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The reconstruction of dynamic PET data is usually performed using
filtered backprojection algorithms (FBP). This method is fast, robust,
linear and yields reliable quantitative results. However, the use of FBP
for low count data, such as dynamic PET data, generally results in
poor visual image quality, exhibiting high noise, disturbing streak
artifacts and low contrast. These signal-to-noise ratio and contrast in
the reconstructed images may alter the quantification of physiological
indexes, such as the regional Binding Potential (BP) obtained from
kinetic modeling. Iterative reconstruction methods are often presented
as viable alternatives to FBP reconstruction. In this study, we
investigated the characteristics of the UW-OSEM and the ANW-
OSEM iterative reconstruction methods in the context of ligand–
receptor PET studies with low counts. The assessment was conducted
using replicates of simulated [18F]MPPF acquisitions. The quantitative
accuracy obtained with the iterative and analytical methods was
compared. The results show that analytical methods are more robust
to the low count data than iterative methods, and therefore enable a
better estimate of the regional activity values and binding potential. The
positivity constraint in MLEM-based algorithms leads to overestima-
tions of the activity in regions with low activity concentration, typically
the cerebellum. This overestimation results in significant bias in BP
estimates with iterative reconstruction methods. The bias is confirmed
from the reconstruction of real PET data.
© 2007 Elsevier Inc. All rights reserved.
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Introduction

The radiotracer 2′-methoxyphenyl-(N-2′-pyridinyl)-p-18F-
fluoro-benzamidoethylpiperazine ([18F]MPPF) is a specific ser-
otonin 5-HT1A antagonist PET tracer recently characterized,
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modeled, and used for clinical research to explore abnormalities
in the serotoninergic system (Merlet et al., 2004a,b). The in vivo
exploration of the 5-HT1A receptors with [18F]MPPF PET imaging
is of great interest as those receptors are involved in numerous
neurological and psychiatric disorders. Similar to other ligand–
receptor PET studies, the acquisition protocol consists in the
collection of coincidence events into multiple short time frames
over a total scanning duration ranging from 60 to 90 min. Whereas
iterative reconstruction methods are available with commercial
scanners, Filtered Back Projection (FBP3D) (Kinahan and Rogers,
1989) is usually preferred for the reconstruction of dynamic brain
PET scans. Indeed, this reconstruction method is fast, robust, linear
and yields reliable quantitative results. Iterative reconstruction
methods are often based on the Maximum-Likelihood Expecta-
tion–Maximization (MLEM) algorithm (Shepp and Vardi, 1982).
Accelerated MLEM-based reconstruction algorithms such as
Unweighted Ordered Subsets Expectation–Maximization (UW-
OSEM) (Hudson and Larkin, 1994) and more specifically
Attenuation-Weighted OSEM (AW-OSEM), Attenuation Normal-
ization-Weighted OSEM (ANW-OSEM) (Michel et al., 1998) and
Ordinary Poisson OSEM (OP-OSEM) (Yavuz and Fessler, 1996)
include some data correction within the iteration process and better
account for the nature of the noise. They are often presented as
viable alternatives to FBP reconstruction.

Many comparison studies showed that iterative reconstruction
outperforms FBP in terms of image quality, signal-to-noise ratio,
resolution and contrast (Bouchareb et al., 2005; Riddell et al.,
2001; Gutman et al., 2003; Wang et al., 1998; Boellaard et al.,
2001), and improves lesion detection (Lartizien et al., 2003). They
highlighted that the characteristics of the reconstructed images
are bound to the chosen number of iterations and to the source
distribution (Gutman et al., 2003; Wang et al., 1998). Conse-
quently, for a specific PET protocol, the number of iterations must
be carefully selected so as to achieve reliable quantitative results
while limiting the noise amplification. Most comparison studies
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were conducted using [18F]FDG static scans containing relatively
high numbers of detected events as in the context of tumor
detection. Consequently, little is known about the characteristics of
iterative reconstruction techniques of PET data in low count rate
situations.

In this study, we evaluate the characteristics of the UW-OSEM
and ANW-OSEM reconstruction methods operating on 3D data
and of UW-OSEM and AW-OSEM on 2D data after Fourier
rebinning (FORE) (Defrise et al., 1997), using simulated ligand–
receptor [18F]MPPF PET studies. In this application, the accuracy
and variability of the activity levels and kinetic parameter estimates
are of a higher concern than the visual quality of the reconstructed
images. We compared the performance of the two iterative
methods with performance obtained with analytical methods, i.e.
FORE+FBP2D, FBP3D and the Direct Inversion Fourier Trans-
form method (FORE+DIFT) (Matej and Bajla, 1990). The
motivation for conducting this study was to answer the practical
question, “Is OSEM reconstruction a viable alternative to FBP
reconstruction in quantitative PET studies in the case of low count
data?” It is somewhat similar to few previously published studies
such as Michel et al. (1999) for benzodiazepine brain PET studies,
Morimoto et al. (2006) for [11C]raclopride and [11C]DASB,
Bélanger et al. (2004) for [11C]WAY, and Koch et al. (2005) for
dopamine SPECT studies. In our context, they provided incon-
clusive results. The originality of our methodology compared to
previously published studies stems from the use of multiple
replicates of realistic simulated [18F]MPPF PET scans to accurately
assess the impact of noise on the performance on the reconstructed
methods. This choice was motivated by the fact that there only exists
approximate local variance estimators for nonlinear reconstruction
algorithms (Barrett et al., 1994; Fessler, 1996; Kadrmas et al., 1999;
Qi and Leahy, 2000; Soares et al., 2000; Wang and Gindi, 1997;
Wilson et al., 1994; Buvat, 2002), and that experimentally acquired
replicates using phantoms or gated acquisitions as proposed by
Riddell et al. (2001) do not provide the required flexibility to model
very realistic dynamic acquisitions.

Material and methods

The strategy we used to assess the impact of low count data on
the accuracy of the different reconstruction methods consists of
comparing the quantitative measurements obtained from the recon-
struction of the scans with a statistic varying from low (normal)
to high (11 times the normal level). Replications of the same
PET acquisition protocol (transmission+dynamic emission) were
performed.

Replicated simulations

We conducted the experiment using multiple realizations (Nreal)
of the same PET acquisition from the same brain phantom and time
activity curves (TACs). A total of 11 realizations of the PET
acquisitions were simulated using PET–SORTEO (Reilhac et al.,
2004, 2005) configured for the Ecat Exact HR+ scanner operating
in 3D mode (span=9, maximum ring difference=22, energy
window=350–650 keV) (Brix et al., 1997). This simulator
generates realistic data given a numerical phantom description,
the scanner geometry and its physical characteristics. The
considered brain phantom included 32 anatomical structures and
cerebral regions and was derived from a T1-weighted MRI of an
adult subject without pathology, acquired at the McConnell Brain
Imaging Centre of Montreal. The TACs, describing the concentra-
tion variation across time of [18F]MPPF within each brain region,
were derived from actual human PET data which were fully
corrected (scattered and random event contaminations, tissue and
scanner material attenuation, system dead-time, radioisotope
decay) as described in Reilhac et al. (2006). These input reference
TACs were also compensated for partial volume effects as
explained in the description and validation of the database (Reilhac
et al., 2006). Each replicate consisted of simulating a 10-min
transmission scan and a dynamic emission scan. The emission
protocol consisted of collecting prompt events (unscattered,
scattered and random events) over a 60-min period onto 35 time
frames: 15 of 20 s, 15 of 120 s and 5 of 300 s. Each prompt
sinogram i was then corrected for all the effects (attenuation using
the transmission scan, random and scatter, dead-time, normal-
ization, arc and decay) using correction programs from the e7tools
package.1 Randoms were simulated in a delayed coincidence
window. The corrected scans are denoted Si

P hereafter. In addition,
true data scans (denoted Si

T hereafter), containing unscattered
events only (no scattered nor random events), were separated from
each prompt replicate i during the simulation process and were
only corrected for normalization, dead-time, attenuation, arc and
decay. Using these true unscattered scans, we got closer to the ideal
conditions of use of the MLEM-based algorithms as they contain
no negative values and consequently satisfy the positivity
constraints imposed by the MLEM-based algorithm on the
sinogram bins. Negative values introduced by the scatter and
random corrections alter the statistical Poisson nature of the data
which is the main hypothesis this algorithm is based on. In addition
to generating low count data replicates (Si

P and Si
T), we derived

mean sinograms of the corrected prompts (Savg,n
P ) and the corrected

trues (Savg,n
T ) with higher statistics by averaging from n=2 to n=11

(Nreal) low count scans. The set of low count data replicates (Si
P and

Si
T) and the set of mean scans (Savg,n

P and Savg,n
T ) made it possible to

assess the reconstruction methods for a wide range of statistic
levels, varying from 1 to 11 times the normal level.

Using the same method and phantom we generated 11 other
scans (emission and transmission) from the same TACs except for
few regions as the hippocampi in which the theoretical BP was
lowered by about 25%. We used the two sets of replicates (group
1=normal, group 2=BP lowered in the hippocampi) to accurately
assess the ability of each reconstruction method to accurately
characterize the BP decreases.

Data reconstruction

Seven reconstruction methods were tested: (1) FBP3D, ramp
filter, 0.5 pixel−1 cut-off frequency, (2) FORE+FBP2D with the
same characteristics, (3) FORE+DIFT, (4) UW-OSEM3D, (5)
FORE+UW-OSEM2D, (6) ANW-OSEM3D and (7) FORE+AW-
OSEM2D. All algorithms, except FBP3D, are part of the e7tools
package. Neither regularization nor a posteriori Gaussian smooth-
ing was applied. All 2D reconstruction methods used FORE to
rebin the fully corrected 3D scan into 2D.

Each of these reconstruction methods was applied to the fully
corrected data and led to 35 time frames containing 63 axial slices
of 128×128 voxels each (2.1×2.1×2.4 mm3). For each recon-
struction method (denoted R), 4 images were usually built from the
corrected simulated scans: the reconstructed images of the mean
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scans with the highest statistics (n=Nreal=11): IH
P and IH

T, and the
mean images computed from the independent reconstruction of the
Nreal low count replicates (IL

P and IL
T). Those images were built as

follows:

IfP;TgH ¼ R SfP;Tgavg;Nreal

n o
¼ R

X
i¼1

Nreal SfP;Tgi

Nreal

( )

IfP;TgL ¼
X
i¼1

Nreal RfSfP;Tgi g
Nreal

Where

f ð1Þ

H ¼ High; L ¼ Low; P ¼ Prompts; T ¼ Trues and Nreal ¼ 11

Activity quantification and kinetic parameter estimation

We focused on the quantification of the activity and binding
indexes of three specific brain regions: the insula, the hippocam-
pus and the prefrontal cortex. These regions are particularly
relevant for the neurological and psychiatric disorders resulting
from neurotransmission defects. The TACs corresponding to these
three regions and to the cerebellum were derived from the
reconstructed dynamic volume using Volumes of Interest (VOIs).
The Binding Potentials (BPs) were derived for each of the three
regions from their measured TAC and using a Simplified
Reference Tissue Model (SRTM) (Lammertsma and Hume,
1996) with the cerebellum used as the reference region and
without using weighting factors (see Discussion). With this imple-
mentation, the BP is derived following a non-linear regression
analysis. In addition, the Binding Potential was calculated voxel-
wise from the reconstructed images using a similar calculation
method (Gunn et al., 1997). The Binding Potential BP char-
acterizes the local quantity of available receptors divided by the
tracer affinity.

Determination of the optimal number of iterations and subsets

In a preliminary phase of the study, we determined the number
of iterations and subsets enabling the most accurate kinetic
parameter estimation. The optimal number of MLEM equivalent
updates (iterations×subsets) is object dependent and convergence
does not occur at the same iteration for the whole image. The
finding of the most appropriate parameters is even more
complicated for multi-frame reconstruction before kinetic model-
ing. In the case of BP determination using a reference region, the
accuracy of the activity level measurements across time of both the
target and the reference regions impacts on the accuracy of the
derived BP. Therefore, we decided to determine the most
appropriate reconstruction parameters from the convergence of
the binding potential derived from the measured insula, prefrontal
cortex and hippocampus TACs.

Each of the eleven realizations (prompts and trues from group
1: S i

P and Si
T) and their corresponding high statistic mean scans

(Savg,Nreal

P and Savg,Nreal

T ) were reconstructed using the different
iterative reconstruction protocols using 1, 2, 3, 4, 5, 6, 7, 8, 9, 10,
11, 12, 14, 16, 18, 20, 24, 28 and 32 iterations with 16 subsets and
using 1, 4, 8, 12, 16, 20, 24, 28, 32, 36, 40, 44, 56, 64 and 72
iterations with 4 subsets. The comparison of the BP measurements
made from the different reconstructed volumes was used to
determine the optimal reconstruction parameters (number of
iterations and subsets).

Impact of the statistics on quantitative accuracy

For each method, we assessed first, the effect of the low
statistics by comparing the quantification accuracy (activity and
BP) obtained from the reconstruction of the low count scans (IL

P

and IL
T) with the corresponding results obtained from the

reconstruction of the high count scans (IH
P and IH

T). This part was
conducted using the replicates from group 1 only (normal scans).
The reference BP values were 1.87, 1.42 and 1.15 for the
hippocampus, the insula and the prefrontal cortex regions,
respectively.

Using the two sets of replicates containing the binding potential
differences in the hippocampi, we also assessed the impact of the
reconstruction methods on the measurement of the known
difference.

Finally, using the set of mean scans Savg,n
P (with 2≤n≤

Nreal=11), we calculated the change in activity and BP estimates
(and therefore the associated bias) obtained with the iterative
reconstructions as the statistics of the input scan increases from low
to high (using data from group 1 only).

Comparison with real [18F]MPPF PET studies

Real [18F]MPPF PET data acquired following the same
protocol and with the Ecat Exact HR+ scanner were reconstructed
using the FORE+DIFT and ANW-OSEM3D algorithms. We
computed the difference between the cerebellum activity estimates
as measured from the FORE+DIFT and the ANW-OSEM3D
volume.

Results

Optimal number of iterations and subsets

The impact of the number of subsets (4 and 16) was estimated
by comparing the kinetic parameters BP calculated for the 3
regions using the PET volumes obtained with the different
reconstruction methods ({ANW, UW}-OSEM−{2D,3D}−{16,4}
subsets). Overall, the results show that beyond 80 MLEM
equivalent iterations (iterations×subsets), the number of subsets
has no impact on the determination of the kinetic parameter values.
Indeed, after 80 iterations, the observed relative differences
between BP values measured from the volumes reconstructed
with 4 and 16 subsets were usually less than 3%. However, the use
of 16 subsets instead of 4 subsets speeded up the reconstruction by
a factor of 4. Fig. 1(a) shows the relative difference, as a function
of the MLEM iteration number (iteration×subsets), between the
BP values for the hippocampus region obtained from volumes
reconstructed with FORE+ANW-OSEM2D using 4 and 16
subsets. Fig. 1(b) shows the relative differences between the
BP values calculated at consecutive iterations i and i+1:
BPiþ1�BPi

BPi
� 100

� �
, computed from the mean reconstructed images

of the 11 low count replicates (IL
P), and from the reconstructed

image of the mean scan (IH
P ) exhibiting high statistics. Each point

of the curve corresponds to the max difference observed between
two consecutive iterations, for the three regions (envelope) and
using the tested iterative reconstruction algorithms. Results show



Fig. 1. (a) Relative difference between BP values of the hippocampus region
calculated from volumes reconstructed with ANW-OSEM using 16 and 4
subsets. (b) Relative difference between the BP values calculated at
consecutive iterations i and i+1 from IL

P (low count data) and IH
P (high

count data).
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that 6 iterations with 16 subsets were required to ensure the
convergence with the low count data. Beyond 6 iterations, the max
difference between the BP calculated at consecutive iterations i
was less than 0.2%. No difference was found between the different
OSEM variants and between 2D and 3D reconstructions. However,
with the high count data, 10 iterations were required to reduce the
difference to less than 0.2% between consecutive iterations. This
suggests that a higher number of iterations is required when the
statistics increases.
Fig. 2. Relative differences of the activity level between the reference
cerebellum TACs used during the simulation and the TACs measured
from the reconstructed images of the low and the high count scans with
FORE+DIFT and ANW-OSEM3D.
Comparison of the reconstruction methods

In this section, all results using iterative reconstruction were
obtained using 6 iterations with 16 subsets. This corresponds to
an appropriate setting in terms of convergence for our low count
data as shown previously. The performance resulting from the
reconstruction of the low count data is compared with the one
obtained from the reconstruction of the high count scans using the
same number of iterations and subsets, even if, for the latter case,
10 iterations would have been more appropriate. Fig. 2 shows the
relative difference of the activity levels between the reference TAC
assigned to the cerebellum region for the simulation and the TACs
measured from the reconstructed images of the low and the high
count scans with FORE+DIFT and ANW-OSEM3D. The
cerebellum was large enough so that activity measurements are
not affected by partial volume effects. This was not the case with
the other studied regions which were smaller in size. The graph
clearly shows that at high statistics, the cerebellar activity levels
measured from the ANW-OSEM and FORE+DIFT volumes are
close to the reference values. The other graphs from Fig. 3 show
for each reconstruction method, the relative difference across time,
between the activity values measured from the high statistic images
(IL

P and IH
T) and from the mean volume computed from the low

count images (IL
P and IL

T). The results clearly show that with
iterative reconstruction methods, the low statistics in the emission
scan yields progressive overestimations of the activity as the
statistics decreases (along time). Please also note that disconti-
nuities occur when frame duration changes. At the end of the time
course, the difference in estimated activities could be as high as
80% in the case of the cerebellum with UW-OSEM3D reconstruc-
tion. The cerebellum was the most affected region, as it is the
region with the lowest activity concentration for this tracer.
Overall, the results suggest that for low count scans, iterative
reconstruction performs better in 2D than in 3D (see Figs. 3(d, e, f)
vs. Figs. 3(g, h, i)). This is due to the Fourier rebinning step which
rebins the 3D scan into 2D and increases the statistics of the 2D
segment. This increase of in counts is maximum at the center of the
axial field of view. No major difference was observed between the
UW-OSEM and ANW-OSEM methods.

The reconstruction of the true unscattered events only (Figs.
3(f) and (i)) also overestimated activity values, showing bias of the
cerebellum activity of about 20% (Fig. 3(f)). This demonstrates
that the bias in the cerebellum is also due to the noise in the data
and not to the biased estimation of random and scatter. In some
cases, the activity was underestimated with iterative reconstruction,
for instance within the insula and the prefrontal regions with
iterative reconstruction in 2D. It is also true for cases Figs. 3(f) and
(i) (reconstruction from isolated unscattered trues). We know it is
not due to FORE since analytical reconstructions after FORE do
not show any substantial bias. This progressive underestimation at
low statistics could be a problem of regional convergence under



Fig. 3. Relative difference between activity values measured from the mean reconstructed volumes obtained from the low count scans (IL
P or IL

T) and the volumes
reconstructed from the mean sinogram with high statistics (IH

P and IH
T) for hippocampus, insula, prefrontal cortex and for the cerebellum.

Fig. 4. BP parameters obtained for the hippocampus region from the
volumes reconstructed with the different methods. For each reconstruction
method, two BP values are reported: the BP obtained from the high count
scan (IH

P ), and the BP obtained from the mean reconstructed volumes using
the low count replicates (IL

P).
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noisy conditions. More likely, the positive bias in the cold region
may decrease the image values in the other regions in order to have
calculated projection close to the measured projections (Ahn and
Fessler, 2004). The prefrontal region, which is not a cold region, is
overestimated. At last, no bias was observable at low statistics with
the analytical methods either in 2D after FORE (Figs. 3(a) and (b))
or in 3D (Fig. 3(c)).

Fig. 4 shows the BP parameters calculated for the hippocampus
region from the volumes reconstructed with the different methods.
For each reconstruction method, two BP values are reported: the
BP obtained from the high count scan (BPH), and the BP obtained
from the mean reconstructed volumes using the low count
replicates (BPL). These results show the impact of the bias in
activity estimates at low statistics on the BP computation. As
expected, no difference was found between the BP estimated from
the reconstruction of the low and high count data with the
analytical methods. With iterative reconstructions (ANW-OSEM
and UW-OSEM), the overestimation of the cerebellum activities
yields decreases of about 15% of the estimated BP. When neither
randoms nor scatter were present, i.e. the corrected scans did not
contain negative values, the iterative reconstruction still under-
estimated BP. Indeed, in the case of the ANW-OSEM3D
reconstruction, a difference of 2.5% was observed between the
BP computed from the low and high count images. However, at
high statistics, 3D iterative reconstructions led to better accuracy in
BP estimates than other methods, enabling BP estimates closer to
the true values (determined from the input TACs used for the
simulation). Finally, the graph shows that even at high statistics,
the BP is underestimated for all the reconstruction methods. This
systematic bias is mainly caused by an underestimation of the



Fig. 5. (a) BP image calculated from the reconstructed volume (UW-OSEM3D) of the high count scan BP(IH). (b) The voxel to voxel difference between BP(IH),
the BP image calculated from IH

P and BP(IL), the BP image calculated from the mean volume IL
P, obtained from the reconstruction of the low count data

replicates. (c) Horizontal profiles extracted from both BP volumes computed from the images containing the low (blue) and the high statistics (red).

Fig. 6. Relative differences between normal and lowered hippocampal BP.
For each reconstruction method, two values are reported: the relative
difference obtained from the high count scan (BPH), and the relative
difference obtained from the mean reconstructed volumes using the low
count replicates (BPL). The standard deviations computed from the 11
independent measurements of are also shown for the low count data.
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activity in the tissue of interest due to partial volume effects.
Results for the insula and the prefrontal cortex led to similar
findings.

Fig. 5(a) shows the BP image BP(IH) calculated from the
reconstructed volume (UW-OSEM3D) of the high count scan (IH

P )
using the SRTM method applied at each voxel instead of regions
of interest. Fig. 5(b) shows the voxel to voxel difference between
BP(IH) and BP(IL) calculated from the mean volume, obtained
from the reconstruction of the low count data replicate using UW-
OSEM3D (IL

P). This image shows the bias at each voxel due to
the low statistics of the scans when compared to the use of data
with high number of counts. The profiles computed from the
images containing the low (blue) and the high statistics (red) are
also shown in Fig. 5(c). The corresponding BP images obtained
with FORE+FBP2D or FORE+DIFT showed no bias at low
statistics.

Detection of the binding potential difference with the
reconstruction methods

Fig. 6 shows the relative differences between normal and
lowered hippocampal BP. For each reconstruction method, two
values are reported: the relative differences between normal and
lowered hippocampal BP obtained from the high count scan
(denoted hereafter by BPH), and the relative difference obtained
from the mean reconstructed volumes using the low count
replicates (denoted hereafter to by BPL). The standard deviation
of the measure is also shown in the case of the low count
replicates. The theoretical difference, computed from the TACs
employed for the simulation process is also reported. At high
statistics, all methods yield a reasonably precise determination of
the variation with the exception of FORE+FBP2D. This could
well be due to noise in the data reconstructed without statistical
model although the difference between FORE+FBP2D and
FORE+DIFT should be negligible (except maybe in the high
frequency domain). At low counts, FORE+FBP2D yields the best
results, but with the highest variability. FORE+DIFT yielded a
correct estimate of the difference with a low variability. With
iterative methods, the bias generated by the positivity constraint is
not observable. With the exception of UW-OSEM, other iterative
methods yield comparable or even slightly better detection of BP
changes than analytical reconstruction methods. This is in good
agreement with Mesina et al. (2003). However, it must be noted
that the cerebellum TACs used in the simulation of both group
replicates were identical and therefore the bias cancels out when
measuring relative changes.

Evolution of activity and BP estimates with the count level

Fig. 7 shows the measured activity of the cerebellum region and
the BP of the 3 regions, as the statistics of the input scan increases.
Fig. 7(a) shows the TAC of the cerebellum measured from the
ANW-OSEM3D reconstruction of the low count scan (x1) and



Fig. 8. Relative difference between the mean frame cerebellum activities
measured from the FORE+DIFT and ANW-OSEM3D volumes of real [18F]
MPPF PET data as a function of the number of decays per ml (determined
from the FORE+DIFT images). Results obtained from the FORE+AW-
OSEM2D and ANW-OSEM3D reconstructions of a single simulated scan
are also shown.
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from the reconstruction of the mean sum scans of 2 (×2) and 6
(×6) low count data replicates. The TACs of the cerebellum region
used for the simulation (reference) and measured from the
FORE+DIFT image are also shown. The TACs obtained
from the reconstruction of the mean sum of 6 scans and from the
FORE+DIFT reconstruction of a single scan are very close to the
reference TAC. The reconstruction of the average sum scans
obtained from more than 6 scans did not result in any significant
difference. Fig. 7(b) shows the evolution of the BP values
computed for the 3 regions as a function of n, the number of low

count data replicates used to build the mean scan:
Pn
i¼1

SPi =n. The

BP values significantly increase up to n=6. Overall, the results
shown in Fig. 7 suggest that below n=6, the statistics of the input
scan is too low for unbiased ANW-OSEM3D reconstruction of the
cerebellum. Note that all frames before t≤600 s are unbiased.

Comparison with real data

Fig. 8 shows the relative difference between the mean frame
activities measured from the FORE+DIFT and ANW-OSEM3D
Fig. 7. Evolution of the estimates of the cerebellum activity (a) and the BP
(b) as the statistics of the input scan increases. Graph (a) shows the TAC of
the cerebellum measured from the ANW-OSEM3D reconstructions of the
low count scan (×1) and of the mean sum scans of 2 (×2) and 6 (×6) low
count data replicates. The true cerebellum TAC employed in the simulation
(Reference) and the TACs measured from the volume reconstructed using
the FORE+DIFT algorithm are also shown. Graph (b) shows the change in
the estimated BP values as a function of n, the number of low count data
replicates used to build the mean scan:

Pn
i¼1

SPi =n.
volumes as a function of the number of decays per ml (deter-
mined from the DIFT images), for two actual scans (P1 and
P2). Results obtained with the AW-OSEM2D and the ANW-
OSEM3D reconstruction of a single simulated scan are also shown.
Results show that under 250,000 decays per ml, the cerebellum
activities measured from the FORE+DIFT and ANW-OSEM3D
volumes differed by more than 5%. This value is in good
agreement with the lowest limit values of 200,000 predicted with
the FORE+OSEM2D reconstruction of the simulated PET scans.
The higher noise present in actual studies due the out of field of
view activity could explain this higher value.

Discussion

In this study, using multiple data replicates, we investigated the
performances of various iterative reconstruction schemes in 3D and
in 2D after FORE, in case of low count data. Different conclusions
can be drawn from the presented results.

Convergence

First, the convergence study showed that the optimal number of
iterations depends on the statistics of the input scan. The higher the
statistics, the higher the number of iterations is to be used. This is
consistent with the study of Erlandsson et al. (2000) wherein the
number of iterations required for convergence was assessed in
different noise conditions. We found, using the low count replicates,
that beyond 6 iterations and 16 subsets, no more quantification
change was observable. However, using the high count data, a
minimum of 10 iterations was necessary to reach convergence. In the
latter case, the activity and BP estimates were more accurate. Six and
ten iterations, in conjunction with 16 subsets, correspond to 96 and
160 MLEM updates during the reconstruction. Published values are
usually under 100 equivalent MLEM iterations. However, this is
consistent with the convergence results reported for cold regions in
Erlandsson et al. (2000) using OSEM algorithms. Morimoto et al.
(2006) used 6 iterations with 16 subsets as recommended by the
manufacturer. Bélanger et al. (2004) found in a similar studywith the
same scanner that 6 iterations with 32 subsets (192 MLEM
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iterations) were required to ensure a 99% recovery of the parameter
of interest. However, the protocol and methodology were different.

Algorithm performance

The methodology proposed here using multiple replicates
allowed us to accurately assess the impact of the statistics on 7
reconstruction methods among which 3 were analytical methods
and 4 were iterative methods. Analytical methods (FORE+
FBP2D, FORE+DIFT and FBP3D) yielded identical results
whatever the statistics of the scans is. This evidenced the nice
property of linearity with the analytical reconstruction methods.
The high noise and poor visual image quality do not affect the
activity estimates and therefore the derived binding potential. At
low statistics, FBP3D performed the best. However, this result
should be taken with caution as its implementation was coming
from another package (3DRP; Kinahan and Rogers, 1989).
FORE+DIFT was reliable as well and generated images with
lower noise than FORE+FBP2D (Fig. 6), probably due to the
implementation of the gridding (interpolation in Fourier Do-
main). The performance obtained with iterative reconstruction
methods strongly depended on the statistics. Our experiments
showed that the input scans should present a level of statistics 6
times higher than in normal MPPF scans to enable unbiased
reconstructions using ANW-OSEM3D. This statistics could not
be achieved with our scanner. In a similar study using actual
data, Bélanger et al. (2004) demonstrated for the [11C]-WAY
ligand–receptor tracer, and with the same scanner, that a
minimum of 50 Bq/ml (non-decay-corrected) were needed for
unbiased FORE+OSEM2D reconstructions (error less than 5%)
with frame duration of 10 min. This roughly corresponds to
30,000 decays per ml. Here, the requirement is estimated at
roughly 110,000 and 200,000 decays per ml for unbiased 2D and
3D OSEM reconstructions, respectively. Those limits, estimated
for our acquisition protocol and scanner, correspond to 180 Bq/
ml and 333 Bq/ml (non decay-corrected) for 2D and 3D,
respectively, and using frame duration of 10 min. In addition,
Bélanger et al. (2004) showed that the model-based scatter
correction overestimated scatter at activity under 25 Bq/ml,
leading to bias for both analytic and iterative reconstructions.
This problem is related to the initial image reconstruction used to
estimate the scatter distribution: a streaky FBP image may be
unbiased but provides a noisy scatter estimate too. This problem
has been solved in e7tools: it uses an iterative reconstruction at
very low resolution. A different scatter estimation strategy using
analytical reconstruction but combining the statistics of adjacent
frames may well be a better approach in the case of dynamic
studies. This approach has indeed been proposed by UBC group
(Cheng et al., 2007). Here, we did not include the correction of
the raw data as a possible bias. Indeed, low-count replicates were
fully corrected before reconstructions and the corrected high-
counts replicates were obtained from averaging the corrected
low-counts replicates. Consequently, the difference in perfor-
mance observed between analytical and iterative reconstructions
in case of low and high statistics came only from the
reconstruction part itself. However, using those replicates we
found no impact of the statistics on the scatter correction
accuracy (results not shown). This is in agreement with Bélanger
et al. (2004) as the theoretical cerebellum activity employed in
our experiments were always above the limit under which the
scatter correction is biased. Bélanger et al. (2004) explained the
observed reconstruction bias observed at low count rates, in the
case of no scatter correction, by truncation of negative sinogram
values created by random correction. At low count activity, these
random counts mainly originate from the not perfectly shielded
68Ge rod sources (between 700 and 400 cps). Our simulation
model accounted for a constant background random contamina-
tion of 700 cps due to the transmission sources. At our activity
levels, this corresponded to a random fraction of 11% during the
last frame. However, we measured the impact of the rod source
contaminations. Indeed, we recomputed the last frame of each of
the 11 realizations using the same protocol but without the rod
source contamination and we did not measure any noticeable
effect (results not shown). The cerebellum activity measured on
the last frame of the ANW-OSEM3D reconstructed volumes
decreased from 203 Bq/ml with rod source contamination
(random fraction 11.2%) to 190 Bq/ml without rod source
contaminations (random fraction=0.9%), whereas the value
obtained with FORE+DIFT was 123 Bq/ml (see Fig. 7(a)). This
study showed that quantification bias remains when the sinogram
contains no negative counts (True unscattered events only). This
positive bias is due to the image domain non-negativity
constraint (OSEM-based algorithms prevent the use of update
image containing negative values). This phenomenon was already
observed in previously published results (Mesina et al., 2003;
Boellaard et al., 2001; Riddell et al., 2001). The iterative
reconstruction of the true unscattered events allowed us to assess
the magnitude of the positivity bias induced by the non-
negativity constraint of the image voxel values only. Indeed,
during the iterative reconstruction of positive sinograms, the
voxel from low activity regions, with values above the true value
can be locally balanced by null voxel values only but not by
negative values.

Relevance of the simulated study

The study was conducted using a single functional model (set of
TACs) from a database (Reilhac et al., 2006). However, we
ascertained ourselves that the selected model was representative of
the other data from the simulated database. In othermeasurements (not
described here) and using the whole simulated database, we found
systematic underestimations of about 20% of the BP values in the
hippocampi regions, when the data were reconstructed using ANW-
OSEM instead of FORE+DIFT. In Reilhac et al. (2006), the realism
of this simulated databasewas successfully validated against real [18F]
MPPF PET data. Fig. 9 shows the mean time activity curves and the
standard deviation for the cerebellum computed from the simulated
and real [18F]MPPF PET data. The graph clearly shows the realism of
the simulated data regarding the activity level in the cerebellumwhich
is the most critical point with iterative reconstruction.

Protocol acquisition and analysis optimization

In this study, we followed a protocol consisting in the
acquisition of 35 time frames over a 60-min time period. The
duration of the late frames was 5 min. This study showed that this
framing scheme led to insufficient detected counts for unbiased
MLEM-based reconstructions. Two practical solutions have been
investigated to address this (results not shown):

• Lengthening the frame durations while reducing the number of
frames should increase the statistic within each frame. This



Fig. 9. Mean time activity curves and standard deviation computed for the
cerebellum from the simulated and real [18F]MPPF PET data.
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would be at the cost of a lower time sampling which may lead to
bias in BP computation. To answer this question, we generated
the same replicates using a 20-time frame protocol: 10 of 30 s, 2
of 120 s, 5 of 240 s, 1 of 360 s, 1 of 600 s and 1 of 900 s, for a
total scan duration of 60 min. The raw data were reconstructed
with ANW-OSEM2D and processed following the same
methodology as described in the method. The new framing
scheme resulted in significant decreases of the bias. The
measured cerebellar activities were overestimated by 10%.
The incidences on the bias in the hippocampus BP estimates
dropped to below 9% (the BP was underestimated by 18% with
the 35-frame protocol). However, this new time sampling altered
the theoretical BP, computed from the TACs used in the
simulation and the time sequence, by more than 10% in some
cortical regions. Consequently, it does not seem acceptable to
use longer frame since bias in BP appears in other cortical
regions.

• Restricting the BP computation for a total time period shorter
than the nominal scan duration by excluding the late frames
containing too low detected events. We computed the BP from
the ANW-OSEM2D PET images using the following time
period: 0–40 min, 0–45 min, 0–50 min and 0–55 min. No
significant improvement was found. This was expected since low
activity cerebellum TAC is only unbiased for the first 10 min.

Finally, the presented BP results were computed without
using weighting factors. However, the use of weighting factors
ðframe durationÞ2
counts in frame

� �
did not reduce the bias.
Other MLEM schemes

The observed bias in the low count region of an image
reconstructed with low count data is inherent to the MLEM-based
algorithm. The use of an Ordinary Poisson scheme (comparing
measured and estimated prompt) minimizes that bias (since there
is no pre-correction) but does not eliminate it, except at high
statistics. Although the HR+ acquires prompt and separate delayed
coincidences, the OP-OSEM scheme was not implemented since it
requires a projector in line of response space and the present
implementation is using parallel projections (i.e. after arc
correction). Because the truncation of negative values results
mainly in a positive bias, several methods which allow negative
values in the sinogram have been recently proposed (Ahn and
Fessler, 2004; Li and Leahy, 2006). However, they maintain the
non-negativity constraint in the image domain. It would be
worthwhile to investigate if methods such as AB-EMML (Byrne,
1998) which removes the non-negativity constraint in image space
would help in decreasing the bias of cold regions. Indeed it was
observed in a SPECT study (Erlandsson et al., 2000) that, using
AB-OSEM (accelerated version of AB-EMML using subsets) with
a negative lower bound, the noise in the reconstructed images was
much more uniformly distributed than that in the OSEM images.
These authors also indicated that the bias observed in the OSEM
values would be reduced. The NEG-ML algorithm (Nuyts et al.,
2002), developed in the context of whole-body reconstruction of
PET data without attenuation correction, is an alternative to AB-
OSEM: it also allows negative values in the image and reduces
inconsistency in the data, but bounds do not have to be provided.
Preliminary results in 2D show that it is indeed the case (Nuyts,
2007). Since both algorithms are not implemented in the clinical
processing suite, studying their performance was outside the scope
of the present work.

Conclusion

We investigated the performance of the UW-OSEM and ANW-
OSEM iterative reconstruction methods of data containing low
statistics using multiple simulated replicates. The results showed
that the studied iterative reconstruction methods are biased at low
statistics, especially in the lower part of the image dynamic range
and for cold regions. The bias comes from the lack of detected
events rendering the data prone to negative values after corrections
along with the zero-thresholding in the sinogram space and the
non-negativity constraint in the image space. This study using
simulated [18F]MPPF PET data showed that for our scanner, the
input scans should include 6 times more counts than normal to
enable unbiased reconstructions with ANW-OSEM. At higher
count rates, 3D iterative methods perform slightly better than the
analytical methods that were considered in this study. In the case
of low count data, analytical methods were found to be more
robust than iterative methods and allow a better activity estimate
and therefore a better kinetic parameter estimate. The reconstruc-
tion of the prompt data (OP-OSEM) with NEG-ML may reduce
the bias.
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