values using only 30 noisy sub-sinograms. Using 30 noisy sub-sinograms without the bootstrap
yielded a much noisier estimate of the statistical distribution of reconstructed pixel values.
Figure 2(d) shows the same results for the simulated sinograms including Poisson noise and
reconstructed with OSEM24. Again, there was an excellent agreement between the gold
standard and the bootstrap histograms, although these histograms were very different from
those obtained for FBP-Ramp applied on the data affected by Gaussian noise. Similar to these
examples, for all data sets (Poisson and Gaussian noise, all three reconstruction schemes), the
bootstrap always accurately predicted the full statistical distribution of local pixel values.

Table 1 gives the average per cent differences in pixel standard deviation (σ ) estimated
using the bootstrap approach and using the 1000 noisy simulations (gold standard):

100 × (estimated σ − gold standard σ)/gold standard σ.

This average difference was calculated over all pixels inside the largest outer ellipse
contour.

This table shows that the standard deviation value associated with each pixel value was
accurately estimated using the bootstrap approach for the two types of noise and for the
three reconstruction schemes. The higher variability of the per cent difference observed for
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Figure 3. 1D local covariance for a pixel located in the background (largest ellipse) of the
phantom, for the sinograms including Gaussian noise and reconstructed with FBP-Hann. The
local covariance obtained using the 1000 images reconstructed from the 1000 noisy sub-sinograms
that were simulated (gold standard—plain line) was accurately estimated by the local covariance
measured using the 1000 images reconstructed from the 1000 bootstrap sub-sinograms (open
circles) but poorly estimated when using only 30 images reconstructed from 30 sub-sinograms,
without bootstrap (diamonds).

Table 1. Average per cent differences in standard deviation values associated with the reconstructed
sub-image pixel values (±1 standard deviation) between the bootstrap estimates and the gold
standard for the analytical simulations.

Reconstruction scheme Poisson noise Gaussian noise

FBP-Ramp −1.3 ± 3.4 −1.4 ± 3.4
FBP-Hann −1.3 ± 3.4 −1.9 ± 3.3
OSEM24 −1.3 ± 9.5 −1.7 ± 11.4

OSEM24 sub-images compared to FBP sub-images (standard deviation around 9 instead of 3
for Poisson noise) results from the fact that when sub-images are reconstructed with OSEM, the
standard deviation in each pixel is strongly correlated with the reconstructed pixel value; thus
low standard deviation values are observed in pixels with a theoretical zero value (Barrett et al
1994). For instance, for the Poisson simulated data reconstructed with FBP-Ramp, the standard
deviation values were about 13 for pixels with reconstructed values around 1 and were about
18 (i.e., about 1.4 times higher) for pixels with reconstructed pixel values around 27, while
for OSEM24, the standard deviations were about 1 and 8.5, respectively, for pixels with
reconstructed values around 1 and 27, respectively. Therefore, with OSEM24, for those pixels
with very low standard deviations in the ‘gold standard σ image’ (belonging to the ellipse
with a theoretical zero value), a small error in the standard deviation estimate caused a high
per cent difference in standard deviation values, hence the higher variability of the per cent
difference between estimated and gold standard σ observed for OSEM24.

Figure 3 shows the 1D local covariance for a pixel located in the background (largest
ellipse) of the phantom, for the sinograms including Gaussian noise and reconstructed
with FBP-Hann. The three curves correspond to the local covariance obtained using the
1000 images reconstructed from the 1000 noisy simulated sub-sinograms (gold standard),
using the 1000 images reconstructed from the 1000 bootstrap sub-sinograms and using only
30 images reconstructed from 30 sub-sinograms (no bootstrap). The local covariance function
includes a central peak at d = 0, representing the variance, while the values corresponding to
d different from zero represent the noise correlation at distance d from the considered pixel
in the x (horizontal) direction. This figure demonstrates that for this particular pixel, the
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(a) (b)

Figure 4. (a) Standard deviation images associated with the PET phantom sub-images
reconstructed using OSEM24 as estimated using the 40 empirical replicates (left) and the bootstrap
approach (right), and (b) horizontal profiles through the standard deviation images.

Table 2. Average per cent differences in standard deviation values associated with the reconstructed
sub-image pixel values (±1 standard deviation) between the bootstrap estimates and the empirical
estimates for the PET phantom.

Reconstruction scheme No attenuation correction With attenuation correction

FBP-Ramp 1.9 ± 12.1 1.9 ± 12.0
FBP-Hann 1.8 ± 12.1 1.9 ± 12.1
OSEM24 1.9 ± 18.0 5.1 ± 19.4

bootstrap approach accurately estimated the gold standard local covariance, while the local
covariance obtained using 30 sub-sinograms only without bootstrap was a poor estimate of
the gold standard local covariance. The agreement between the 1D local covariance given by
the gold standard and the 1D local covariance given by the bootstrap approach was expected,
because as the bootstrap applies on entire rows of the sinograms (see section 2.2), nothing
was supposed to make the spatial correlation present in the bootstrap sinograms different from
that present in the original sinograms. Hence the correlation introduced by the reconstruction
algorithm should yield identical correlation patterns in the images reconstructed from the gold
standard and from the bootstrap sinograms. Similar agreements between gold standard and
bootstrap local covariance were observed for other pixels randomly chosen in the image, for
the two types of noise and for the three reconstruction algorithms that were considered (results
not shown).

4.1.2. Real PET data. For the real PET data with sub-sinograms corrected for attenuation
and reconstructed using OSEM24, figure 4(a) shows the standard deviation image associated
with the reconstructed sub-images as estimated using the 40 empirical replicates and using
the bootstrap approach. Profiles across these images (figure 4(b)) suggest that the bootstrap
estimate is a low noise estimate of that obtained when using only the 40 empirical replicates.

The average differences in pixel standard deviation estimated from the 40 empirical
replicates and from the bootstrap approach are summarized in table 2 for the three
reconstruction schemes and for the sub-sinograms corrected for attenuation or not.

Table 2 shows that for real noise as observed in experimental PET data, which is neither
Poisson nor Gaussian but most probably spatially correlated due to the corrections applied to the
data (dead time, random and optionally attenuation), the bootstrap approach yielded an accurate
estimate of the standard deviation value associated with each reconstructed pixel value. The
variability of the per cent differences between estimated and ‘gold standard’ standard deviation
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Table 3. Average per cent differences in standard deviation values associated with the reconstructed
sub-image pixel values (±1 standard deviation) depending on the number of sub-sinograms
available and on whether the bootstrap was used.

Number of samples Bootstrap FBP-Ramp FBP-Hann OSEM-24

5 No −15.4 ± 30.8 −15.7 ± 31.4 −20.2 ± 39.0
5 Yes −10.3 ± 5.3 −10.0 ± 4.7 −11.7 ± 19.1

10 No −7.9 ± 22.0 −6.9 ± 22.4 −10.8 ± 31.0
10 Yes −5.2 ± 4.5 −4.6 ± 4.3 −6.1 ± 15.1
30 No −2.0 ± 12.8 −2.2 ± 13.0 −3.3 ± 19.7
30 Yes −1.3 ± 3.4 −1.3 ± 3.4 −1.3 ± 9.5

100 No −0.5 ± 6.7 −0.5 ± 6.7 −0.8 ± 11.1

values was higher for the PET data (table 2) than for the analytical simulations (table 1). This
is probably because for the PET data, the ‘gold standard’ was imperfect since it was derived
from 40 experimental measurements only. It was thus noisier than the gold standard calculated
for the analytical simulations for which 1000 noisy realizations of the sinograms were
available.

4.1.3. Increased accuracy in standard deviation estimates resulting from the bootstrap
approach. The experiments performed using the simulations and the PET data demonstrate
that when a small number of realizations of a specific configuration are available (30 for
the simulations and 40 for the PET data in our examples), using the bootstrap makes it
possible to predict the statistical properties of reconstructed sub-images with a high accuracy.
Table 3 illustrates the gain in accuracy resulting from the use of the bootstrap (B = 500
bootstrap realizations were used) as a function of the number of available empirical samples
for the Poisson simulation reconstructed using FBP-Ramp, FBP-Hann and OSEM-24. For a
given number of empirical samples, using the bootstrap always reduces the bias with which the
standard deviations associated with reconstructed pixel values are estimated and also reduces
the variability of this bias by a factor between 2 and 5. Using 30 empirical replicates and the
bootstrap yields an estimate of the pixel-by-pixel standard deviations as good as and even much
better than (in terms of variability of the bias) that obtained using 100 empirical replicates
without the bootstrap.

For simulations and phantom experiments, the bootstrap is thus a useful adjunct to
increase the power of the statistical tests that might be performed using the reconstructed
image pixel values, since it yields accurate estimates of the standard deviations associated
with reconstructed pixel values.

4.2. Statistical properties of reconstructed images

For the analytical Poisson simulation reconstructed using FBP-Hann, figure 5(a) shows
the images of pixel standard deviations estimated using the 1000 noisy realizations of the
sinograms and using the bootstrap performed from the 30 noisy realizations of sub-sinograms.
The profiles drawn across the images confirm that the bootstrap accurately estimated the
standard deviation associated with reconstructed pixel values (figure 5(b)).

Table 4 lists the average differences in pixel standard deviation σ estimated using the
bootstrap approach and using the 1000 noisy replicates of the sinogram, for the three
reconstruction schemes and for the two types of noise. This table demonstrates that the
bootstrap approach using 30 noisy sub-sinograms obtained by splitting the total acquisition into
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(a) (b)

Figure 5. (a) Standard deviation images associated with the image reconstructed using FBP-Hann
from the Poisson analytical simulation as estimated using 1000 noisy replicates (gold standard,
left) and using the bootstrap approach from 30 noisy replicates of sub-sinograms (right), and (b)
horizontal profiles through the standard deviation images.

(a) (b)

Figure 6. Images of the skewness coefficients as estimated from the noisy replicates (gold standard,
left) and from the bootstrap (right) for the Poisson simulation reconstructed using FBP-Ramp (a),
and OSEM24 (b). The two images in each pair are represented on a grey scale with the same
minimum and maximum values.

Table 4. Average per cent differences in standard deviation values associated with the reconstructed
image pixel values (±1 standard deviation) between the bootstrap estimates and the gold standard
for the analytical simulations.

Reconstruction scheme Poisson noise Gaussian noise

FBP-Ramp −1.2 ± 3.4 −1.5 ± 3.5
FBP-Hann −1.3 ± 3.3 −2.0 ± 3.4
OSEM24 −1.2 ± 9.4 −2.6 ± 12.5

30 accurately predicted the standard deviations associated with the pixel values reconstructed
from the total acquisition.

Figure 6 shows the pixel-by-pixel skewness coefficients obtained using the noisy replicates
and using the bootstrap approach for the Poisson simulation reconstructed using FBP-Ramp
and OSEM24. The bootstrap approach properly showed that for FBP-Ramp, the statistical
distribution of the reconstructed pixel values was symmetrical in all pixels, while it was
skewed in low count pixels with OSEM24. These results therefore demonstrate that the
bootstrap also allows for an accurate prediction of the third order moment of the reconstructed
image. This was true for the three reconstruction schemes and for both types of noise (Poisson
and Gaussian). The asymmetrical statistical distributions of reconstructed pixel values in the
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Figure 7. 1D local covariance for a pixel located in the background (largest ellipse) of the phantom,
for the sinograms including Poisson noise and reconstructed with OSEM24. The local covariance
obtained using the 1000 images reconstructed from the 1000 noisy sinograms that were simulated
(gold standard—plain line) was well estimated by the local covariance measured using the 1000
images reconstructed from the 1000 bootstrap sinograms (open circles).

low count regions observed with OSEM24 are a consequence of the non-negativity constraint
included in the OSEM algorithm.

Figure 7 displays the 1D local covariance for a pixel located in the background (largest
ellipse) of the phantom, for the sinograms including Poisson noise and reconstructed with
OSEM24. The local covariance in the reconstructed image as estimated using the bootstrap
approach properly estimated the gold standard local covariance, confirming the potential of
the bootstrap approach to provide not only accurate estimates of the noise variance in the
reconstructed images, but also good estimates of the noise correlation. Similar agreements
between gold standard and bootstrap covariance estimates were observed for all types of noise
and reconstruction algorithms,and for various pixels randomly chosen within the reconstructed
images (results not shown).

These results show that the bootstrap approach can be used to determine the statistical
properties of the image reconstructed from a single acquisition, provided this acquisition can
be split into N sub-acquisitions or acquired in list-mode. It is then appropriate for determining
the variance image associated with images reconstructed from clinical studies for which gating
using an electronic pulse generator or list-mode acquisition is feasible. It could also be used for
analysing noise correlation in such clinical images, which might be useful for image quality
analysis based on observer studies, in which noise correlation has been shown to play an
important role (e.g., Myers et al 1985).

4.3. Impact of the number of empirical sub-sinograms for estimating the statistical
properties of a reconstructed image

To estimate the statistical properties of a reconstructed image, the bootstrap approach requires
the acquired data to be split into N sub-sinograms (section 2.2). For a fixed total number of
counts, the number of sub-sinograms to be considered has to be studied,as the larger the number
of sub-sinograms, the smaller the number of counts in each sub-sinogram. Using the Poisson
simulations and 500 bootstrap realizations, we found that the average differences in pixel
standard deviation (±1 standard deviation) estimates using the bootstrap approach and the 1000
noisy replicates of the sinogram (gold standard) were −10.0 ± 5.1, −4.8 ± 4.5, −2.4 ± 4.2,
−1.2 ± 3.4 and −1.1 ± 4.1 for N = 5, 10, 20, 30 and 40, respectively, for FBP-Ramp. The
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corresponding values were −9.6 ± 9.2, −4.9 ± 9.5, −3.1 ± 9.4, −1.2 ± 9.4 and −1.3 ± 9.5
for OSEM24. This suggests that the larger the number of sub-sinograms that can be acquired
or simulated, the smaller the bias affecting the standard deviation estimates. This is consistent
with the fact that low count sinograms including more noise best describe the noise properties
of the acquired data. In our examples, using 20 or best 30 sub-sinograms yielded quite accurate
estimates of the standard deviation of the reconstructed pixel values.

4.4. Impact of the number of bootstrap realizations

When studying the statistical properties of reconstructed images, the number, B, of bootstrap
realizations to be generated from the N sub-sinograms available must be appropriately chosen.
Using the Poisson simulations and N = 30 sub-sinograms, we found that the averaged
differences in pixel standard deviation estimates derived from the bootstrap approach and
from the 1000 noisy replicates of the sinogram (gold standard) were −3.4 ± 12.0, −1.9 ± 7.4,
−1.5 ± 5.6, −1.4 ± 4.0 and −1.3 ± 3.4 for B = 30, 100, 200, 500 and 1000, respectively,
for FBP-Ramp. The corresponding values were −4.5 ± 21.6, −2.1 ± 14.5, −1.7 ± 12.0,
−1.4 ± 10.1 and −1.3 ± 9.5 for OSEM24. Using B = 200 bootstrap realizations thus already
yields an accurate estimate of the standard deviation distributions associated with pixel values
and obviously, the larger the B, the better the accuracy of the standard deviation estimates.
The precise number to be considered should then be chosen as a function of the computational
burden associated with the reconstruction of B bootstrap sinograms.

4.5. Parametric versus non-parametric bootstrap

The bootstrap approach we propose can be qualified as non-parametric as it does not include
any assumption regarding the statistical properties of the sinograms. An alternative bootstrap
approach proposed in PET (Haynor and Woods 1989) consists in considering the list-mode of
the C acquired events before any correction so that they are still Poisson distributed. B bootstrap
list-modes are then created from this list-mode, each bootstrap list-mode being obtained by
randomly drawing with replacement C events from the original list-mode. The B bootstrap
list-modes then undergo the correction and reconstruction processing to yield B reconstructed
images. Although this bootstrap approach is accurate, its use is both less practical (need to
access the list-mode before any correction, large storage space required to store the B bootstrap
list-modes, need to apply corrections to the B created bootstrap list-modes, large computational
burden for processing the B bootstrap list-modes) and more restricted (need for the list-mode
data to be Poisson distributed) than that of the non-parametric bootstrap approach we propose,
which processes directly the sinograms whatever their statistical distributions.

5. Conclusion

We introduced and validated a non-parametric bootstrap approach to estimate the statistical
properties of PET and SPECT reconstructed images whatever the noise properties in the
projections and the reconstruction algorithm. This approach can be used when several
empirical replicates of the same configurations are available, for instance, for simulated
data or phantom experiments: it then greatly increases the accuracy and reduces the variability
with which the statistical properties of the reconstructed images (especially the variance and
covariance of pixel values) can be estimated. The proposed bootstrap approach can also be
used when a single acquisition is available, for instance in clinical studies, provided this can be
stored in list-mode format or split into a number of sub-acquisitions. It then makes it possible



1774 I Buvat

to obtain the variance associated with the reconstructed image (or any parameter related to
the statistical properties of the image) or with any parameter derived from the reconstructed
image. The noise correlation is also accurately predicted.

Use of this bootstrap approach to characterize the statistical properties of SPECT and PET
images as a function of the processing scheme (correction and reconstruction) is in progress
(Buvat et al 2001).
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