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Abstract
Accurate modeling of system response and scatter distribution is crucial for
image reconstruction in emission tomography. Monte Carlo simulations
are very well suited to calculate these quantities. However, Monte Carlo
simulations are also slow and many simulated counts are needed to provide a
sufficiently exact estimate of the detection probabilities. In order to overcome
these problems, we propose to split the simulation into two parts, the detection
system and the object to be imaged (the patient). A so-called ‘virtual
boundary’ that separates these two parts is introduced. Within the patient,
particles are simulated conventionally. Whenever a photon reaches the virtual
boundary, its detection probability is calculated analytically by evaluating a
multi-dimensional B-spline that depends on the photon position, direction and
energy. The unknown B-spline knot values that define this B-spline are fixed
by a prior ‘pre-’ simulation that needs to be run once for each scanner type.
After this pre-simulation, the B-spline model can be used in any subsequent
simulation with different patients. We show that this approach yields accurate
results when simulating the Biograph 16 HiREZ PET scanner with Geant4
Application for Emission Tomography (GATE). The execution time is reduced
by a factor of about 22× (scanner with voxelized phantom) to 30× (empty
scanner) with respect to conventional GATE simulations of same statistical
uncertainty. The pre-simulation and calculation of the B-spline knots values
could be performed within half a day on a medium-sized cluster.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Geant4 Application for Emission Tomography (GATE) (Jan et al 2004) is a widespread, well
validated and very versatile application for Monte Carlo simulations in emission tomography.
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It allows detailed simulations of positron emission tomography (PET) or single photon
emission computed tomography (SPECT) scanners using the general purpose Monte Carlo
code Geant4 (Agostinelli et al 2003, Allison et al 2006). This includes the exact positioning
of the constituting parts (like crystals, blocks, supporting structure, bed), correct physical
interactions, and the modeling of the signal processing of the detected events. GATE is also
capable to simulate the propagation of light (low energy photons) in the crystals (Takoudis
et al 2008).

Iterative PET or SPECT image reconstruction algorithms as opposed to analytical
algorithms are nowadays the methods of choice due to their superior statistical performance
and flexibility (Qi and Leahy 2006). The system matrix that plays a central role in every
iterative reconstruction algorithm describes the system response of the detection system, i.e.,
the probability that a positron emitted at a certain location in the patient be detected by a given
detection element. Any improvement that can be achieved with respect to the quality of this
matrix will therefore directly translate into more quantitative reconstructed images (Qi and
Huesman 2005). It has been shown that Monte Carlo simulations could be used for accurate
system matrix calculation (Rafecas et al 2004, El Bitar et al 2006, Lazaro et al 2004, 2005).

A major drawback of Monte Carlo simulations is their slow performance. Usually,
realistic simulation tools like GATE tally integer counts to mimic correctly the statistics and
the signal processing. For matrix simulations non-integer detection probabilities need to be
computed. It would be therefore desirable to replace the binary response of the detectors by
the detection probability.

In this work, we propose to accurately model the detector response function by a
multidimensional B-spline. The B-spline weights are fixed using a Monte Carlo simulation
that precedes the actual Monte Carlo simulation. This ‘pre-simulation’ has to be performed
only once for a given scanner type. Once the detection probability function of the detectors
is parameterized, it could be used for any subsequent Monte Carlo simulation involving the
same scanner type. It could then be useful for the efficient calculation of model-based scatter
correction or an accurate patient-dependent system matrix to replace the detailed Monte Carlo
propagation within the scanner by the parameterized detector response and to use the full
Monte Carlo tracking only to account for the particle tracking within the patient.

In the past, approaches to model the detection response have been proposed to accelerate
Monte Carlo simulations of SPECT. These approaches are based on a tabulated angular
response function (Song et al 2005) or on convolution-based forced detection (de Jong et al
2001, Beekman et al 2002, de Beenhouwer et al 2008). The presented general B-spline method
is applied to PET Monte Carlo simulations.

2. Theory

2.1. Principle

The proposed method assumes that the simulation can be divided into two parts. In the first
part the particles are started in the phantom/simulated patient and tracked in a conventional
manner using a Monte Carlo code (in this example GATE). Eventually, in the conventional
simulation, the particles will either be detected in the detection system or be discarded, because
they are absorbed, or their energy drops below a certain energy threshold, or they leave the
simulated geometry. In the presented method a virtual border between the interior of the gantry
and the detection system is introduced. A particle that crosses this border leaves the Monte
Carlo simulation and the probability of detection is then calculated analytically. The analytical
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Figure 1. The variables used to describe the photon state on the virtual boundary.

description is itself based upon an accurate Monte Carlo simulation that was performed in a
so-called ‘pre-simulation’.

Our analytical model relies on the following assumptions:

(i) Other particles (e.g., electrons, positrons) than photons that are crossing the virtual border
do not reach the detectors.

(ii) Photons cross the border two times at most. This means that a photon cannot leave, re-
enter, and leave again. The interior part of the geometry does not influence the detection
probability once the photon crossed the virtual border.

(iii) The detection probability itself is not flux dependent, i.e. dead time effects are not taken
into account.

(iv) Furthermore, although the detection probability can change non-continuously from one
detector to the next, this probability will change smoothly for a given detector: small
changes in the photon state at the virtual border will only lead to small changes in
detection probability.

(v) If many detectors are involved (for example several tens of thousands as in PET), it is
assumed that for a photon in a given state the detection probability is only non-negligible
for a small subset of the detectors.

In our approach we used a spherical virtual border of fixed radius. When neglecting spin,
the photon state x on this border can be represented by five variables (see figure 1):

R
N � x =

⎛⎜⎜⎜⎜⎝
position inclination angle θ

position azimuthal angle φ

momentum direction angle of incidence θS

momentum direction azimuthal angle φS

energy E

⎞⎟⎟⎟⎟⎠
N ≡ number of coordinates (here N = 5)
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Here θ is the angle between the scanner axis (z-axis) and the line connecting the scanner
center (origin) with the point where the photon hits the virtual border. The angle φ defines
the position of the latter point in the transaxial plane. These angles are global coordinates.
The momentum direction angles are local coordinates. Angle θS is the angle of incidence with
respect to the virtual border and φS is the angle in the tangential plane.

We assumed that photons cannot be detected when they do not reach the ring with
detectors. Photons with a position located outside this specific area of the virtual border were
thus discarded. In order to improve statistics, rotational symmetry as well as global axial
symmetry and azimuthal intra-block symmetry can be used (for example, in total 192 fold for
the Biograph HiREZ). In the pre-simulation, photons were therefore only directed such that
they reach a small non-redundant subarea of the virtual border.

For each of the detectors (for example, M = 24 366 detectors in the case of the PET/CT
scanner Biograph HiREZ) a five-dimensional B-spline with the state x as argument is used
to described the detection probability. It can be expected that for a fixed photon state x, the
B-spline is only non-negligible for a small subset of the detectors (�24 366 for the Biograph
HiREZ).

For a given detector, the B-spline f (x) describing the probability of detection for a photon
in state x at the border is defined for an interval x ∈ I = [xmin, xmax] using a uniform spacing
s ∈ R

N of the B-spline knots for each of the N dimensions and xmax
i = xmin

i + qisi with
qi ∈ N:

f (x) =
∑
k∈�

Bk(̃x)ϕk+k̂. (1)

Here Bk(̃x) is the kth tensor B-spline basis function depending on the running index vector k
and x̃ (see (2) and (3)).

Bk(̃x) ≡
N−1∏
i=0

B
(ni)
ki

(x̃i) (2)

B
(ni)
ki

(· · ·) ≡ ki th B-spline basis function of order ni

k̂i =
⌊

xi − xmin
i

si

⌋
(3)

x̃i = xi − xmin
i

si

− k̂i .

Here �· · ·� returns the integer part of the argument (std::floor function in C/C++). The
order vector n defines the order of the B-spline basis functions for each dimension of x. In
addition to the shape of the B-spline basis functions, this vector n defines also the set � (see (4))
and influences therefore the number of one-dimensional B-spline basis function evaluations
that are required to calculate the approximate detection probability f (x) for a given state x
(see (1)):

� ≡ N
0
�n0

× N
0
�n1

× · · · × N
0
�nN−1

. (4)

In equation (5), the B-spline basis functions of orders 0, 1, 2 are shown for illustrative purpose:

B
(0)
0 (x) = 1; B

(1)
0 (x) = 1 − x; B

(2)
0 (x) = 1

2 (1 − x)2

B
(1)
1 (x) = x; B

(2)
1 (x) = −x2 + x + 1

2 (5)

B
(2)
2 (x) = 1

2x2.
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(a) (b)

Figure 2. One-dimensional example of a B-spline of order n = 1. (a) The B-spline and (b) B0
and B1.

Figure 2(a) shows a one-dimensional example of a B-spline of order n = 1 to visualize the
variables defined in equation (3). The continuous thick red line is the B-spline. The dotted
thin lines represent the weighted B-spline basis functions.

The B-spline knot values ϕk+k̂ are the free parameters of the model. Therefore,

#Q =
N−1∏
i=0

(qi + ni) (6)

(yet unknown) B-spline knot values ϕk+k̂ are needed for the calculation of f in I.
For M detectors, the methodology is straightforwardly generalized by constructing a

vector function F that consists of M scalar functions f :⎛⎜⎜⎝
f 0(x)

f 1(x)

· · ·
f M−1(x)

⎞⎟⎟⎠
︸ ︷︷ ︸

≡F(x)

=
∑
k∈�

Bk(̃x)

⎛⎜⎜⎜⎝
ϕ0

k+k̂

ϕ1
k+k̂
· · ·

ϕM−1
k+k̂

⎞⎟⎟⎟⎠
︸ ︷︷ ︸

≡Ψk+k̂

F(x) =
∑
k∈�

Bk(̃x)Ψk+k̂ (7)

2.2. Calculation of the B-spline knot values in �k+k̂

Since the detection process is complex, the detection probability values ϕi

k+k̂
of the B-spline

knots cannot be calculated directly. Instead, we propose to use a detailed Monte Carlo
simulation to set these values. We call this simulation a ‘pre-’simulation. The values ϕi

k+k̂
are

therefore replaced by Monte Carlo estimated values. For each B-spline knot, a weight vector
ωk+k̂ of the same length as Ψk+k̂ is initialized with zero values and a variable Wk+k̂ is set to
zero:

ωk+k̂ =

⎛⎜⎜⎜⎝
w0

k+k̂

w1
k+k̂

· · ·
wM−1

k+k̂

⎞⎟⎟⎟⎠ (8)

Wk+k̂ = summed weight. (9)
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During the pre-simulation, each photon is tagged with the initial randomly chosen starting
state x ∈ I on the virtual border. The photon is either detected by exactly one of the detectors
(i = detector number) or not at all. Using equations (3) the values k̂(x) and x̃(x) can be
calculated and the values of ωk+k̂ and Wk+k̂ increased for all k ∈ � according to the rule

if detected by i wi

k+k̂
← wi

k+k̂
+ Bk(̃x)

always Wk+k̂ ← Wk+k̂ + Bk(̃x).
(10)

With a sufficient number of simulated photons, this leads to an approximation of Ψk+k̂:

Ψk+k̂ ≈ Ψ̃k+k̂ = ωk+k̂

Wk+k̂
. (11)

The update rule guarantees that

(i) The total detection probability of a photon is conserved, since
∑

k∈� Bk(̃x) ≡ 1 for all
x̃ ∈ [0, 1] × · · · × [0, 1] ⊂ R

N (partition of unity).

(ii) The weighting of a B-spline knot for a given starting state/detection outcome pair
corresponds directly to the weight of the B-spline knot used later in the actual Monte
Carlo simulations.

(iii) The calculation of the B-spline values is sufficiently fast (linear in the number of simulated
particles, independent of the number of B-spline knots).

This is exemplified in figure 2(b) for a one-dimensional B-spline of order n = 1. For a given
photon state x, and according to the update rule (10), W0+k̂ is increased by B0(x̃) and W1+k̂ is
increased by B1(x̃). The closer x to the knot k + k̂ the larger will the knot value be increased.
Note that B0(x̃) + B1(x̃) ≡ 1. The photon is therefore ‘distributed’ and attributed to the
neighboring B-spline knots. When the photon is detected by detector i the same update rule is
applied to wi

0+k̂
and wi

1+k̂
.

2.3. Usage of the B-spline model during tracking in the actual Monte Carlo simulations

During tracking in the actual Monte Carlo simulation, the particles are tracked conventionally
within the volume that is surrounded by the virtual border (usually the patient geometry).
Photons that reach the virtual border are removed from the simulation and the B-spline
function F(x) is evaluated with x being the photon state on the virtual border (12):

Fi(x) =
∑
k∈�

Bk(̃x)ϕi

k+k̂
≈

∑
k∈�

Bk(̃x)
ωi

k+k̂

Wk+k̂
. (12)

The set of M detectors M = {0, . . . , M − 1} together with {Fi(x)}i∈M represents the possible
detection outcome (‘which detector detects the photon . . . ?’) and its detection probability
(‘ . . . and with which probability?’), respectively.

Since the number of detectors is usually high and there are many B-spline knots per
detector due to its N = 5 dimensions, it is not desirable or perhaps even not possible to keep
all B-spline knot values for all detectors in memory. Therefore two ways to store the values in
a sparse manner are presented that are used at different stages of the method.
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Both storage schemes have in common that only those B-spline knots that have non-zero
values are stored and both schemes require that in addition to the value ϕ̃

m(i)

k+k̂
= ω

m(i)

k+k̂

/
Wk+k̂

the detector number m(i) must be stored:

[Ψ̃k+k̂] =

⎡⎢⎢⎢⎢⎢⎣
ϕ̃

m(0)

k+k̂
; m(0)

ϕ̃
m(1)

k+k̂
; m(1)

· · · ; · · ·
ϕ̃

m(M+−1)

k+k̂
; m(M+ − 1)

⎤⎥⎥⎥⎥⎥⎦ . (13)

In equation (13), it is shown how the values are stored. For given k + k̂, only those
M+ < M values that are larger than zero are stored. Here m(i) is a bijective function
from {0, . . . ,M+ − 1} to the set of detector numbers with non-zero detection probability.
The two storing schemes differ only in the choice of the bijective function m(i). In the first
scheme (bijective function mD(i)) the entries are ordered with ascending detector numbers and
in the second scheme (bijective function mP(i)) with descending detection probability. The
first ordering is used whenever fast access for a given detector number is needed (e.g., when
building the B-spline in the pre-simulation), the second ordering when it is advantageous to
know that a hit in any of the following detectors (in memory) is less probable.

During the actual simulation, both ordering schemes are used. One vector v ordered by
the detection number and of variable size serves to add and store all possible outcomes and
detection probabilities for a given photon state x. The B-spline obtained by the pre-simulation
is stored using probability ordering. In this way it can be avoided to evaluate values that are
very small and that would not change significantly the result. The read-out algorithm can be
seen in algorithm 1.
All contributions to (12) with values smaller than pmin are therefore not included into the sum
and the while loop is often aborted before i reaches M+ − 1 (see algorithm 1, line 9). This
helps reducing the execution time spent on the calculation of very unlikely outcomes. The
bijective function mD maps from the entry number in v to the detector number and must be
therefore updated each time a new detector is added to v. In our implementation this was
achieved by using a std::map of the standard template library (STL).

To save memory, not only zero but also small probability values ϕ̃i

k+k̂
< pmem can be

suppressed already in the stored B-spline after the pre-simulation and prior to the actual
simulations. In this case M+ is replaced by M� < M+ and the set of stored elements for the
B-spline is a subset of the elements shown in (13). Usually, M� � M can be achieved (see
assumption v in section 2.1). Therefore, two tuning parameters pmin and pmem are available to
reduce execution time (both parameters) and memory requirements (pmem) at the cost of some
accuracy.

To further reduce the number of evaluated small values that contribute only weakly to
the result but normally to the execution time, a Russian roulette type exit condition can
be introduced (see algorithm 1, lines 11–20). Whenever Bk(̃x)ϕm

k+k̂
is below a parameter

proulette the detection probability for the subsequent detectors is only increased (and therefore
evaluated) for every 1/arouletteth photon on average. In order to account for this reduced
probability, the added weights are multiplied by aroulette in this case.

In order to preserve the total detection probability when the B-spline knot values smaller
than pmem are removed, a corrective factor was applied to the remaining non-zero B-spline
knot values prior to the actual simulation:

ak+k̂ =
∑M−1

i=0 wi

k+k̂∑M�−1
i=0 wi

k+k̂

. (14)
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The factors ak+k̂ were usually very close to 1. Preliminary tests showed that the quality of the
approximation could be slightly increased when using this factor.

Algorithm 1. Read out during actual simulation
1: calculate random number r ∈ [0, 1]

2: calculate x̃ and k̂ according to (3)

3: create empty detection outcome vector v

4: for k ∈ � do

5: i ← 0

6: m ← mP(i)

7:

8: — Leave while loop to omit very small values:—
9: while

(
Bk(̃x)ϕm

k+k̂
> pmin

) ∧ (i < M+) do
10:

11: —Russian roulette for small values:—

12: if
(
Bk(̃x)ϕm

k+k̂
< proulette

)
then

13: if r < 1/aroulette then

14: b ← aroulette

15: else

16: break (leave while loop)

17: end if

18: else

19: b ← 1

20: end if

21:

22: —Add possible detector outcome:—

23: if entry for detector m exists in v then

24: v
[
m−1

D (m)
] ← v

[
m−1

D (m)
]

+ b Bk(̃x)ϕ̃m

k+k̂
25: else

26: insert entry v
[
m−1

D (m)
] = b Bk(̃x)ϕ̃m

k+k̂
27: Update bijective function m−1

D

28: end if

29:

30: i ← i + 1

31: m ← mP(i)

32: end while

33: end for

34: return possible detection outcome in vector v
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Figure 3. The modeled PET scanner Biograph 16 HiREZ.

3. Methods

3.1. Modeled tomograph

In figure 3, the used GATE model of the PET part of the Biograph 16 HiREZ PET/CT scanner
of Siemens Medical Solutions can be seen. This model has been previously validated (Lazaro
et al 2005, Michel et al 2006, Vauclin et al 2008). The scanner consists of three rings with 48
crystal blocks. Each crystal block contains 13 × 13 crystal detectors. The blocks of the two
outer rings are tilted in such a way that the crystals approximate the (sub-)surface of a sphere.
Dead time was not modeled. In our approach, we used the 48-fold rotational symmetry as
well as the symmetry in axial direction and the transaxial intra-block symmetry (192 fold in
total).

3.2. Computer resources

The used computer cluster consisted of 10 computers with two processors (Intel E5520 at
2.27 GHz). Each of the processors was equipped with four cores. For the simulations/
calculations, only half of the cores per computer was used (40 cores in total). The front end
computer had an Intel i7 9200 CPU running at 2.67 GHz.

3.3. Pre-simulation and choice of B-spline parameters

In the pre-simulation, around 2.5 billion photons were started by randomly choosing starting
position, direction and energy from the interval I�. Due to the symmetry of the scanner, the
photons were only directed to a sub-space I� ⊂ I (see table 1). All values except energy
were sampled uniformly. Since usually around half of the detected photons in the actual
simulations are expected to be unscattered, it is desirable to have a more accurate detector
model for energies around 511 keV and therefore the initial energy of 50% of the photons
in the pre-simulation was set to 511 keV. The energy of the other photons was distributed
uniformly between 350 keV and 512 keV. In table 1, the borders of the interval I� as well as
the number of B-spline knots and the order of B-spline can be seen for each dimension. The
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Figure 4. The central slice of the segmented CT images used for simulation. The segmented
values go from air (black) to rib bone (white) with intermediate values for lung, soft tissue, spine
bone, and 20 compositions to interpolate between lung and soft tissue. The arrow points to
position ra.

Table 1. Chosen parameters and the interval I� that were used for the modeling.

i Variable Unit xmin
i xmax

i qi ni

0 θ 1 π

2 − 11.1 π

180
π

2 40 1

1 φ 1 0 2π

96 13 1

2 sin2 θS 1 0 sin2
(

45π

180

)
20 1

3 φS 1 0 2π 20 1
4 E keV 350a 512a 8 1

a see text.

radius of the sphere describing the virtual border was set to the mean crystal distance relative
to the center of the scanner (r = 435.23 mm). Photons were started in the empty scanner such
that they reach the virtual border within the desired position (θ, φ), inclination angle (θS, φS)
and energy interval. In the actual simulation, the intervals for θ and φ could be widened
to

[
π − 11.1 π

180 , π + 11.1 π
180

]
and [0, 2π ], respectively, by exploiting the aforementioned

symmetries. B-spline values with values below pmem = 5 × 10−4 were suppressed to save
memory (see also section 2.3).

Photons were started such that they would hit the virtual border in a straight line at the
randomly chosen positions and incident angles. In the actual simulation the detection system
is replaced by the B-spline on the virtual border. Photons that leave the voxelized patient
are transported to the virtual border in a straight line (no interaction is assumed between the
voxelized patient and the virtual border). There, the B-spline is evaluated.

3.4. Actual simulation

The accuracy of the detector model was investigated by placing a single voxel of dimension
4 × 4 × 4 mm3 and filled with 18F either in the empty scanner (filled with air) or in a scanner
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Table 2. Calculation of the weights of the coincidences between the detectors i and j resulting from
one back-to-back photon pair (‘pink’ and ‘blue’ photon). In the case of the B-spline simulation
multiple detection outcomes are possible.

Conventional B-spline

w(i, j) = wpink(i) wblue(j) w(i0, i0) = wpink(i0) wblue(j0)

w(i0, j1) = wpink(i0) wblue(j1)

· · ·
w(in−1, jm−1) = wpink(in−1) wblue(jm−1)

Weights ∈ {0, 1} Weights ∈ [0, 1]

with a voxelized patient that is derived from a CT scan (see figure 4). Three different voxel
positions were chosen: (a) at the center ra = (0, 0, 0) cm of the scanner, (b) at an off-central
position rb = (3, 14, 5) cm within the field-of-view (FOV), (c) at an off-central position
rc = (15, 15, 13) cm out of FOV. Each of the simulations was performed by running 40 × 1 s
simulation of 100 MBq (18F, positron range = 0 mm, no accollinarity) with 40 different
random generator seeds using the random generator Mersenne Twister. Since dead time was
not simulated and the time t = 1 s × 40 � T 1

2
(18F) = 110 min, the resulting singles of the 40

simulations were simply added to obtain the equivalent of a 40 s scan. Photons coming from out
of FOV that could potentially interact with the shielding due to their position and momentum
direction were handed over back to GATE and the detection probability was determined in the
conventional way. All other photons that eventually hit the virtual boundary were handled by
the B-spline. The used tuning parameters were proulette = 1 × 10−3, pmin = 2 × 10−6, and
aroulette = 10.

In the conventional simulations that were performed for validation purposes, the same
physical models and geometrical setup were used, but instead of using the B-spline for
detection, the photons are tracked conventionally by GATE. In the conventional simulations
and in the simulation using the B-spline, fictitious interaction tracking was used for the
voxelized patient (Rehfeld et al 2009).

We also tested the accuracy of the sinograms derived from the B-spline-based simulations
as follows. In order to obtain high statistics, 224 conventional simulations of 5 s scans of
a 8 × 8 × 8 cm3 box positioned at rb and filled with 100 MBq (18F, positron range = 0
mm, no accollinearity) were performed. Ten 0.2 s scans with 10 GBq (otherwise same setup)
were simulated using the B-spline approach. Since in both cases the simulated times (5 s and
0.2 s) were much smaller than the decay time of 18F it could be safely assumed that in total
5.6 = 224 × 5 × 108/10 × 0.2 × 1010 times more photons were simulated in the conventional
simulations than in the B-spline simulations and that the corresponding sinograms should
differ ideally by a factor of 5.6. These sinograms were created directly from the singles by
only counting coincidences that came from the same decay. In the conventional way this
was straightforward (see table 2, first column). Only when both photons i and j are detected
(wpink(i) = 1 and wblue(j) = 1) a coincidence of weight w(i, j) = 1 is formed. In the
B-spline simulation multiple combinations are possible due to multiple possible outcomes
once a photon hits the virtual border. In this case all possible combinations were formed. In
table 2 (second column), it is shown how the m × n coincidences were formed and weights
were calculated when one of the original back-to-back photons could be detected by n detectors
with non-zero detection probability and the other photon by m detectors.
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3.5. Evaluation of the results

3.5.1. Accuracy. The results were evaluated by simulating detector crystal maps
that show the detected singles (two-dimensional arrays 〈number of crystals per ring〉 ×
〈number of crystals in axial direction〉 with the detection probability per crystal for each entry.
In this way, it could be verified if the modeled detectors yield the same detection probability
and cause the same block detector effects as the original detectors used in the conventional
simulation. The detector maps were evaluated qualitatively by displaying the maps as gray
value images and quantitatively by comparing the total number of detected photons and
diagonal profiles through the detector maps with the results of the conventional simulation.

In order to investigate the impact of the B-spline approximation on the spatial noise
properties of the simulated detector maps, the autocorrelation ρ(Δ; t) of the central detector
crystal t was calculated for neighboring crystals t + Δ:

ρ(Δ; t) = E [(Y (t) − μ(t)) (Y (t + Δ) − μ(t + Δ))]

σ(t)σ (t + Δ)
. (15)

Here Y (t) stands for the number of detected photons by crystal t. The mean μ(t) and the
standard deviation σ(t) of the counts for detector crystal t as well as the expectation E[· · ·]
were calculated using the maps obtained from the 40 simulations of the computer cluster.

The simulated sinograms were evaluated graphically by showing two 2D sinograms and
a line profile through these sinograms.

3.5.2. Computational efficiency. In order to investigate the computational efficiency, the
total number of detected particles n that is needed to reach the same level of relative error
in the detector crystals is determined for the conventional simulation (n = nC) and for the
simulation using the B-spline detector model (n = nB). The acceleration factor α that is
achieved by the B-spline approximation can then be calculated as

α = β
TC

TB
with β = nC

nB
, (16)

where TC and TB are the time needed for the conventional simulation and the B-spline
simulation, respectively.

We used the coefficient of variation to estimate the relative error. This is done by not only
storing the number of detected weights μ0(i) and the sum of detected weights μ1(i) for each
detector crystal i (with w

(i)
j ≡ 1 for the conventional simulation and w

(i)
j ∈ R for the modeled

simulation), but also by storing μ2(i):

μ1(i) =
μ0∑

j=1

w
(i)
j , μ2(i) =

μ0∑
j=1

(
w

(i)
j

)2
. (17)

While the detection in the conventional simulation is a Poisson process and the coefficient
of variation is easily approximated (equation (18)), the sum of the detected weighted counts
in the simulation using the modeled detectors can be approximated by a weighted Poisson
process and the coefficient of variation can be estimated according to equation (19) (de Vries
et al 1990, Rehfeld 2007):

cC ≈
√

Var

μ1
≈ 1√

μ0
(18)

cB ≈
√

Var

μ1
≈ 1

μ1

√
μ0

μ0 − 1

(
μ2 − μ2

1

μ0

)
+

μ2
1

μ0
. (19)
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Table 3. Total numbers of detected counts. The numbers in brackets indicate the relative deviation
to the corresponding conventional simulation.

Simulation No. of detected counts

Empty, ra, conv. 7.772 × 108

Empty, ra, B-spline 7.782 × 108 (+0.14%)
Empty, rb, conv. 8.533 × 108

Empty, rb, B-spline 8.493 × 108 (−0.47%)
Empty, rc, conv. 7.819 × 108

Empty, rc, B-spline 7.786 × 108 (−0.42%)
w/patient, ra, conv. 3.490 × 108

w/patient, ra, B-spline 3.488 × 108 (−0.08%)
w/patient, rb, conv. 4.915 × 108

w/patient, rb, B-spline 4.890 × 108 (−0.51%)
w/patient, rc, conv. 5.996 × 108

w/patient, rc, B-spline 5.970 × 108 (−0.43%)

In two additional simulations (central voxel, empty scanner) the coefficient of variation
was calculated for the conventional and the B-spline simulations. The mean coefficient of
variation 〈cC〉 and 〈cB〉 using 13 neighboring detectors (taking the average to reduce statistical
errors) was stored for every 5000 detected photons. In this way it was possible to plot nC

against 〈cC〉 and nB against 〈cB〉 and β = β(〈c〉) = nC(〈c〉)/nB(〈c〉) could be estimated
graphically by evaluating the two graphs at the same position 〈c〉.

4. Results

4.1. Accuracy

Figures 5 and 7 show the number of detected singles per detector displayed as gray value coded
crystal maps. Visually, there is no difference between crystal maps of the conventional and
the B-spline simulations. In figures 6 and 8, the corresponding diagonal profiles through these
crystal maps can be seen. These profiles confirm the visual impression of the crystal maps, no
deviation between the conventional simulations and the simulations using the approximated
B-spline detector response can be found. Only in the case of the simulation of the voxel out
of FOV, a small discrepancy probably due to an approximate model for the shielding (see
figures 5 and 7, detector number d < 50 and d > 600) can be seen. Table 3 shows the total
number of detected photons for each of the 12 simulations. The total number of detected
photons always agreed within 0.51%. For both the empty scanner and the scanner with the
voxelized phantom, the deviation for the central voxel was smaller than for the two other
voxels. This indicates that the latter values could perhaps be improved by using a finer
sampling of the B-spline for θS and φS.

In figure 9, the autocorrelation of the detector crystal maps for the conventional and B-
spline simulation can be seen (corresponding to figures 5(a) and (b)). The gray values represent
the autocorrelation of the central detector crystal with its 37 × 37 − 1 neighbors (black:
negative correlation, white: positive correlation). Visually in both simulations similar values
are obtained. This visual impression is confirmed by the gray value histograms (see figure 10).
However, it should be noticed that the noise in figure 9(b) is clearly different (coarser) from
that in figure 9(b). Figure 10 shows that the autocorrelation values are distributed similarly in
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(a)

(b)

(c)

(d)

(e)

(f)

Figure 5. Gray images showing the detected single counts in crystal maps for the simulations
with the empty scanner. White pixels represent the highest count values, black pixels the lowest
count values, and gray pixels intermediate count values. Here the transaxial direction and the
axial direction are displayed horizontally and vertically, respectively. (a) Voxel at position
ra, conventional simulation, (b) voxel at position ra, simulation with B-spline approximation,
(c) voxel at position rb, conventional simulation, (d) voxel at position rb, simulation with B-
spline approximation, (e) voxel at position rc, conventional simulation and (f) voxel at position rc,
simulation with B-spline approximation.

both cases when looking at a larger number of surrounding detector pixels (here 37 × 37 − 1).
These results together with the direct comparison of the singles detector crystal maps indicate
that is safe to use the proposed method to calculate mean values, but that the method should
not be used to calculate the spatial correlation between single detector pixels or between two
small groups of detector pixels.

Figures 11(a) and (b) show direct (not oblique) 2D sinograms resulting from the
conventional sinogram simulation and B-spline sinogram simulation, respectively. The
sinograms agree very well qualitatively and block detector effects can be observed in both cases
and at the same positions. Despite the smaller number of simulated photons, the sinogram of
the B-spline simulation is less noisy. In figure 12 a profile through both sinograms is plotted
in order to compare them quantitatively. It can be seen that both simulations agree well,
the B-spline results follow closely the results of the conventional simulation, the steep slope
around profile position 200 is reproduced correctly, and the block detector effects are placed
correctly. However, it seems that in few cases the heights of peaks due to block detector effects
are slightly underestimated. Coincidences are more sensitive to deviations in the modeling
of the angular detection probability than singles, and we expect therefore that these deviation
can be reduced by increasing the number of angular B-spline nodes.
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Figure 6. Diagonal profiles (lower left to upper right corner) through the detector crystal maps for
the simulation with the empty scanner (see figure 5).

Table 4. CPU-time t needed for the pre-simulation including calculation of the B-spline values and
for the actual simulations. Time t� is the estimated CPU time needed to obtain the same accuracy
as in the conventional simulation (assuming β = 6).

t t �

Pre-simulation+processing 185 h
Conv. sim. (empty) 203 h
B-spline sim. (empty) 39.3 h 6.6 h
Conv. sim. (w/patient) 173 h
B-spline sim. (w/patient) 46.0 h 7.7 h

4.2. Computational efficiency

The time needed for the pre-simulation was almost 200 min on a cluster with 40 cores
(corresponding to 132 h on a single CPU). The processing of the data and the creation of the
B-spline took half an hour on 40 cores (processing per core) + 2.5 h on 10 cores (merging
and processing per computer) + 8 h on a single core (merging and sorting using the front-end
computer of the cluster). The processing time corresponds thus to 53 h on a single CPU, but is
not fully parallelizable. Taking everything into account, the B-spline was created within less
than 200 min + 30 min + 150 min + 480 min ≈ 14 1

2 h on the computer cluster. In the presented
implementation, the B-spline modeling required around 800 MB of memory.

In the actual simulation (position rb, empty scanner, 40 s scan of 100 MBq) the equivalent
of around 200 single CPU hours was needed for the conventional simulation (see table 4). The
B-spline-based simulation could be performed within less than 40 h.

Since a simulated photon in the B-spline simulation can lead to several non-integer
detection probabilities in different detector crystals in contrast to a photon in the conventional
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(b)

(c)

(d)

(e)

(f)

Figure 7. Gray images showing the detected single counts in crystal maps for the simulations
with the voxelized patient. White pixels represent the highest count values, black pixels the lowest
count values, and gray pixels intermediate count values. (a) Voxel at position ra, conventional
simulation, (b) voxel at position ra, simulation with B-spline approximation, (c) voxel at position
rb, conventional simulation, (d) voxel at position rb, simulation with B-spline approximation,
(e) voxel at position rc, conventional simulation and (f) voxel at position rc, simulation with
B-spline approximation.

simulation that leads only to a hit or miss in a single crystal, it can be expected that factor β (see
section 3.5.2) is greater than 1. Two shorter simulations were run to determine β. In figure 13,
the results of these simulations are plotted. Figure 13 shows the required number of detected
particles that are needed to obtain a given mean coefficient of variation. This required number
is plotted for the conventional simulation (continuous line) and for the B-spline simulation
(circles). The dashed line shows the correction factor β (ratio of the two curves). For small
coefficients of variation the factor β is approximately constant, while for large coefficients of
variation β increases. In the latter case, very few photons are simulated and every detected
photon significantly improves the estimate even if the attributed weights are small as in the
B-spline simulation. It can be seen that for a reasonably small coefficient of variation the
factor β is around 6. This factor is used in the following.

Therefore about six times fewer particles need to be simulated with the simulation using
the B-spline to obtain the same statistical accuracy as the conventional simulation. Thus,
the equivalent execution time is reduced by a factor β = 6. Using this factor, we estimate
that around 6.6 = 39.3/6 h on a single CPU are sufficient to obtain the same statistical
accuracy. The overall acceleration factor with respect to the conventional simulation can
therefore assumed to be 30× (≈203/6.6). The acceleration factor does not take into account
the time that is needed for the pre-simulation.
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Figure 8. Diagonal profiles (lower left to upper right corner) through the detector crystal maps for
the simulation with the scanner including the voxelized patient (see figure 7).

(a) (b) 

Figure 9. Autocorrelation of the central detector pixels of figures 5(a) and (b) with their 37×37−1
neighboring pixels. The gray values are scaled such that white and black correspond to 1 and −1,
respectively. (a) Conventional and (b) B-spline.

The last two lines of table 4 refer to a simulation with the voxelized patient. Here, the
acceleration factor (≈22×) is lower, since the simulation of the particles within the voxelized
patient results in an increase of execution time. Interestingly, less CPU time is needed for this
simulation than for the conventional simulation with the empty scanner. This indicates that the
reduction in CPU time due to the reduction of the number of simulated photons in the detection
system (more photons are absorbed by the voxelized patient or removed from the simulation
because their energy is too small after Compton interactions in the patient) outreaches the
increase in CPU time due to the complex voxelized patient.
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Figure 10. Histogram of the autocorrelation values of images 9(a) and (b).

(a) (b) 

Figure 11. Direct 2D sinogram of the full 3D sinogram simulated with the conventional and
with the B-spline method. LORs are only resorted and therefore not arc corrected. The yellow
line indicates the positioning of the line profile shown in figure 12. (a) Conventional method and
(b) B-spline.

For very large coefficients of variations (or a small number of simulated photons) the
correction factor is even greater. This is reasonable, because in this case most detectors
have not detected any photons and the B-spline simulation leads to multiple detections for a
single simulated photon while the conventional simulation can lead to maximal one detected
photon.

5. Discussion

With the presented B-spline approximation, it is possible to accurately model the detection
process in a fast manner. Several parameters can be adjusted to reduce the memory
consumption, execution time, pre-simulation time and increase the accuracy. While there
is no closed form expression that can be used to determine the optimal set of parameters for
a given detection system, the qualitative dependence on the parameters is quite clear (see
table 5). The more B-spline knot values are used to represent the detection probability, the
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neighboring profile lines). The results for the B-spline approach are multiplied by the factor 5.6
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Figure 13. The total number of detected counts (voxel source at rb) that is needed to obtain a
specific coefficient of variation (see equations (18) and (19)). The dashed line shows the ratio β

of needed detected counts for the conventional (nC, continuous line) and the B-spline (nB, circles)
simulation to obtain the same coefficient of variation 〈c〉.

higher is the demand in memory and the more particles need to be simulated during the pre-
simulation in order to obtain sufficiently exact knot values. The accuracy increases with the
number of knots, especially when the detection probability is a fast varying function. The
number of B-spline knot values
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Table 5. Influence of the parameters on the memory reduction, the execution speed, the accuracy
and the pre-simulation speed. A plus sign indicates a positive dependence (increase of the parameter
leads to an increase of the desirable property), a negative sign to a negative dependence.

Memory Execution Pre-simulation
Parameter reduction time reduction time reduction Accuracy

q – – +
n – + +(–)
pmem + + –
pmin + –
proulette, aroulette + –

#� =
N−1∏
i=0

(ni + 1) (20)

that is needed to evaluate the B-spline function at a given state x directly influences the
execution time during the actual simulation. Thus, the higher the B-spline order the more time
is needed. During the pre-simulation, the opposite is true: the larger #�, the more B-spline
knot values are influenced by a simulated particle (see equation (10)) and consequently, for
larger n, fewer particles are needed to obtain the same statistical accuracy. The impact of
the B-spline order on the final accuracy in the actual simulation depends on the detection
probability function. In most cases B-spline of higher order should be more suitable to
approximate the probability function, but in some cases the opposite might be true. The
parameters pmem and pmin can be used to reduce the execution time at the cost of some
accuracy. The parameter pmem can also be used to reduce the memory consumption and the
parameter pair proulette/aroulette can be used to reduce the execution time at the cost of statistical
accuracy.

In the presented application of the methodology to a PET scanner, the values presented
in table 1 and the four parameters pmem, proulette, aroulette and pmin were chosen rather ad hoc.
In initial tests of the program, the B-spline order n = 2 was used for the φS and E dependence
of the approximated detection probability. Since the change n = 2 −→ n = 1 did not lead to
worse results and an execution time reduction was anticipated, the order n = 1 was used in all
dimensions in the subsequent simulations. Early tests with lower statistics also revealed that
the results were not very sensitive to changes in B-spline parameters (table 5).

The number of photons to be simulated in the pre-simulation depends on the chosen
number of B-spline knots, on the B-spline order, and on the desired accuracy of the B-spline
knot values. In the case of a five-dimensional B-spline of order 1 (as used here), the standard
deviation σ� of the simulated detection probability � can be estimated by σ� � 1.03 〈l〉−1/2

with 〈l〉 being the average number of photons that contribute to a B-spline knot (see the
appendix, equation (A.8)). Here 〈l〉 = 2.5 × 109 × #�/#Q ≈ 3.51 × 104, where #Q is the
total number of B-spline knots and #� is the number of B-spline knots that are updated when
a photon hits the virtual border in the pre-simulation (see equation (10)). This leads to an
error of less than 0.55%. It should be noted that in our case, this error is smaller for knots
that correspond to photons with energy of 511 keV since half of the simulated photons were
emitted at this energy. On the other hand, the error for the other energies can be larger.

The spherical shape of the virtual border was motivated by the spherical arrangement of
the detector blocks of this specific scanner. In the case of other detector arrangements other
shapes can be chosen (e.g., planar or cylindrical).
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Most problematic was the inclusion of the PET shielding into the simulations. Attempts
to include the PET shielding into the B-spline detector response function were not successful.
Further investigations revealed that the correct approximation of the penumbra that is caused by
the shielding would require fine sampling of the angles (θS, φS) especially at the penumbra/no
penumbra transition. Since this transition can be at almost any angle depending on the position
of the source, this would require a fine sampling of a large solid angle. In PET, no collimators
are used and the solid angle must be chosen very large (here θS = 45◦). The inclusion of the
shielding into the B-spline detector response function was therefore prohibitive due to memory
constraints.

For sources inside the FOV, a possible error in the modeling of the shielding is not very
important. The proposed method should however not be used for sources outside the FOV
without increasing the number of B-spline knots (when enough memory is available). In case
of doubt a conventional tracking method should be used. The B-spline method could be used
for PET matrix simulations where voxels outside the FOV and dead time need usually not to
be simulated. Randoms cannot be simulated directly using this method.

The proposed B-spline approximation methodology is very general and can therefore also
be applied to other imaging modalities. Generally, the more time consuming the simulation of
the detection system, the larger is the achieved acceleration factor. The presented method can
be directly applied to PET simulations that include the simulation of scintillation photons. Due
to the large number of such photons, these simulations are very time consuming. Consequently,
much larger acceleration factors should be obtained for such simulations.

We expect that the methodology can also be successfully applied to SPECT simulations.
Since the collimators in SPECT restrict the possible incident angle θS to a rather small solid
angle, we expect no memory problems (unlike with the PET shielding). Since only a very
small fraction of the photons is detected in conventional SPECT simulations, much larger
acceleration factors of 1000–10000 are anticipated. Further, the methodology might be also
applicable to CT simulations.

In principle, the methodology could also be used to generate the response function from
experiments. Successful attempts to describe the detector response of imaging systems by
using experimental data (but other methodologies) have been reported in the past (Formiconi
et al 1989, Panin et al 2006). Finally, the methodology can be easily generalized to B-
spline of higher dimensions. For example, in this way the spin of the photon could be easily
incorporated.

All simulations used the quite complicated and general source handling of GATE.
The acceleration factors can therefore be assumed to be even larger if the GATE source
handling was replaced by a simple mechanism that is only working with single voxel-shaped
sources.

6. Conclusions

We presented a novel methodology to approximate the response of a detection system with
many detectors by a multidimensional B-spline that is based on a first Monte Carlo simulation
(the ‘pre’-simulation). In all subsequent Monte Carlo simulations using the same detection
system but different imaging objects (‘patients’), this approximate response can then be used
to reduce computation time. The methodology was applied to the PET scanner Biograph
16 HiREZ and a 20–30 fold reduction in Monte Carlo simulation execution time could
be achieved. The pre-simulation and creation of the B-spline could be performed within
around half a day on a medium-sized computer cluster. Due to its very general form,
the presented methodology could be probably also applied to other problems such as the
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simulation of PET scanners including the simulation of scintillation photons or other systems
such as SPECT scanners. In both cases, an even much bigger reduction in simulation time is
anticipated.
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Appendix. Estimation of the statistical accuracy of the B-spline knot values

According to equations (10) and (11), a B-spline knot value is calculated via

� ≈ w

W
= D

D + C
=

∑l1
s=0 bs∑l1

s=0 bs +
∑l0

s=0 bs

, (A.1)

with l1 being the number of detected photons that contribute to the formation of the B-spline
knot value �, bs = B(n)(x̃s) is the contribution of the sth photon and l0 is the number of
photons not being detected that contribute to the denominator of equation (A.1). The knot
indices k and k + k̂ are dropped for convenience. Using in total L photons to simulate the
complete B-spline, 〈l〉 = #�×L

#Q
photons are used on average to calculate the B-spline knot

value (see equations (20) and (6)). The variance σ 2
� of the detection probability � can be

estimated using Gauss’ law of error propagation

σ 2
� ≈

(
∂�

∂C

)2 ∣∣∣∣
〈C〉

σ 2
C +

(
∂�

∂D

)2 ∣∣∣∣
〈D〉

σ 2
D (A.2)

by using the variances σ 2
C and σ 2

D of C and D, respectively. Since the photons are started at
random positions x̃, both C and D are the sums of random weight values b = bs ∈ [0, 1]
and are thus the result of a weighted Poisson process. The variance of the two sums can be
estimated by

σ 2
C = 〈l0〉σ 2

b + σ 2
l0
〈b〉2 = (1 − �)〈l〉〈b2〉

σ 2
D = 〈l1〉σ 2

b + σ 2
l1
〈b〉2 = �〈l〉〈b2〉 (A.3)

using the mean values 〈l0〉 = (1 − �)〈l〉, 〈l1〉 = �〈l〉 and 〈b〉, and the respective variance
values σ 2

l0
= 〈l0〉, σ 2

l1
= 〈l1〉 and σ 2

b = 〈b2〉 − 〈b〉2. Inserting equations (A.3) into
equation (A.2) and using 〈C〉 = 〈l0〉〈b〉 and 〈D〉 = 〈l1〉〈b〉 leads to

σ 2
� ≈

(
�

〈l〉〈b〉
)2

(1 − �)〈l〉〈b2〉 +

(
1 − �

〈l〉〈b〉
)2

�〈l〉〈b2〉

= �(1 − �)

〈l〉〈b〉2
〈b2〉 �

1
4

〈l〉〈b〉2
〈b2〉. (A.4)

The statistical error σ� of the simulated detection probability � can therefore be estimated as
a function of the average number 〈l〉 of simulated particles per knot

σ� �

√
〈b2〉

4〈l〉〈b〉2
. (A.5)

For B-splines of order n = 1, the first and second moment 〈b〉 and 〈b2〉 of the
weights b = b(x̃) = b(x̃0)b(x̃1)b(x̃2)b(x̃3)b(x̃4) can be calculated using the uniform product
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distribution probability function p5(u) in five dimensions

p5(u) =
∫ 1

0
· · ·

∫ 1

0
δ

(
5∏

i=1

xi − u

)
dx1 · · · dx5 = (−ln u)4

4!
(A.6)

〈b〉 =
∫ 1

0
up5(u) du = 2−5 = 1

#�
〈b2〉 =

∫ 1

0
u2p5(u) du = 1

243
. (A.7)

With the values for the two moments, the statistical error can thus be estimated by

σ�(n ≡ 1) � 1.03√〈l〉 . (A.8)
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