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Régine Trébossen2 and Irène Buvat4

1 School of Chemical Engineering and Analytical Science, The University of Manchester,
PO Box 88, Manchester M60 1QD, UK
2 Service Hospitalier Frédéric Joliot, CEA/DSV/DRM, Orsay, France
3 Siemens Medical Solutions, Saint-Denis, France
4 UMR 678 INSERM-UPMC, CHU Pitié-Salpêtrière, Paris, France
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Abstract
A fully 4D joint-estimation approach to reconstruction of temporal sequences
of 3D positron emission tomography (PET) images is proposed. The method
estimates both a set of temporal basis functions and the corresponding
coefficient for each basis function at each spatial location within the image.
The joint estimation is performed through a fully 4D version of the maximum
likelihood expectation maximization (ML-EM) algorithm in conjunction with
two different models of the mean of the Poisson measured data. The first
model regards the coefficients of the temporal basis functions as the unknown
parameters to be estimated and the second model regards the temporal basis
functions themselves as the unknown parameters. The fully 4D methodology
is compared to the conventional frame-by-frame independent reconstruction
approach (3D ML-EM) for varying levels of both spatial and temporal post-
reconstruction smoothing. It is found that using a set of temporally extensive
basis functions (estimated from the data by 4D ML-EM) significantly reduces
the spatial noise when compared to the independent method for a given level of
image resolution. In addition to spatial image quality advantages, for smaller
regions of interest (where statistical quality is often limited) the reconstructed
time–activity curves show a lower level of bias and a lower level of noise
compared to the independent reconstruction approach. Finally, the method is
demonstrated on clinical 4D PET data.

(Some figures in this article are in colour only in the electronic version)
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1. Introduction

Four-dimensional (4D), or dynamic, positron emission tomography (PET) is able to produce
parametric images of physiological function which often have greater clinical utility than
conventional static 3D PET images. For example, when using the positron emitter [18F]-fluoro-
deoxy-glucose (FDG), images of glucose metabolic rate can be obtained through appropriate
kinetic modelling of the time series of 3D images—which is not possible if only a single static
3D PET image is available. However, 4D PET is constantly challenged by the limited statistical
quality of the 3D images obtained for each time frame of the temporal image sequence, due to
the continuing demand for improved spatiotemporal resolution. This problem of low counts is
further accentuated if small regions of interest (ROIs) are selected, from which time–activity
curves (TACs) are derived for kinetic analysis and physiological parameter estimation within
small structures. However, the principal reason for the poor statistical quality is the use
of independent 3D image reconstruction for each time frame, each of which only draws
information from a fraction of the acquired data set, ignoring the data both before and after
the time frame in question.

This work seeks to treat the reconstruction as a truly 4D problem, whereby an entire
4D (spatiotemporal) distribution of a PET isotope will be reconstructed directly from all
of the acquired data. Such a reconstruction requires a choice of spatiotemporal basis
functions, and whilst for 3D imaging the choice of spatial basis function has often been
intuitively selected as the voxel, the choice of temporal basis function is not obvious.
The default choice for the temporal basis functions is a set of non-overlapping top-hat
functions (corresponding to a series of frame-by-frame independent 3D reconstructions)—
which imposes time-frame independence, and hence significant loss in statistical quality. Use
of singular value decomposition (SVD) on the binned emission data can provide a set of useful
temporal basis functions (Matthews et al 1997), but these functions usually contain negative
values, and the precise number to actually use (the ‘cut-off’) needs to be determined.

In contrast, this work proposes estimation of the temporal basis functions as part of
the reconstruction process itself—requiring only that the number of such basis functions
be specified in advance. Specifically, a joint-estimation methodology is proposed which
alternately estimates (i) the coefficients for the temporal basis functions (i.e. estimation of a set
of 3D images of coefficients (or ‘weights’) for the basis functions) and (ii) the temporal basis
functions themselves which are used in conjunction with these 3D images of coefficients.

Direct reconstruction of 4D images has been considered by other researchers. For
example, Carson and Lange (1985) first proposed the expectation maximization (EM)
algorithm for direct parametric reconstruction (2D/3D), which was the motivator for the
work of Kamasak et al (2005) for direct reconstruction of parametric images. Matthews et al
(1997) looked at reconstruction of 3D image sequences directly, using filtered backprojection
and SVD to first determine the temporal basis functions. Gunn et al (2002) used a dictionary
of basis functions to determine parametric images directly from the data. Nichols et al
(2002) and Asma and Leahy (2006) used splines for temporal basis functions. Walledge et al
(2004) considered various inter-frame smoothing strategies. The key difference of this work in
relation to all these approaches is the estimation of a limited set of temporal basis functions from
the measured emission data, carried out in conjunction with the estimation of the coefficient
images (which specify the coefficient for each of the temporal basis functions for each spatial
location within the field of view). As two sets of inter-dependent parameters are estimated,
the phrase ‘joint estimation’ is used.

The concept of joint estimation for PET reconstruction has previously been applied to the
case of estimation of both the emission activity and the attenuation map (Erdogan and Fessler



Joint estimation of dynamic PET images and temporal basis functions 5457

2000). Likewise, Nuyts et al (1999) developed a simultaneous maximum likelihood method.
The methodology proposed here is in the same spirit as those approaches (although applied to
a very different estimation problem): one set of unknown parameters is held constant while
the other set is optimized, and vice versa.

2. Theory

2.1. Parameterization of the likelihood for a Poisson data model

For an I-dimensional measured data vector m (where each element mi is a sample from a
Poisson distribution with mean equal to qi), the likelihood of obtaining vector m had the mean
vector been q is defined by the product of all the individual Poisson probabilities of obtaining
mi for a given mean qi:

Pr(m|q) =
I∏

i=1

exp[−qi]
q

mi

i

mi!
. (1)

In 4D PET, the measured data are given by m (the number of counts contained in each possible
measurement element i), which will still be regarded as a single I-D vector, even though the
measured spatiotemporal data are usually in 5D (two projection angles (φ, θ ), two coordinates
on the rotated projection plane (x′, y′) and time t). For the case of PET data, the mean vector
q for the measured data vector m can be modelled by a system matrix A operating on a vector
of parameters θ:

q = Aθ. (2)

In equation (2), the mean vector q has been factorized into a matrix A for which all the elements
are assumed to be known (which typically represent and model the known PET measurement
process, but the matrix can include more than this, as will be seen) and a vector θ of unknown
parameters defining the particulars of the object being imaged. Continuing in the context of
PET, the object is the PET isotope’s spatiotemporal (4D) distribution. There is no theoretical
restriction on the way that q has been decomposed into A and θ, equation (2) is nothing more
than a model of the mean of the data. In designing the parameterization of the mean of the
data, the only questions to be posed are: (i) is the choice of the vector θ (when all possible θ

are considered) able to represent all feasible objects? and (ii) is the combined choice of A and
θ adequate to represent all the feasible vectors q? A chosen decomposition of q is merely a
modelling issue, and not a theoretical or statistical concern. It is this freedom and flexibility
in the choice of A and θ which will be exploited in this work for estimation of temporal basis
functions. In general, the number of parameters used to represent the spatiotemporal object
(i.e. the number of elements in θ) does not equal the number of elements in the measured data
vector m. The number of elements in θ will be set to J, making A an I × J matrix and θ a J-D
vector.

2.1.1. Choice of the matrix A. For an object representation, a set of spatiotemporal basis
functions is often employed (covering the spatial field of view for all the time points of the
scan duration), such that θ specifies the coefficients for each of these spatiotemporal basis
functions in the set. In such a case, the matrix A is factorized according to

A = HB, (3)

where B is an S × J matrix of spatiotemporal basis functions, such that each of the J columns
contains one such spatiotemporal basis function (each represented discretely as a set of S
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spacetime samples, where the sample value could be obtained from a definite integral over
a small 4D volume element of the continuous basis function), and H is an I × S system
matrix, giving the probability that a positron emission from within a given sample location
s (in spacetime) gives rise to an event being detected in a given element i of the measured
data vector m. A simple choice of B is the unit matrix I, corresponding to the case where
the spatiotemporal basis functions are 4D top-hat functions (3D voxels with independent time
frames matching the time sampling of m). With regard to H, the assumption is often made
that the system matrix is time invariant, in which case H would consist of numerous copies
of the same static system matrix Hstatic, duplicated according to the number of time samples
in the measured data vector m (hence, when B = I, this corresponds to the simple case of a
series of separate time-frame reconstructions, each using Hstatic).

Conventionally, the size and number of voxels (3D top-hat functions) are chosen according
to the known spatial resolution limits of the PET scanner, whereas the size and number of time
frames (1D top-hat functions) are often chosen so as to integrate over many time sample points
in the measured vector m whilst attempting to not overly compromise the desired temporal
resolution. This integration over many time points aims to increase the amount of data in
m which contributes to a given 3D image in the time series—thus improving spatial image
quality at the cost of temporal resolution.

Overlapping spatial basis functions can be considered (such as blobs (Lewitt 1992)), as
well as overlapping temporal basis functions (such as non-zero-order spline basis functions, as
used by Nichols et al (2002)). However, these choices appear somewhat arbitrary and cannot
usually be regarded as necessarily optimal. There is of course immense flexibility in the
choice of the matrix B and considerable scope for the inclusion of a priori information—such
that considerable regularization can be included at the modelling stage of the reconstruction
process.

In this work, shift-invariant voxels (or clusters of voxels) will be used as the spatial basis
functions, on the understanding that the possible benefits of using other spatial basis functions
would equally apply to the investigations carried out here. The key innovation in this work
is the avoidance of any a priori selection of temporal basis functions. Instead, the time-basis
functions will be estimated directly from the acquired data vector m.

2.1.2. Choice of θ. θ is the all-important parameter vector which models the mean vector
q through its description of the object—it is the elements of θ which will be estimated so as
to maximize the likelihood (equation (1)). Often these parameters specify the coefficients of
spatiotemporal basis functions to model the object of interest, but, as previously discussed,
there is no theoretical reason whatsoever which restricts the elements of θ to be a set of
coefficients for basis functions. In this work, θ will be used in the conventional way (by
specifying the coefficients of temporal basis functions), but also in a separate model θ will be
used to hold a set of parameters which serve to define the temporal basis functions.

2.2. Algorithm to maximize the likelihood

Whatever the choice of θ, an algorithm is needed to estimate the values contained in θ such
that the likelihood (equation (1)) is maximized (for a given fixed measured data set m). First,
equation (1) is no longer expressed as a direct function of the mean q, but rather as a function
of the chosen set of parameters θ which describe the mean (through use of equation (2)):

Pr(m|θ) =
I∏

i=1

exp[−(Aθ)i]
[(Aθ)i]mi

mi!
. (4)
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Taking the natural logarithm (to simplify the derivative which will follow) gives

ln[Pr(m|θ)] =
I∑

i=1

{−(Aθ)i + mi ln[(Aθ)i] − ln mi!}. (5)

To find a maximum, the partial derivative with respect to each one of the unknown parameters
θ j is taken and set to zero:

∂

∂θj

ln[Pr(m|θ)] =
I∑

i=1

{
−aij +

mi

(Aθ)i
aij

}
= 0 for j = 1, . . . , J, (6)

where θ = {θj }J , A = {aij }I×J and (Aθ)i = ∑J
j=1 aij θj . Rearranging gives

1∑I
i=1 aij

I∑
i=1

{
mi

(Aθ)i
aij

}
= 1. (7)

Multiplying both sides by θ j gives

θj∑I
i=1 aij

I∑
i=1

{
mi

(Aθ)i
aij

}
= θj . (8)

Following the description of Barrett and Myers (2003), an iterative algorithm is obtained by

replacing θ by a succession of estimates θ̂
k

and the fixed point iteration procedure is used to
obtain the well-known maximum likelihood expectation maximization (ML-EM) algorithm
(Shepp and Vardi 1982):

θ̂ k+1
j = θ̂ k

j∑I
i=1 aij

I∑
i=1

{
mi

(Aθ̂
k
)i

aij

}
, (9)

where the caret denotes a parameter estimate. Equation (9) is a very general algorithm
(retaining all the previously mentioned flexibility in the choice of A and θ) able to offer
maximum likelihood estimates of a given set of parameters θ which have been chosen to
model the mean q of the measured data vector m.

2.3. Alternating optimization

The basic strategy of the proposed fully 4D reconstruction is to use equation (9) to first
estimate the coefficients for a set of temporal basis functions (which can have an initially
arbitrary form), and then to use equation (9) with a different model of the mean in order to
adapt/update the basis functions whilst holding the coefficients constant.

For the first step of the alternating algorithm, the chosen model for the mean data vector
q is

q = HBθc, (10)

where the subscript c has been added to the parameter vector θ to indicate that in this case θc

specifies the set of coefficients for each temporal basis function at each voxel. The number of
elements in θc corresponds to the number of spatial (3D) sampling locations (i.e. the number
of voxels) multiplied by the number of different temporal basis functions. Hence, θc specifies
one coefficient image for each temporal basis function, and so the unique set of coefficients
associated with each voxel specifies the temporal behaviour of the radioactivity for that voxel.
By way of analogy, θc can be regarded as specifying a set of coefficients for a truncated
Fourier series for each and every voxel, giving the TAC for each voxel. However, instead of
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the Fourier basis functions, the temporal basis functions will be estimated in the second step
of the alternating optimization process.

Using equation (10) to parameterize the mean, from equation (9) an algorithm to obtain

a series of estimates θ̂
k

c of the vector of coefficients can be easily obtained:

θ̂
k+1
c = θ̂

k

c

BTHT1
BTHT m

HBθ̂
k

c

, (11)

where 1 is an I-D vector containing a value of one for all elements and k is the iteration number.
Matrix–vector multiplication in equation (11) is conventional, but the products and ratios of
vectors are performed element by element. Equation (11) is of course nothing more than the
familiar ML-EM algorithm of equation (9), but with an overall system matrix given by HB
and the vector of unknowns given by θc.

For the second step in the alternating estimation algorithm, the same overall expression
for the mean data q (equation (10)) is used, but the arrangement of the known and unknown
parameters within the model is modified in order to place the sampled temporal basis functions
into a vector θb of unknown parameters. This requires the coefficients of the basis functions to
be known, regarded now as constants within the system matrix component of q. In this case,
the decomposition of q is now given by

q = HCθb, (12)

where the definition of the matrix C is such that

Cθb = Bθc, (13)

where both sides of equation (13) yield the same 4D object. As an option, in order to encourage
a minimal level of smoothness in the temporal basis functions, the parameterization of each
temporal basis function, as given in θb, can be used to specify a set of coefficients for a series
of shift-invariant sub-basis functions (in the tests below this is only used with one data set).
So instead of equation (13), the following relation between the vectors and matrices can be
optionally used:

CTθb = Bθc, (14)

where T is a tridiagonal matrix with the same three non-zero values passing down its diagonal
(0.25, 0.5, 0.25), defining a three-point kernel (i.e. T performs a 1D convolution). In effect, for
T time sampling points, this corresponds to each temporal basis function being defined by a set
of T coefficients for T sub-basis functions, where the sub-basis functions are the three-point
kernels. Of course, setting T equal to the unit matrix I removes the use of sub-basis functions.
When voxels (v = 1, . . . , V) are used for the spatial basis functions, the matrix C which
satisfies equation (14) is given by

C =




diag{θc(1,1)
} diag{θc(1,2)

} · · · diag{θc(1,B)
}

diag{θc(2,1)
} diag{θc(2,2)

} · · · · · ·
· · · · · · · · · · · ·

diag{θc(V,1)
} · · · · · · diag{θc(V,B)

}


 , (15)

where diag{θc(v,b)
} is defined as a square T × T diagonal matrix with the central diagonal

elements all set equal to the scalar value θc(v,b)
and all other elements zero. The element θc(j,b)

corresponds to the coefficient of temporal basis function b for voxel v. Hence, the 4D EM
algorithm for ML estimation of the parameter vector θb for the temporal basis functions is
given by

θ̂
k+1
b = θ̂

k

b

TTCTHT1
TTCTHT m

HCTθ̂
k

b

, (16)
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Figure 1. The 3D (2D space with time) simulation phantom. Left: true distribution at time frame
4. Middle: reconstructed distribution at time frame 4. Right: true (solid line) and reconstructed
(triangles) TACs for the three regions. The reconstruction used the joint-estimation method with
15 temporal basis functions with random initialization (150 cycles, each cycle consisting of 16
iterations of coefficient estimation and 16 iterations of basis function estimation).

where T is usually set equal to the unit matrix I. The overall reconstruction procedure consists
of running equation (11) for a series of iterations (fixing the temporal basis functions at some
initial values), then using the estimate θc to create the C matrix for use in equation (16).
Equation (16) can then be run for a fixed number of iterations to estimate θb, which in turn
allows creation of a new matrix B for use in equation (11), and so on. Hence, this method
requires up to three parameters to be selected: the number of iterations for each algorithm to
use before switching between the two, and then also the number of such cycles to perform
overall, although investigations to date indicate very little sensitivity to the number of updates
before switching.

3. Methods

The new fully 4D ML-EM based joint-estimation approach to dynamic reconstruction was
assessed using two sets of simulated phantom data (2D space with time and then 3D space with
time) as well as clinical 4D data and compared with the conventional independent time-frame
reconstruction method (3D ML-EM).

3.1. Simulated 3D data and reconstructions

To assess the overall characteristics of the proposed joint-estimation approach, a 3D simulation
(2D space with time) was developed. The simulated phantom consisted of three regions, each
with a different temporal behaviour (figure 1). Fifteen time frames were used, and 64 ×
64 pixels, using a 2D sinogram (64 × 64) for each time bin. To encourage high-quality
reconstructions on a pixel grid, a spatial basis consisting of groups of five pixels was used:
a first-order neighbourhood with weighting factors of 1.0 for the centre pixel and 0.5 for the
four neighbouring pixels. The EM algorithm was used to estimate the coefficients for an
overlapping set of these identical five-pixel cluster spatial basis functions, each of which was
centred on a pixel on the 64 × 64 grid.

The noise-free sinogram data for the 15 time frames were reconstructed using the
conventional independent-frame method (2D ML-EM) and the proposed joint-estimation
method. For the joint-estimation method, three different initializations for the temporal basis
functions were tested (Gaussians, top-hat functions and random values), each for the case of
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Figure 2. The 4D (3D space with time) simulation phantom. Left: two example transverse slices
through the true 3D radioactivity distribution. Right: the true time–activity curves (TACs) used
for the Monte Carlo simulation (1 time unit = 12 s). Note the ‘counts’ is an arbitrary scale, just
used to illustrate the simulated TACs.

using either three or 15 temporal basis functions (hence six different reconstructions using the
joint method were assessed). The reconstructions used equations (11) and (16) (with T = I).
This group of six reconstructions was designed to test the method’s sensitivity to initialization
and to the number of temporal basis functions selected (for the extreme cases of using (i) only
three temporal basis functions when there are three different TACs in the data and (ii) the
maximum of 15 basis functions—when there are 15 time frames in the data). The behaviour
of the log-likelihood objective was tracked with iteration number for all the reconstructions.

3.2. Simulated 4D data and reconstructions

A basic Monte Carlo simulation for the high-resolution research tomograph (HRRT) (Wienhard
et al 2002) was created to generate list-mode data, incorporating the scanner geometry (with
detector gaps), but excluding effects such as positron range, attenuation, scatter and randoms.
This permitted a relative assessment of the fully 4D ML-EM method in comparison to the
independent 3D ML-EM method, without the further complication of data corrections. The
phantom used for evaluation of the algorithms (figure 2) was a cylinder of length 50 mm and
diameter 62 mm, with an additional outer rim of 5 mm thickness (total cylinder diameter
72 mm). The simulated radioactivity in the main cylinder body followed a time–activity
curve corresponding to brain white matter and the outer rim followed a time–activity curve
corresponding to grey matter. The cylinder contained six spheres of radius 2.5 mm (three were
cold spheres (representing ventricles) and three mimicked an arterial TAC) and six spheres of
radius 5 mm (again, three were cold and three followed an arterial TAC). A tumour, in the form
of a sphere of radius 2.5 mm, was included in the background (white matter) region. Finally,
the phantom included two line sources of length 25 mm and diameter 1 mm (one parallel
to the scanner axis, displaced by 22.5 mm, and one perpendicular to the axis, displaced by
8 mm from the central transverse plane). The activity of the line sources was held constant
in time. Sixty million events were generated over a time interval of 20 min (simulating a
mean count rate of 50 kcps). This short time scale and phantom were selected to allow
a more computationally practical means of assessing the performance of the reconstruction
methods. Images were reconstructed into 64 × 64 × 50 matrices (1.2 mm voxel side length) for
100 time frames (interval 12 s). For the independent reconstruction method, this gave a time
series of 100 3D images each of 64 × 64 × 50 voxels, whereas for the 4D method this gave
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a set of C coefficient images, each of size 64 × 64 × 50, where C corresponds to the chosen
number of temporal basis functions. C was chosen to be 6 (based on previous studies of the
number of basis functions (Reader et al 2005b)). Note that the joint-estimation (4D) method
used equations (11) and (16) (with T containing the three-point kernel described in section
2.3).

The images obtained from both methods were also assessed for varying levels of post-
reconstruction spatial smoothing (convolution with 3D Gaussians of σ = 0.5, 0.7 and 0.9
(voxels)) and post-reconstruction temporal smoothing (convolution with 1D Gaussians of
σ = 0.5, 1, 1.5, 2, 2.5, 3 and 3.5 (time bin units)).

3.3. Clinical data

To obtain an initial assessment of the methodology on clinical data, 15 min of a 60 min
[11C]-PE2I brain scan (carried out with the HRRT) were reconstructed using the alternating
optimization methodology. Fifteen time frames, each of 1 min duration, were used, with
six temporal basis functions and hence also six images of coefficients (each of size 170 ×
170 × 208, 1.2 mm voxels). During the first 15 min of the scan, 287 million events were
acquired. For each 1 min frame, the scatter sinograms were estimated using the single scatter
simulation method (Watson et al 1996) and the randoms were estimated using smoothed
delayed coincidence window data (Byars et al 2005). A model of the point response of the
system was included as an image-space convolution matrix R, in order to achieve resolution
recovery and noise reduction (Reader et al 2002, 2005a). The shift-invariant kernel used
to construct R was an offset mono-exponential (β + exp(–αr), see Reader et al (2005a) for
more details). To accelerate reconstruction, 16 subsets were used, such that for each time
frame under consideration just one sixteenth of the events were used for any given update of
the parameters being estimated. The first part of the alternating algorithm was implemented
according to

θ̂
k+1
c = θ̂

k

c

BTRTXTNTLT1
BTRTXTNTLT m

LNXRBθ̂
k

c + Ns + r
, (17)

where R is the resolution modelling convolution matrix for image space (assumed shift
invariant in this initial assessment), L is a diagonal matrix containing the inverse of
the attenuation correction factors, N is a diagonal matrix containing the inverse of the
normalization correction factors, X is the 3D x-ray transform and s and r are the vectors
containing the unique scatter and the randoms estimate in measurement space for each of the
15 time frames (L, N, X and R are assumed to be time invariant). Note that Ns is used, as the
single scatter simulation method produces normalized scatter s. Combining the scatter and
randoms vectors (Ns and r) into a single offset vector b, and then recognizing the cancellation
of the diagonal L and N matrices, one obtains

θ̂
k+1
c = θ̂

k

c

BTRTXTw
BTRTXT m

XRBθ̂
k

c + b
w

, (18)

where w is the vector obtained from the matrix–matrix–vector product LN1 (= NTLT1). The
second and final part of the alternating estimation method is correspondingly given by

θ̂
k+1
b = θ̂

k

b

CTRTXTw
CTRTXT m

XRCθ̂
k

b + b
w

, (19)

which estimates the temporal basis functions (note that for the measured data sub-basis
functions were not used, i.e. T = I in equation (16)). The overall joint-estimation algorithm
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consisted of repeated application of equations (18) and (19), performing 16 updates of the
parameters each time (either the coefficients or the basis functions), corresponding to the 16
different subsets of the data which were available for each 1 min time frame.

3.4. Evaluation of 4D simulation results

For the 4D simulation phantom data, the spatial properties of the reconstruction methods were
evaluated for the mid-point time frame 50 (10 min). The image for this point in time was
used to assess background noise level, using a simple spatial standard deviation figure of
merit (FOM), which calculated the standard deviation of the voxel values belonging to the
background region (white matter) of the cylinder, divided by the mean value. The resolution
of the two line sources was also assessed, by summing all the profiles for all the length of
each line source. This allowed an average full width at half maximum (FWHM) resolution
measure to be made for the line source. These spatial noise and spatial resolution measures
were performed for images from both methods obtained at two iteration numbers (early on
in the iterative process and at the end of reconstruction), for three post-reconstruction spatial-
smoothing levels (3D Gaussians of σ = 0.5, 0.7 and 0.9 voxels).

The temporal properties of the images were assessed using an average bias FOM, evaluated
for each region of interest (ROI) (white matter (background), grey matter (rim), artery (sphere),
ventricle (sphere) and tumour (sphere)). This FOM determined the mean of the differences at
each time point between the reconstructed TAC and the corresponding true TAC. The resulting
mean value over all time points gave an overall indication of bias for the entire TAC. As an
indicator of the noise for each point within each TAC, the spatial standard deviation of the
voxel values within the ROI contributing to a given point on a TAC was determined. These
standard deviations (calculated as the standard error of the mean), each normalized by the
region mean value and expressed as a percentage, were then summed and normalized for
the number of contributions, to give an overall mean noise indicator for a given TAC. These
bias and noise assessments were made for every ROI, for both reconstruction techniques and
for seven different levels of post-reconstruction temporal smoothing.

4. Results

4.1. Simulated data (3D) results

Figure 1 shows an example reconstruction of the phantom and the TACs. Figures 3 and 4 show
the converged temporal basis functions for the three different initializations and for the choice
of three or 15 basis functions. It is evident that the ML solution for the joint estimation of the
coefficients and temporal basis functions is not unique, as the basis functions found for each
different initialization are different (there are only minor differences when estimating three
temporal basis functions, but major differences for the estimation of 15 basis functions). For
noise-free data, the basis functions converge to temporally extensive functions and the same
log likelihood (see figure 5) for all cases considered (whether three or 15 basis functions)
and for all initializations tested. (Note that for the case of initializing with top-hat functions,
the tails adjacent to the top hat itself were set to 10% of the peak top-hat value.) For noisy
data, benefits are only seen when fewer than 15 basis functions are used (since with 15 basis
functions the number of parameters to estimate matches that of the 15-frame independent
reconstruction, yielding 15 top-hat temporal basis functions at convergence, giving the same
log likelihood as the independent reconstruction). For three temporal basis functions with
noisy data, temporally extensive basis functions are obtained, which allow each time frame
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Figure 3. Estimated set of three temporal basis functions for the 2D space with time simulation
data set for four different reconstructions (corresponding to noise-free data with three different
initializations (Gaussian, top hat and random) and noisy data with Gaussian initialization). Top
row: cycle 0 of the joint-estimation method (i.e. the initial temporal basis functions are shown).
Rows 2, 3 and 4 correspond to cycles 15, 75 and 150, respectively (by cycle 150 the joint-estimation
method has converged).
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Figure 4. Estimated set of fifteen temporal basis functions for the 2D space with time simulation
data set for four different reconstructions (corresponding to noise-free data with three different
initializations (Gaussian, top hat and random) and noisy data with Gaussian initialization). Top
row: cycle 0 of the joint-estimation method (i.e. the initial temporal basis functions are shown).
Rows 2, 3 and 4 correspond to cycles 15, 75 and 150, respectively (by cycle 150 the joint-estimation
method has converged).
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Figure 5. Log likelihood for noise-free data (left) and for noisy data (right). The joint-estimation
method is assessed for three different initializations (Gaussians (GS), top hats (TH) and random
values (RN)) and for the choice of three or 15 temporal basis functions. The independent time-
frame method is also included. Since one cycle for the joint-estimation method included 16
iterations of coefficient estimation and 16 iterations of basis function estimation, the independent
method is shown for multiples of 32 iterations.

Figure 6. Example transverse slices of the simulated 3D phantom. Column 1: 3D ML-EM
reconstruction for time frame 50 (out of 100). Column 2: 4D ML-EM reconstruction for
time frame 50 (out of 100). Column 3: 3D ML-EM reconstruction summed over all 100 time
frames. Column 4: 4D reconstruction summed over all 100 time frames. All images were post-
reconstruction smoothed spatially, using 3D convolution with a Gaussian of σ = 0.5 voxels, which
yields approximately the same level of image resolution (as measured by the line source, see
figure 7) for both reconstruction methods (for 24 cycles of the alternating 4D algorithm and 50
iterations of the independent method). Note that in this case, one cycle consists of either 16 updates
of the images of coefficients or 16 updates of the temporal basis functions.

to benefit from many neighbouring frames. The results from the noise-free data indicate that
regularizing the noisy-data reconstruction through use of just three temporal basis functions
in the system modelling (a reduction in the number of unknowns), whilst giving a lower log
likelihood than the independent reconstruction, does not introduce bias for the case of three
TACs. Furthermore, considering row 2 of figures 3 and 4, it can be seen that the temporal basis
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Figure 7. Noise–resolution trade-off for the independent (INDEP) time-frame reconstruction
method (3D EM-ML, shown for iterations 20 and 50) and for the fully 4D reconstruction method
(4D EM-ML). 4D EM-ML is shown for six and 24 cycles of the alternating method (where in this
case one cycle consists of either 16 iterations for the estimation of the coefficients/weights (W) or
16 iterations for the estimation of the six bases (B6)). Both reconstruction methods are shown for
four different levels of post-reconstruction smoothing (no smoothing and convolution with a 3D
Gaussian, σ = 0.5, 0.7 and 0.9 voxels) to obtain the differing levels of spatial image noise. The
line source diameter was 1 mm.

functions estimated from the noisy data match well with those estimated for the noise-free
data, suggesting that noisy-data reconstructions can be regularized through early stopping of
the iterative process.

Figure 5 indicates that the joint-estimation method, with its initialization-dependent time-
basis functions, achieves the same log likelihood as the conventional independent-frame
ML-EM method for the case of noise-free data, emphasizing the non-uniqueness of the ML
estimate. Hence, for the case of a limited number of temporal behaviour patterns, there are
many ways to accurately parameterize the mean of the data q, in such a way that no bias is
introduced. Hence, it is clear that the proposed joint-estimation methodology with temporally
extensive initialization of the basis functions is able to exploit this non-uniqueness by choosing
a more favourable (and yet still bias free) parameterization of the mean of the data, q, such that
a greater level of temporal integration occurs compared to the conventional independent-frame
reconstruction.
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Figure 8. TACs for the two methods with and without post-reconstruction spatial smoothing. The
TACs shown correspond to those from 50 iterations of the independent method (3D EM-ML) and
24 cycles (each of 16 iterations for both the weights and the bases) for the 4D EM-ML method.
The TACs from both reconstruction methods are also shown for the case where a spatial post-
reconstruction smooth (SPS) with a σ = 0.5 3D Gaussian kernel has first been carried out (1 time
unit = 12 s).

4.2. Simulated data (4D) results

Figure 6 shows example transverse slices (from 3D images of a single time frame) of the
independent 3D ML-EM reconstruction and the 4D ML-EM reconstruction. The 4D method
demonstrates visually reduced image noise. Figure 6 also shows the same slices for the case
where all 100 time frames have been summed, which indicates that the differences between
the independent (3D) ML-EM and the 4D method for the time-summation case are minimal.
The similarity between the time-frame summed slices and the single time-frame slices for the
4D approach indicates the significant temporal data integration achieved by the 4D method—
retaining a level of image quality comparable to the static (summed) case, but retaining the
required temporal information (as will be shown). This result arises from the use of coefficient
images with the 4D method: each coefficient image voxel specifies the coefficient for a
temporal basis function and each of these basis functions is able to extend through all time
frames. Figure 7 gives the resolution-noise trade-off for the independent (3D) and the 4D
method, for two different iteration numbers and for three levels of spatial post-reconstruction
smoothing. It is clear that the 4D reconstruction method consistently gives markedly lower
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Figure 9. Mean bias and mean noise for the two methods (with and without spatial post-
reconstruction smoothing (SPS)) for seven levels of post-reconstruction temporal smoothing. The
temporal smoothing was carried out by 1D Gaussian kernel convolution of each voxel’s TAC, using
Gaussians of σ = 0.5, 1, 1.5, 2, 2.5, 3 and 3.5 (time bin units).

spatial noise levels (often more than a factor of 2 better) for a given spatial resolution when
compared to the independent time-frame reconstruction, supporting the visual evidence of
figure 6.

Figure 8 shows the TACs for all methods for a selection of regions—the 4D method
outperforms the independent approach, giving less noisy and more accurate TACs in all cases.
This visual assessment is confirmed in figure 9, which shows that both the mean bias and
the mean noise level in each TAC are lower when using the 4D reconstruction, for all of
the ROIs. Note that post-reconstruction temporal smoothing only modifies the bias of the
TACs for the 4D method (the triangles in figure 9 only displace horizontally on the graphs),
since the temporal noise of the TACs is already very low through use of just six time-basis
functions which extend through all time frames. Hence, any temporal smoothing of the
4D reconstruction only gives rise to increasing bias, and so only spatial smoothing should
be considered for the 4D joint-estimation methodology. Figure 10 shows the development
of the six temporal basis functions with respect to iteration and figure 11 shows the six
images of coefficients along with their corresponding temporal basis functions for the fully 4D
method.
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Figure 10. The six temporal basis functions after 2, 4, 8, 12, 16, 20 and 24 cycles. In this case, one
cycle consisted of either 16 iterations for the coefficients estimation or 16 iterations for the basis
function estimation. Initialization was with six Gaussian functions, centred at six evenly spaced
points in time.

4.3. Clinical data results

Figure 12 shows the reconstructions of frame 15 (60 s of data, between the 14th and 15th
min of acquisition) for the 4D joint-estimation method and for the independent method. It
is apparent that the 4D method significantly reduces noise, through weighted integration of
all of the data permitted by the temporally extensive basis functions. Figure 13 compares
the TACs obtained by the two approaches, demonstrating again the noise reduction which is
achieved by the fully 4D approach. Figure 14 compares the temporal basis functions obtained
when estimating six or 15 such functions. Even after 60 cycles, when using 15 temporal basis
functions, all time frames are covered by the estimated temporal basis functions, meaning that
similar levels of noise reduction are observed at this number of cycles, whether estimating six
or 15 basis functions. (This is confirmed by figure 12, which showed very similar results for
six and 15 basis functions after 24 cycles.) These results suggest that if the joint-estimation
algorithm is terminated before convergence, choosing the maximum number of temporal basis
functions is the best option. However, if run until convergence, fewer basis functions than
frames must be chosen to achieve noise reduction.

5. Discussion

The proposed joint-estimation fully 4D reconstruction algorithm is based on a change of
parameterization of the mean of the measured PET data vector. Conventionally, time frames
are treated independently (analogous to a choice of top-hat functions for the temporal basis) or
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Figure 11. The six coefficient images and their respective time-basis functions after 24 cycles.
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Figure 12. Single slices of frame 15 of the reconstructions. The first four columns correspond
to the joint-estimation 4D ML-EM method when using 15 bases (12 cycles), 6 bases (24 cycles),
15 bases (24 cycles), 15 bases (64 cycles) and the final column corresponds to the independent
reconstruction (6 iterations, 16 subsets). (The joint-estimation method also used 16 subsets.)

completely summed (static reconstruction—analogous to a choice of a flat constant function for
the temporal basis). In contrast, the proposed approach offers an intermediate option between
these two extremes, which is able to preserve the temporal behaviour whilst simultaneously
improving the signal to noise through summation of data frames—provided there is only
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Figure 13. TACs for three single voxels for the 4D joint-estimation method (solid line), the
independent method (bold dashed line) and the independent method if no resolution model is used
(dotted line). Twenty-four cycles were used, with six temporal basis functions for the 4D method.
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Figure 14. Dependence on the number of temporal basis functions for the clinical data. Top row:
the six basis functions obtained after 15, 30 and 60 cycles, respectively. Bottom row: the case
where the 4D method is used with 15 basis functions. Since each basis function is initialized as a
shifted Gaussian with the sum of counts equal to 1, and since the coefficient images are estimated
as the first step in the alternating 4D estimation, the amplitudes for the two different cases of using
six and 15 basis functions are virtually the same. For the case of 15 basis functions, this means
that the 15 coefficient images have correspondingly smaller values to compensate.

a limited set of TAC types present in the measured data. The approach exploits the fact
that accurate modelling of the mean of the measured data can in fact be done in more than
one way and uses this redundancy to find a parameterization of the mean which integrates
more of the temporal data together. At present, the technique does not exploit modelling of
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tracer kinetics, rendering the method suitable for studies where the precise tracer kinetics are
unknown. The estimated temporal basis functions obtained with the current method should not
be assigned physiological meaning, since the resulting functions are non-unique, dependent
on the initialization and the number of functions selected.

In its current form, the proposed joint-estimation approach is computationally demanding,
taking over an order of magnitude more time to reconstruct a 4D image compared to the
independent time-frame reconstruction approach. In terms of memory requirements, the new
method is not significantly more demanding than the conventional approach—although special
measures need to be taken with regard to data corrections, as all time frames are accessed for
a single iterative update of the coefficients or temporal basis functions. In this work, all the
required scatter and random values (b/w in equations (18) and (19)) were stored in a separate
list-mode file, to avoid the need for random access to fully 3D sinogram data sets for every
single time frame. It should also be noted that the use of variable frame lengths is of course
compatible with the methodology.

There is evidently much scope for accelerating the methodology, through use of subsets,
over-relaxation and even a simultaneous updating procedure. A further possibility is the
implementation of the algorithm in image space, using the independent-frame reconstruction
as the source data, to determine a set of coefficient images and temporal basis functions directly
in image space which model the result of the independent-frame reconstruction.

6. Conclusion

A new approach to 4D reconstruction is proposed, which estimates both a set of temporal
basis functions and the coefficients for each of these functions at each spatial location.
The alternating estimation method, which uses a fully 4D ML-EM algorithm, permits each
time frame to benefit from substantially more of the measured data than the conventional
independent (3D ML-EM) time-frame approach, leading to image quality advantages in both
the space and time dimensions. This benefit is drawn from the assumption that a limited number
of time-basis functions are sufficient to describe the temporal behaviour of the radioactivity
in each voxel. This level of improvement cannot be matched by spatiotemporal smoothing
strategies, which lower noise at the cost of increasing bias in the images.
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