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Abstract
In single photon emission computed tomography (SPECT) with parallel hole
collimation, image reconstruction is usually performed as a set of bidimensional
(2D) analytical or iterative reconstructions. This approach ignores the
tridimensional (3D) nature of scatter and detector response function that affects
the detected signal. To deal with the 3D nature of the image formation process,
iterative reconstruction can be used by considering a 3D projector modelling
the 3D spread of photons. In this paper, we investigate the value of using
accurate Monte Carlo simulations to determine the 3D projector used in a fully
3D Monte Carlo (F3DMC) reconstruction approach. Given the 3D projector
modelling all physical effects affecting the imaging process, the reconstruction
problem is solved using the maximum likelihood expectation maximization
(MLEM) algorithm. To validate the concept, three data sets were simulated
and F3DMC was compared with two other 3D reconstruction strategies using
analytical corrections for attenuation, scatter and camera point spread function.
Results suggest that F3DMC improves spatial resolution, relative and absolute
quantitation and signal-to-noise ratio. The practical feasibility of the approach
on real data sets is discussed.

1. Introduction

In single photon emission computed tomography (SPECT) with a parallel hole collimator,
image reconstruction is most often performed as a set of two-dimensional (2D) analytic or
iterative reconstructions. Each 2D reconstruction considers the 2D sinogram associated with a
transaxial slice, assuming that photons emitted in a transaxial slice are detected within a single
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line of each planar 2D projection. This is an approximation because of the spatial response of
the gamma camera and because of the presence of scattered radiation. In the real world, photons
emitted in a transaxial slice are not only detected in the projection line facing the slice, but also
in neighbouring lines. The proportion of such out-of-plane photons is actually non-negligible.
For instance, it has been shown that out-of-plane photons represent on average 21% of the
projection counts recorded in a 1.8 cm slice (20% standard energy window) for a water-filled
cylinder (22 cm high, 22 cm in diameter) uniformly filled with Tc-99m (Munley et al 1991).
This contribution of out-of-plane photons increases when the thickness of the slice decreases,
e.g. reaches 48% for slices half a centimetre thick. To better satisfy the 2D hypothesis, scattered
photons can be subtracted from the projections before reconstruction using multiple energy
window methods or deconvolution kernels (Buvat et al 1994), but this reduces the sensitivity of
the imaging process and enhances the noise level. The finite point spread function can also be
partially compensated for using deconvolution or restoration filtering of the projections before
reconstruction (King et al 1984, Gilland et al 1988, Ogawa et al 1988, Lewitt et al 1989, Glick
et al 1994). An alternative approach is to deal with the three-dimensional (3D) nature of the
problem, using an iterative reconstruction algorithm involving a 3D projector which models
the spread of photons in 3D due to scatter and spatial response function. The 3D modelling
of the spatial response function can be easily performed by analytical calculations (Floyd
et al 1988, Tsui et al 1988, Formiconi et al 1989, Penney et al 1990, Zeng et al 1991, Beekman
et al 1993, Gilland et al 1994) but its inclusion into the projector yields a large increase in
reconstruction time. Several methods have been developed to reduce reconstruction time,
like using block-iterative reconstruction algorithms (Kamphuis et al 1998), rotator (Yendiki
and Fessler 2004) or unmatched projector/backprojector (Zeng and Gullberg 2000). The
analytical modelling of 3D scatter response function is more complicated than that of spatial
response function, because the scatter response can be different for every location of the
volume of interest to be reconstructed. Different methods have been proposed to model the
scatter response function: the slab-derived scatter estimation (Frey et al 1993, Frey and Tsui
1994, Beekman and Viergever 1995, Beekman et al 1996) consists in calculating and storing
scatter response tables for a line source placed behind slabs of variable thicknesses, and to
adjust the model to various object shapes. The scatter response table occupies only a few
megabytes of memory, and makes it possible to model 3D scatter response functions. This
method works well for uniform attenuators but presents limitations for non-uniform attenuators
(Frey and Tsui 1994, Beekman et al 1997). Another approach is based on the calculation of
the scatter response by integrating the Klein–Nishina formula for Compton scattering (Riauka
et al 1996, Wells et al 1998). Similar to Monte Carlo based techniques, this approach requires
long processing times and large data storage. Another technique, called effective scatter
source estimation (ESSE) (Frey and Tsui 1996), is based on the calculation of an effective
scatter source which is used to estimate the contribution of scatter to the projections using
the same projector as for the primary photons (Kadrmas et al 1998, Zeng et al 1999, Bai
et al 2000). This technique yields promising results in reasonable reconstruction times. The
concept of using Monte Carlo simulations to estimate the 3D projector was actually proposed
early (Floyd et al 1986, 1989, Veklerov et al 1988, Bowsher and Floyd 1991) but not applied
in fully 3D at that time, due to impractical storage and computation time. During the last
decade, several acceleration techniques have been developed, making Monte Carlo based
reconstruction possibly practical: accelerated iterative algorithms (Hudson and Larkin 1994,
Byrne 1996), unmatched projector–backprojector pairs (Welch and Gullberg 1997, Kamphuis
et al 1998, Zeng and Gullberg 2000), ‘hybrid’ solutions called convolution-based forced
detection (De Jong et al 2001, Beekman et al 2002), combining stochastic photon transport
within the patient with analytical modelling of the camera spatial response. The use of
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Monte Carlo simulations to calculate the projector has been recently revisited for tomographic
reconstruction of data acquired using a positron emission tomograph (PET) dedicated to small
animal imaging (Rafecas et al 2003, Motta et al 2002, Shokouhi et al 2004), but again,
only 2D reconstruction has been considered. As computer science is evolving fast, fully 3D
reconstruction using a projector entirely calculated using Monte Carlo simulations—that we
will call F3DMC for ‘Fully 3D Monte Carlo’ in the following—might become feasible soon.
The purpose of this paper is threefold: (1) to demonstrate the feasibility of F3DMC in SPECT,
(2) to determine the improvement to be expected from F3DMC in ideal conditions, in terms
of image quality and quantitative accuracy, compared to more conventional reconstruction
approaches, (3) to study the robustness of F3DMC with respect to typical modelling errors.

Section 2 presents the theory of the F3DMC reconstruction approach. Section 3 describes
the method used to study the relevance of F3DMC reconstruction on simulated data. Results
obtained using F3DMC reconstruction and more conventional reconstruction approaches are
presented in section 4 and discussed in section 5.

2. Theory

2.1. Formulation of the fully 3D reconstruction problem

A discrete expression of the SPECT tomographic reconstruction problem can be as follows:

p = Rf, (1)

where p is a column vector with P × N2 elements—assuming P projections of N × N pixels
are acquired, f is a column vector of N3 elements—assuming N transaxial slices N × N are
to be estimated—and R is a (PN2, N3) matrix corresponding to the fully 3D projector. An
element rij of projector R corresponds to the probability that a photon emitted from voxel j is
detected in projection pixel i. Because the problem is very large (typically, R is a 262 144 ×
262 144 matrix if N = P = 64), it is usually not addressed in its full dimensionality. Instead,
it is most often factorized as a set of N independent reconstruction problems, each involving
P mono-dimensional (1D) projections with N elements, a 2D object with N × N elements
corresponding to a transaxial slice and a (PN, N2) projector matrix. In the F3DMC approach
however, as in all ‘fully 3D’ reconstruction approaches, the problem is dealt with in its full
dimensionality, i.e. by considering the (PN2, N3) projector.

2.2. Modelling R

To solve the fully 3D reconstruction problem expressed by equation (1), the first step is
to model the projector R. In F3DMC reconstruction, Monte Carlo simulations are used to
estimate R, as they currently offer the most precise modelling of all physical effects involved
in SPECT.

2.2.1. Initial calculation of R. The elements of R depend on the geometry and attenuating
properties of the ‘object’ under investigation, as well as on the characteristics of the imaging
system. Assuming the attenuating properties of the object are known, from a CT scan for
instance, R is estimated by running a Monte Carlo simulation that considers a uniform activity
distributed over the attenuating medium. For each detected event, the couple (j, i) is stored,
where j represents the emission voxel and i represents the detection pixel. From all detected
events, each rij element of projector R is deduced as the ratio of the number of events emitted
in voxel j and detected in pixel i over the number of events emitted in voxel j. R can be
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calculated for any energy window. For storage savings, the dimension of R is not (PN2, N3),
but only (PN2,M), where M is the number of voxels belonging to the attenuating medium.
Indeed, one can assume that only voxels belonging to the attenuating medium contribute to
the observed projections.

2.2.2. Filtering of R. Because R is derived from a Monte Carlo simulation, hence from a
limited number of photon histories, each element rij is an estimate of the true probability value
that would be obtained if an infinite number of histories was considered. In other words, R is
a noisy estimate of the actual projector. To reduce the noise affecting R, R is first reorganized
as P sub-matrices S of dimensions (N2,M), so that the element sij represents the contribution
of voxel j to projection pixel i. Each of these sub-matrices is related to a specific projection.
The elements of the matrix can be set as a vector with N2 × M elements. A principal
component analysis (Joliffe 1992) of the resulting set of P vectors is performed, yielding a
set of P eigenvalues associated with P eigenvectors. The first K eigenvectors associated with
the highest K eigenvalues are considered to recover a filtered version of the original vectors
(considering K = P would yield the original vectors). The resulting filtered vectors are then
reorganized into a (PN2,M) matrix to get the filtered projector R′, supposedly less noisy than
the original projector.

2.3. Reconstructing the image volume

Given the projector R (or R′), the inverse problem p = Rf can be solved using any classical
iterative algorithms. Because the measured projections follow Poisson statistics in SPECT,
we used the maximum likelihood expectation maximization (MLEM) (Miller et al 1985). The
result is the f column vector with M elements, representing the activity distribution within the
attenuating medium.

3. Material and methods

To study the feasibility and the robustness of the F3DMC approach, Monte Carlo simulations
were performed using the GATE code (www.opengatecollaboration.org). This code has been
recently validated for various configurations in SPECT (e.g., Staelens et al 2003, Lazaro
et al 2004, Assié et al 2005, Jan et al 2004). For each studied phantom, two sets of data were
generated using GATE: the projections of the phantom and the projector used for F3DMC
reconstruction of the phantom.

3.1. Simulated phantoms

Numerical phantoms were described with GATE using an input parameter file, including the
description of the phantom geometry, the description of its atomic composition (and thus its
attenuation properties) and of the radioactive distribution in the phantom. Three phantoms
have been considered (figure 1). The ‘sphere phantom’ was a water-filled cylinder (10 cm in
diameter, 10 cm high), including a 2 cm diameter sphere filled with water. The sphere was
centred in the cylinder and a Tc-99m activity of 24 MBq ml−1 was set in the sphere, while no
activity was introduced in the cylinder (figure 1(a)).

The ‘line and point phantom’ was a 10 cm × 10 cm × 10 cm tank consisting of three
layers of air, water and bone along the X direction (figure 1(b)). This phantom included three
line sources and three point sources (figure 1(b)) with no activity in the background. The
relative activity concentrations were 6, 8 and 10 in the ‘1’, ‘2’, ‘3’ point sources, respectively,
and 10, 15 and 20 in the X, Y and Z line sources, respectively.
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Figure 1. Simulated phantoms: (a) ‘sphere phantom’: water cylinder containing a Tc-99m sphere;
(b) ‘line and point phantom’: water tank including three attenuating media and Tc-99m line and
point sources; (c) ‘cylinder phantom’: water cylinder including five Tc-99m rods of different
diameters and a cold bony rod.

Table 1. Number of simulated and detected counts for the projections of the three considered
phantoms.

Number of simulated photons Detected counts between 126
Phantom (billion) and 154 keV

Sphere phantom 3.10 606 698
Line and point phantom 4.71 1151 553
Cylinder phantom 29.16 6211 922

The ‘cylinder phantom’ was a water-filled cylinder (10 cm in diameter, 10 cm high),
including six rods (10 cm high) with diameters of 4.8 mm, 6.4 mm, 7.8 mm, 9.5 mm, 11.1 mm
and 12.7 mm. The smallest five rods were filled with water whereas the biggest contained bony
material. The bony rod contained no activity (‘cold rod’). A background Tc-99m activity of
2.08 MBq ml−1 (Cbackground) was set within the rest of the cylindrical phantom, except within
the five water-filled rods, which contained a Tc-99m activity equal to four times that of the
background (Chot = 8.32 MBq ml−1) (figure 1(c)).

The ‘sphere phantom’ and the ‘line and point phantom’ volumes were sampled on a 10 ×
10 × 10 voxel grid (voxel size = 1 cm × 1 cm × 1 cm), while the ‘cylinder phantom’ was
sampled on a 64 × 64 × 64 voxel grid (voxel size = 3.125 mm × 3.125 mm × 3.125 mm).

3.2. SPECT simulations

For the ‘sphere phantom’ and the ‘line and point phantom’, a SPECT acquisition of 64
projections 10 × 10 (pixel size: 1 cm) was simulated with a 12 cm radius of rotation. For
the ‘cylinder phantom’, 64 projections 64 × 64 (pixel size: 3.125 mm) were simulated with
a 12 cm radius of rotation. In both cases, the following gamma camera characteristics were
included in the input parameter file, to model the response of the AXIS gamma camera
(Philips): 8.8% energy resolution at 140 keV, high-resolution collimator and 7.6 mm full
width at half maximum (FWHM) system resolution for a point source located at 10 cm from
the collimator. The numbers of simulated and detected counts in the projections for the three
phantoms are summarized in table 1.

Simulation output was stored in a list-mode file, containing emission and detection
positions of each detected photon, as well as the energy at which each photon was detected.
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This list-mode file was then processed to create the projections corresponding to the 126–
154 keV and 92–125 keV energy windows.

3.3. Projector calculation

For the ‘sphere phantom’, a simulation with a uniform Tc-99m activity distribution within the
water cylinder was performed. About 10 billion photons were simulated, which corresponds
to 10 million photons emitted per voxel, and about 2 million events were detected between
126 and 154 keV. The simulation time was about 457 h on a biprocessor Pentium III 1 GHz
machine. As we used a cluster of 40 biprocessors (Pentium III 1 GHz), the simulation actually
ran for about 12 h.

For the ‘line and point phantom’, about 30 billion photons corresponding to a uniform
Tc-99m activity distribution within the non-uniform attenuating medium were simulated
(30 million photons emitted per voxel) and about 6.9 million photons were detected between
126 and 154 keV.

Finally, for the ‘cylinder phantom’, about 75 billion photons corresponding to a uniform
Tc-99m activity distribution within the water cylinder were simulated (about 285 000 photons
emitted per voxel) and about 16 million photons were detected between 126 and 154 keV. In
this latter case, the simulation took about 10 days on our cluster.

For each phantom, the matrix R was deduced as explained before. It was entirely stored
for the ‘sphere phantom’ and for the ‘line and point phantom’, as its size was only 25.6 Mo
(P = 64, N = 10, 6.4 × 106 elements). On the other hand, the full storage of the matrix R for
the ‘cylinder phantom’ was not conceivable because it would have required several hundred
gigabytes. We thus chose to store only nonzero elements of the matrix, which reduced the
size of the matrix R to about 89 MB, and also reduced the reconstruction time. The projector
was filtered using K = 14, 16 and 48 for the ‘sphere phantom’, ‘line and point phantom’
and ‘cylinder phantom’, respectively. These K values were empirically determined as yielding
appropriate trade-off between quantitative accuracy and noise level in the reconstructed images.
In fact, filtering decreases the noise level in the reconstructed images but also leads to poorer
spatial resolution, thus poorer quantitation than unfiltered data. The optimization of filtering
thus consisted in finding the smallest K value (strongest removal of noise) allowing for a good
quantitative accuracy.

3.4. Image reconstruction

To assess the value of F3DMC reconstruction with respect to other 3D reconstruction methods,
data collected in the 126–154 keV energy window were reconstructed using the following three
reconstruction methods:

(1) Filtered backprojection, combined with corrections for scatter, depth-dependent spatial
resolution and attenuation (FBP-C). Projections were corrected for scatter using the
Jaszczak method, with the 92–125 keV window as the ‘Compton’ energy window and
k = 0.5 (Jaszczak et al 1984). Projections were then filtered for depth-dependent
spatial resolution correction using the frequency–distance principle (Lewitt et al 1989).
Attenuation correction was then performed using the iterative Chang algorithm (three
iterations), with the exact attenuation map considered for simulating the projections (Tsui
et al 1989).

(2) MLEM combined with corrections for scatter, attenuation and depth-dependent spatial
resolution, denoted as MLEM-C below. The projections were first corrected for scatter
using the Jaszczak method, with the 92–125 keV window as the ‘Compton’ energy window
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and k = 0.5. Attenuation and depth-dependent spatial resolution were modelled within
the projector used for reconstruction. The attenuation map considered for simulating
the projections was considered to model attenuation in the projector. The number of
iterations was optimized for each phantom, by selecting the number of iterations at which
convergence was achieved, where convergence was defined as mean values measured
in regions of interest used for quantitative assessment (see below) remaining unchanged
within 1%. Using this convergence criterion, 30 iterations were used for the ‘sphere
phantom’ and the ‘line and point phantom’, and 80 iterations were used for the ‘cylinder
phantom’.

(3) F3DMC, consisting in using the MLEM algorithm to solve the inverse problem described
by mean of the 3D projector R obtained using 3D Monte Carlo modelling of scatter,
attenuation and finite spatial resolution. Thus, as the projector modelled scatter,
attenuation and finite spatial resolution, these phenomena were implicitly corrected for
when inverting p = Rf . The number of iterations was optimized for each phantom, by
selecting the number of iterations at which convergence was achieved as defined above.
Thirty iterations were used for the ‘sphere phantom’ and the ‘line and point phantom’,
and 60 iterations for the ‘cylinder phantom’.

In summary, all reconstruction schemes included corrections for attenuation, scatter and
spatial response, but FBP-C and MLEM-C used analytical models for the corrections while
F3DMC used Monte Carlo models.

3.5. Image assessment

To assess the accuracy of the reconstructed images, several criteria were considered:

• Percentage of ‘mislocated’ events, calculated for the ‘sphere phantom’ and defined as the
total activity detected outside the eight voxels containing the sphere divided by the total
reconstructed activity.

• Spatial resolution, calculated for the ‘line and point phantom’. In-plane and axial spatial
resolutions were assessed by drawing profiles through the hottest point source (figure 1)
in the x and z directions, respectively, and by estimating the FWHM from these profiles.

• Relative quantitation. For each line of the ‘line and point phantom’, an average line activity
value was determined by averaging the value of the four hottest pixels (it was checked
that similar results were obtained when considering the six hottest values instead of four).
The ratios between the average activity measured in the Z and Y line sources (theoretical
value = 1.33) and between the average activity of the Z and X line sources (theoretical
value = 2) were considered. For the ‘cylinder phantom’, the activity ratio between each
rod and the background activity was calculated, by considering cylindrical volumes of
interest (VOIs) drawn over each rod, with diameters equal to the actual diameter of the
different rods and height equal to 20 pixels. A background VOI of 2 pixel diameter and
20 pixel height was drawn between the two smallest hot rods.

• Absolute quantitation. To assess the feasibility of restoring absolute activity values, the
percentage of recovered activity (%RA) for each phantom was calculated as follows:
%RA = 100 × (estimated phantom activity)/(simulated phantom activity). For F3DMC,
the phantom activity was directly estimated as the total number of counts in the
reconstructed images divided by the simulated acquisition duration. For FBP-C and
MLEM-C, phantom activity can only be estimated using a calibration factor. This
calibration factor was determined using the ‘sphere phantom’ and was defined as the
number of counts emitted during the simulation divided by the total number of counts
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in the reconstructed image. For FBP-C and MLEM-C, two calibration factors CFBP

and CMLEM were calculated considering the total number of counts in the FBP-C and the
MLEM-C reconstructed images, respectively. To deduce the ‘estimated phantom activity’
and hence %RA for each phantom, the total number of counts was multiplied by CFBP in
the FBP-C images and by CMLEM in the MLEM-C images.

• Signal-to-noise ratio (SNR). For each of the three phantoms, 20 noisy replicates of the
projections were obtained: the mean number of counts in the projections and associated
standard deviation were 606 745 ± 253, 1151 367 ± 1003 and 6211 952 ± 2023 for
the sphere phantom, the cubic phantom and the Jaszczak phantom, respectively. Each
replicate was reconstructed using the three reconstruction methods. SNR was defined as
the mean number of counts within a VOI (sphere for the ‘sphere phantom’, four hottest
pixels of the Z line for the ‘line and point phantom’, background VOI used for relative
quantitation for the ‘cylinder phantom’) averaged over the 20 replicates of reconstructed
images, divided by the standard deviation of that mean.

3.6. Study of the impact of noise in the projector

The impact of the number of simulated counts used to calculate the projector on the reliability
of the reconstructed images was studied using the ‘sphere phantom’. Projectors corresponding
to 1 billion, 5 billion, 10 billion simulated counts and 10 billion simulated counts filtered using
K = 14 were considered.

3.7. Study of the robustness of F3DMC with respect to modelling errors

As the same simulation code was used to generate the projections and the projector R, F3DMC
was expected to perform at its best. When using real data, Monte Carlo simulations never
perfectly reproduce experimental configurations, so there will be differences between the
unknown projector R that yielded the acquired data and the R estimated from Monte Carlo
simulations. To better assess the value of F3DMC when working on real data, we introduced
errors in the modelling of the projector R for the ‘line and point phantom’ and for the ‘cylinder
phantom’. Two types of errors were considered:

• First, to mimic a 4 keV shift in the energy calibration of the camera, a set of projections
P1 corresponding to data recorded in the 122–150 keV energy range was calculated. The
projector appropriate for data recorded in the 126–154 keV energy range was applied
to data recorded in the 122–150 keV energy range. Such a shift would actually also
affect MLEM-C through scatter correction: instead of subtracting the weighted 92–
125 keV data from the 126–154 keV data, the poor energy calibration of the camera
would lead to the subtraction of the 88–121 keV data from the 122–150 keV data.
In addition, for attenuation correction, the attenuation map scaled for 140 keV would
actually be applied to data detected at 136 keV (and same shift for all energy values).
Such erroneous processing scheme was therefore reproduced for MLEM-C (yielding
MLEM-C1), to compare the results with those of MLEM-C without modelling errors and
with those of F3DMC without and with modelling errors.

• Second, a shift in spatial sampling was introduced, by computing sets of projections after
shifting horizontally and vertically the pixel sampling grid with respect to the grid used
for calculating the projector. For the ‘line and point phantom’, projections were shifted
by almost a quarter of a pixel (2 mm) or half of a pixel (5 mm), and referred to as P2

and P3 in the following. For the ‘cylinder phantom’, projections were shifted by half of
a pixel (1.56 mm), one pixel (3.125 mm) and two pixels (6.25 mm) and referred to as P2,



Fully 3D Monte Carlo reconstruction in SPECT 3747

Table 2. Quantitative criteria characterizing the ‘sphere phantom’ images as a function of the
reconstruction method.

Percentage of
Reconstruction method mislocated events SNR

FBP-C 2.0 640
MLEM-C 1.9 800
F3DMC + PCA filtering 1.7 826

P3 and P4. Such shift would typically be encountered if the CT-derived attenuation map
used as an input for the Monte Carlo simulation from which the projector is deduced was
slightly misaligned with the acquired emission data. In that case, MLEM-C reconstruction
would also be affected by the shift. We thus also performed MLEM-C using attenuation
maps affected by the same shifts as those in P2, P3 and P4, noted hereafter MLEM-C2,
MLEM-C3 and MLEM-C4.

In addition, projections of the ‘cylinder phantom’ (PSIMSET) were simulated using the Monte
Carlo simulation package SimSET (Harrison et al 1993) and reconstructed with MLEM-C
and F3DMC using the filtered version of the projector estimated with GATE. The modelling
of the camera response in SimSET was as close as possible to the modelling used in GATE,
the major difference being that SimSET included an analytical modelling of the collimator
response while in GATE, photon transport in the collimator is modelled using the Monte Carlo
approach.

In all cases, F3DMC reconstructions of the different sets of projections (P1, P2, P3, P4,
PSIMSET) that included modelling errors were performed with the filtered projector R, and were
compared to F3DMC reconstruction performed with the set of projections P, which did not
include any modelling error, and with MLEM-C without and with modelling errors. These
comparisons were performed in terms of spatial resolution, relative and absolute quantitation
and SNR, as described in section 3.6.

4. Results

4.1. Phantom results

For the ‘sphere phantom’, the percentage of mislocated events and SNR results obtained for
the three reconstruction methods are summarized in table 2.

For the ‘line and point phantom’, the in-plane and axial spatial resolution, relative and
absolute quantitation indices and SNR are given in table 3.

For the ‘cylinder phantom’, the relative and absolute quantitation indices and the SNR are
given in table 4. Activity ratios measured on the original activity images used for the simulation
are also shown, to separate the effect of sampling bias from the effect of reconstruction bias.
Images reconstructed using the three reconstruction approaches are shown in figure 2, each
image being scaled so that its maximum value corresponds to the maximum value of the grey
scale.

4.2. Impact of the noise in the projector

Table 5 summarizes the impact of the number of simulated counts used to calculate the
projector on the reconstructed images of the ‘sphere phantom’ and the impact of filtering.
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Figure 2. Ideal image and reconstructed images of the ‘cylinder phantom’ using the three
reconstruction approaches.

Table 3. Quantitative criteria characterizing the ‘line and point phantom’ images as a function of
the reconstruction method. Per cent errors with respect to the true values (line ‘ideal’) are given in
parenthesis.

Relative Relative Absolute
Reconstruction Spatial resolution quantitation quantitation quantitation
method (in plane/axial) Z:Y Z:X (%RA) SNR

Ideal 1.00/1.00 1.33 2.00 100 –
FBP-C 1.25/1.21 0.96 (−27.9%) 1.27 (−36.5%) 96.8 234
MLEM-C 1.13/1.06 1.35 (1.5%) 2.18 (9.0%) 90.9 249
F3DMC+PCA 1.03/1.01 1.33 (0%) 1.77 (−11.5%) 99.5 247
filtering

Table 4. Quantitative criteria characterizing the ‘cylinder phantom’ images as a function of the
reconstruction method. Per cent errors with respect to the values obtained on the original sampled
images (line ‘after sampling’) are given in parenthesis.

Relative quantitation Absolute
Reconstruction quantitation
method cyl 1 cyl 2 cyl 3 cyl 4 cyl 5 cyl 6 (%) SNR

Ideal 4.00 4.00 4.00 4.00 4.00 0.00 –
After sampling 1.92 2.23 2.46 2.54 2.73 0.41 100 –
FBP-C 1.55 ± 0.05 1.81 ± 0.05 1.98 ± 0.06 2.27 ± 0.07 2.44 ± 0.07 0.49 ± 0.02 90.0 39

(−19.3%) (−18.8%) (−19.5%) (−10.6%) (−10.6%) (19.5%)
MLEM-C 1.61 ± 0.03 1.80 ± 0.04 1.93 ± 0.04 2.47 ± 0.07 2.46 ± 0.05 0.71 ± 0.02 84.2 44

(−16.2%) (−19.3%) (−21.5%) (−2.8%) (−9.9%) (73.2%)
F3DMC+PCA 1.68 ± 0.06 2.04 ± 0.07 2.33 ± 0.07 2.82 ± 0.07 3.01 ± 0.07 0.45 ± 0.02 98.6 43
filtering (−12.5%) (−8.5%) (−5.3%) (11.0%) (10.3%) (8.9%)

Table 5. Quantitative criteria characterizing the ‘sphere’ images as a function of the projector used
in the F3DMC method.

Number of simulated counts used Percentage of mislocated Absolute quantitation
to calculate the projector events (%) (%RA) SNR

1 billion 24.9 93.6 603
5 billion 11.3 97.4 761
10 billions 7.7 98.4 783
10 billions + PCA filtering 1.7 98.4 826
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Table 6. Quantitative criteria characterizing the ‘line and point phantom’ images with respect
to modelling errors. Per cent errors with respect to the true values (line ‘ideal’) are given in
parenthesis.

Relative Relative Absolute
Reconstruction Spatial resolution quantitation quantitation quantitation
method (in-plane/axial) Z :Y Z :X (%RA) SNR

Ideal 1.00/1.00 1.33 2.00 100 –
F3DMC (P) 1.03/1.01 1.33 (0%) 1.77 (−11.5%) 99.5 247
F3DMC (P1) 1.03/1.01 1.32 (−0.8%) 1.82 (−9.9%) 99.7 257
FD3MC (P2) 1.06/1.07 1.46 (9.8%) 1.76 (−12%) 96.6 181
FD3MC (P3) 1.43/2.00 2.15 (61.7%) 1.65 (−17.5%) 93.2 102
MLEM-C (P) 1.13/1.06 1.35 (1.5%) 2.18 (9%) 90.9 249
MLEM-C1 (P1) 1.14/1.07 1.30 (−2.3%) 2.05 (2.5%) 92.3 194
MLEM-C2 (P2) 1.17/1.21 1.42 (6.8%) 2.40 (20%) 92.2 215
MLEM-C3 (P3) 1.56/2.00 1.68 (26.3%) 2.75 (37.5%) 91.5 129

4.3. Robustness of F3DMC as a function of modelling errors

Table 6 summarizes the impact of modelling errors in F3DMC and MLEM-C upon the criteria
used for image assessment of the ‘line and point phantom’ images.

Table 7 gives the corresponding results for the ‘cylinder phantom’.

5. Discussion

5.1. Practical feasibility of F3DMC approach

Because of the huge size of the projector involved in the inverse problem to be solved, projector
storage and computation time are two main issues of F3DMC reconstruction. For instance, the
projector needed to reconstruct the ‘cylinder phantom’ includes 646 elements (64 projections
64 × 64 used to reconstruct a 64 × 64 × 64 volume), which requires about 137 GB for
storage in integer (assuming that the denominator, i.e. the number of simulated photons per
voxel, is stored separately and is then used to compute rij elements). By storing only nonzero
elements, the projector computed with 75 billion photon emitted requires only about 89 MB,
which makes the projector easily tractable.

The computation time includes both the Monte Carlo simulation duration and the
reconstruction time. Several days of CPU are currently needed for simulating the projector
corresponding to a patient acquisition with GATE, even when using a cluster of PC. The
simulation of the ‘cylinder phantom’ projector requires 10 days CPU using a cluster of
40 biprocessors (Pentium III 1 GHz). As computer science is evolving fast, Monte Carlo
simulation time should be drastically reduced in the near future. Faster Monte Carlo simulation
codes (e.g., SimSET) could also be used instead of GATE, when using radioisotopes such as
Tc-99m, for which analytical modelling of the collimator response is accurate enough to model
the detector response. For the ‘cylinder phantom’ we estimated that it should take about 10
min (on a single biprocessor PC) with SimSET to compute a projector similar in terms of
statistics to that estimated with GATE.

Reconstruction time depends on the iterative reconstruction algorithm. For the ‘cylinder
phantom’, reconstruction took 11 min CPU for 60 MLEM iterations on an Intel Xeon
2.8 GHz with 512 kB of cache memory. Using OSEM instead of MLEM will make it
possible to reduce this time by a factor of 16 at least.
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Table 7. Quantitative criteria characterizing the ‘cylinder phantom’ images with respect to
modelling errors. Per cent errors with respect to the values measured on the original sampled
images (line ‘after sampling’) are given in parenthesis.

Relative quantitation Absolute
Reconstruction quantitation
method cyl 1 cyl 2 cyl 3 cyl 4 cyl 5 cyl 6 (%) SNR

After sampling 1.92 2.23 2.46 2.54 2.73 0.41 100% –
F3DMC (P) 1.68 ± 2.04 ± 2.33 ± 2.82 ± 3.01 ± 0.45 ± 98.6 43

0.06 0.07 0.07 0.07 0.07 0.02
(−12.5%) (−8.5%) (−5.3%) (11.0%) (10.3%) (8.9%)

F3DMC (P1) 1.57 ± 1.93 ± 2.22 ± 2.64 ± 2.86 ± 0.47 ± 98.6 33
0.07 0.07 0.08 0.10 0.09 0.02
(−18.3%) (−13.5%) (−9.8%) (3.9%) (4.8%) (14.7%)

F3DMC (P2) 1.55 ± 1.93 ± 2.16 ± 2.62 ± 2.79 ± 0.45 ± 98.2 38
0.06 0.06 0.06 0.08 0.09 0.02
(−19.3%) (−13.5%) (−12.2%) (3.2%) (2.2%) (9.8%)

F3DMC (P3) 1.42 ± 1.61 ± 1.90 ± 2.26 ± 2.43 ± 0.54 ± 97.8 27
0.08 0.06 0.07 0.09 0.10 0.03
(−26.1%) (−27.8%) (−22.8%) (−11.1%) (−11.0%) (31.7%)

F3DMC (P4) 0.72 ± 0.86 ± 0.91 ± 0.96 ± 1.08 ± 0.63 ± 97.1 50
0.03 0.03 0.02 0.03 0.03 0.02
(−62.5%) (−61.5%) (−63.0%) (−62.2%) (−60.5%) (53.7%)

FD3MC (PSIMSET) 1.79 ± 2.09 ± 2.28 ± 3.05 ± 3.21 ± 0.37 ± 60.8 49
0.05 0.05 0.05 0.07 0.07 0.02
(−6.8%) (−6.3%) (−7.3%) (20.0%) (17.6%) (−9.8%)

MLEM-C (80it) 1.61 ± 1.80 ± 1.93 ± 2.47 ± 2.46 ± 0.71 ± 84.2 44
0.03 0.04 0.04 0.07 0.05 0.02
(−16.2%) (−19.3%) (−21.5%) (−2.8%) (−9.9%) (73.2%)

MLEM-C1 1.41 ± 1.75 ± 1.97 ± 2.15 ± 2.28 ± 0.79 ± 83.4 28
0.05 0.07 0.07 0.08 0.09 0.03
(−26.6%) (−21.5%) (−19.9%) (−39.0%) (−16.5%) (92.7%)

MLEM-C2 1.38 ± 1.68 ± 1.72 ± 2.05 ± 2.01 ± 0.73 ± 81.6 28
0.06 0.06 0.07 0.08 0.07 0.03
(−39.2%) (−24.7%) (−30.1%) (−19.3%) (−26.4%) (78.1%)

MLEM-C3 1.15 ± 1.37 ± 1.41 ± 1.71 ± 1.69 ± 0.80 ± 81.2 30
0.04 0.07 0.06 0.07 0.05 0.03
(−40.1%) (−38.6%) (−42.7%) (−32.7%) (−38.1%) (95.2%)

MLEM-C4 0.90 ± 0.87 ± 0.98 ± 1.03 ± 1.08 ± 1.07 ± 79.8 28
0.04 0.04 0.04 0.04 0.05 0.04
(−53.2%) (−61.0%) (−60.2%) (−59.5%) (−60.4%) (161.0%)

5.2. Phantom results

For the ‘sphere phantom’ (table 2), results obtained with F3DMC were as good as and even
better than those obtained with the two other 3D analytical reconstruction methods, in terms of
percentage of mislocated events. SNR is improved by more than 25% when using 3D iterative
reconstruction methods (MLEM-C and F3DMC) compared to FBP-C.

For the ‘line and point phantom’ (table 3), F3DMC yielded almost perfect spatial
resolution restoration in reconstructed images. Relative quantitation was more accurate with
F3DMC and MLEM-C than with FBP-C. Absolute quantitation results suggested that F3DMC
makes it possible to assess accurately the radioisotope concentration values in the reconstructed
images, without needing any calibration procedure. Even if such a calibration procedure is
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conducted for FBP-C and MLEM-C reconstruction methods, it yields less accuracy in the
assessment of radioisotope concentration values. This is because the sensitivity of the system
is accurately modelled in the projector for F3DMC, taking into account the count loss due
to the collimator. Reconstructed images with MLEM-C and F3DMC are characterized by a
similar signal-to-noise ratio.

For the ‘cylinder phantom’ (table 4), an important loss in quantitative accuracy was
introduced by the sampling of the activity distribution onto a voxel matrix. Indeed, the very
sampling of the activity distribution (without considering any reconstruction step) made the
activity ratios measured on the sampled images much smaller than the actual activity ratios
(55% smaller for the smallest rod and 33% smaller for the largest rod). Considering the
values measured on the simulated sampled activity maps as reference values for assessing
the accuracy of activity ratio restoration, the best accuracy was observed with F3DMC and
FBP-C. The average error on activity ratio estimates over all hot rods was about 17%, 24%
and 10%, for FBP-C, MLEM-C and F3DMC, respectively. F3DMC also yielded the smallest
activity value in the cold rod, compared to the other two reconstruction approaches. Figure 2
illustrates the high contrast obtained in the F3DMC image. Similar to what was observed for
the ‘line and point phantom’, F3DMC performed better than FBP-C and MLEM-C in terms
of absolute quantitation. Finally, signal-to-noise ratio was similar for F3DMC and MLEM-C,
and was improved by about 10% compared to FBP-C.

In summary, F3DMC reconstruction yielded a better spatial resolution in reconstructed
images than alternative reconstruction approaches, as well as improved quantitative accuracy
(both for relative and absolute quantitation). Results were especially impressive for the cold
rod of the ‘cylinder phantom’. Furthermore, results obtained with F3DMC reconstruction for
the ‘cylinder phantom’ could certainly still be improved by simulating more counts to estimate
the projector, or by using some optimized filtering of the projector.

5.3. Impact of the noise on the projector

Table 5 shows how increasing the number of simulated counts used to estimate the projector
reduced the percentage of mislocated events, and improved quantitative accuracy and signal-
to-noise ratio. When the number of simulated counts changed from 1 billion to 10 billions,
the percentage of mislocated events decreased from 24.9% to 7.7% and the signal-to-noise
ratio improved by about 30%. PCA filtering further improved the percentage of mislocated
events from 7.7% to 1.7%, and the signal-to-noise ratio by about 6%. These results show
the impact of the statistics on the quality of reconstructed images and also stress that high
statistics simulations combined with projector filtering should be used to achieve the best
results. PCA filtering presents the advantage of acting as a non-parametric adaptive filtering,
which does not use any prior knowledge regarding the distribution of the probability values
in the projector. Further investigation regarding the projector structure and other filtering
approaches are currently under way (Rafecas et al 2004).

5.4. Robustness of F3DMC as a function of modelling errors

Tables 6 and 7 show that F3DMC results were almost unaffected by a 4 keV error in the energy
calibration of the gamma camera (P1). For the ‘line and point phantom’, results were weakly
affected by the 2 mm off-set (representing almost a quarter of a pixel) between the sampling
grid used to calculate the projector and the sampling grid used to calculate the projections
(P2), but the results strongly deteriorated for a 5 mm off-set (representing half of a pixel) (P3).
These results are consistent with the fact that the sources in the ‘line and point phantom’ were
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1 cm thick. For the ‘cylinder phantom’, results were slightly affected by a 1.56 mm off-set
(representing half a pixel), were more affected by a 3.125 mm off-set (representing a pixel) and
were strongly affected by a 6.25 mm off-set (representing two pixels). What seems to matter
is the absolute off-set between projector and projections expressed in mm, and not in fraction
of a pixel. For the simulated tomograph, with a spatial resolution of about 8 mm at 10 cm
from the collimator, an off-set greater than 5 mm introduced large quantitative errors in the
reconstructed images and also artefacts that can be clearly seen in the reconstructed images.
For both phantoms, the impact of modelling errors was similar for F3DMC and MLEM-C,
suggesting that F3DMC is as robust as MLEM-C with respect to modelling errors.

Finally, the reconstruction of projections computed with SimSET with a projector
computed with GATE demonstrated that when projections and projector were calculated
using different tools, reconstructed images were of similar quality (table 7) as when the same
model was used for calculating the projections and the projector.

5.5. Potentials of F3DMC with respect to alternative reconstruction approaches

Beyond the feasibility and encouraging results of F3DMC reconstruction demonstrated by our
results, several original features of F3DMC can be underlined. The major advantage of using a
Monte Carlo approach to calculate the projector is that every phenomenon involved in the image
formation process can a priori be accounted for during the reconstruction, as long as it can be
modelled in the Monte Carlo simulations. This includes non-conventional geometric response
of a tomograph, which could be useful for non-parallel collimation geometry in SPECT, and in
PET where the geometric response of the tomograph is often complex, especially in 3D PET.
The very specificity of the patient is also accounted for in F3DMC, as the attenuation map
is used to determine the probabilities of the different photon histories for that patient, which
makes up the projector. The value of F3DMC reconstruction should also be even more striking
for isotopes with several emission energies (e.g., In-111 or I-131), for which the analytical
modelling of the camera response is far more complicated than for Tc-99m.

6. Conclusion

We have shown the feasibility and potential value of F3DMC reconstruction for SPECT
reconstruction on simulated data. F3DMC yielded results as good as or better than other
analytical reconstruction approaches, in terms of spatial resolution, quantitative accuracy and
signal-to-noise ratios, and appears as robust as other reconstruction methods with respect to
modelling errors. One key point in F3DMC reconstruction is the statistical reliability of the
projector, which depends on the number of photon histories used to calculate the projector
elements. We have introduced a filtering method allowing for noise removal in the projector
and demonstrated its efficiency. The next step will be to apply F3DMC to real SPECT data.
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