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Abstract

Background: There is currently little support to understand which pathological factors led to differences in tumor texture as
measured from FDG PET/CT images. We studied whether tumor heterogeneity measured using texture analysis in FDG-PET/
CT images is correlated with pathological prognostic factors in invasive breast cancer.

Methods: Fifty-four patients with locally advanced breast cancer who had an initial FDG-PET/CT were retrospectively
included. In addition to SUVmax, three robust textural indices extracted from 3D matrices: High-Gray-level Run Emphasis
(HGRE), Entropy and Homogeneity were studied. Univariate and multivariate logistic regression was used to identify PET
parameters associated with poor prognosis pathological factors: hormone receptor negativity, presence of HER-2 and triple
negative phenotype. Receiver operating characteristic (ROC) curves and the (AUC) analysis, and reclassification measures,
were performed in order to evaluate the performance of combining texture analysis and SUVmax for characterizing breast
tumors.

Results: Tumor heterogeneity, measured with HGRE, was higher in negative estrogen receptor (p = 0.039) and negative
progesterone receptor tumors (p = 0.036), and in Scarff-Bloom-Richardson grade 3 tumors (p = 0.047). None of the PET
indices could identify HER-2 positive tumors. Only SUVmax was positively correlated with Ki-67 (p,0.0004). Triple negative
breast cancer (TNBC) exhibited higher SUVmax (Odd Ratio = 1.22, 95%CI [1.06–1.39],p = 0.004), lower Homogeneity
(OR = 3.57[0.98–12.5],p = 0.05) and higher HGRE (OR = 8.06[1.88–34.51],p = 0.005) than non-TNBC. Multivariate analysis
showed that HGRE remained associated with TNBC (OR = 5.27[1.12–1.38],p = 0.03) after adjustment for SUVmax. Combining
SUVmax and HGRE yielded in higher area under the ROC curves (AUC) than SUVmax for identifying TNBC: AUC = 0.83 and
0.77, respectively. Probability of correct classification also increased in 77% (10/13) of TNBC and 71% (29/41) of non-TNBC
(p = 0.003), when combining SUVmax and HGRE.

Conclusions: Tumor heterogeneity measured on FDG-PET/CT was higher in invasive breast cancer with poor prognosis
pathological factors. Texture analysis might be used, in addition to SUVmax, as a new tool to assess invasive breast cancer
aggressiveness.
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Introduction

Tumor texture analysis in FDG PET/CT is a research area of

growing interest in the field of oncology and might offer new

insights into the characterization of tumors. Texture analysis has

recently shown promising results in predicting response to therapy

in cervix, head and neck, lung and oesophageal cancer [1,2].

Texture analysis consists in a variety of mathematical methods

describing the relationships between the grey level intensity of

voxels and their position within a delineated volume of interest [3].

This method allows for an objective evaluation of how granular or

coarse a tumor seems to be at visual analysis. The concept of

biological heterogeneity is well known in tumors, and has been

recently highlighted by the expression of genomic tumor

heterogeneity with important implications for treatment and

resistance [4]. Tumor heterogeneity is classically associated with

cellular proliferation, necrosis, hypoxia and angiogenesis, all of

these factors being related with more tumoral aggressiveness and

poorer prognosis in many cancers [5]. Yet, there is currently little

support to understand which histological or biological factors led

to differences in tumor texture as measured from FDG PET/CT

images [3].
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FDG PET/CT has proved to be a valuable tool in the staging of

locally advanced and inflammatory breast cancer, allowing for the

detection of extra-axillary lymph nodes and distant metastases [6].

The hormone receptor negativity, the presence of HER-2 and

triple negative phenotype are associated with aggressive histolog-

ical factors and poor prognosis in breast cancers [7,8]. In this

setting, FDG PET/CT texture analysis might yield new informa-

tive data related to metabolic heterogeneity of breast cancer

tumors, and as well as add to our understanding of the biologic

behavior of this disease.

The purpose of our study was to evaluate whether tumor

heterogeneity measured using texture analysis in FDG PET/CT

images could be correlated with pathological prognostic factors in

invasive breast cancer.

Methods

Patient population
This study was approved by the local institutional review board

(Ile-de-France X), with waiver of informed consent (data were

analyzed anonymously), and was done according to the revised

version of the Declaration of Helsinki (2000). Seventy-seven

consecutive patients scanned from July 2008 to March 2012 were

included in this retrospective study. They all had a large and/or

locally advanced and/or inflammatory biopsy-proven breast

cancer (T2, T3 or T4) and an initial FDG PET/CT scan before

receiving chemotherapy. Eighteen patients were excluded because

of delayed acquisition time post-injection. Five patients were

excluded because of small tumor volume (,5 mL) leading to

uncertain texture analysis. Therefore, the study population

included 54 women. Clinical stage was determined according to

the American Joint Committee on Cancer (AJCC) 6th edition [9].

Tumor size and T stage were assessed by clinical examination,

ultrasound imaging and/or MR imaging.

Tumor Histology and Immunohistochemistry (IHC)
analysis

Tumor type was determined on the core needle biopsy

performed before chemotherapy or surgery. Histological grade

was determined using the modified Scarff-Bloom-Richardson

(SBR) system [10]. Immunohistochemical tests were performed

on formalin-fixed, paraffin embedded tissues, using specific

antibodies directed against ER (mouse monoclonal, NCL-ER-

6F11, Novocastra; dilution 1:100), PR (mouse monoclonal, NCL-

L-PGR-312/2, Novocastra; dilution 1:200) and c-erbB-2 onco-

proteine (polyclonal antibody, DAKO, 1/1000). All immunostain-

ings were performed on a Leica Bond-max automated immunos-

tainer (Leica Microsystems, Newcastle, UK).

Tumors showing moderate or high positivity of at least 10% of

cells using ER or PR antibody were classified as ER positive or PR

positive, respectively. Tumors were considered to overexpress

HER-2 (3+) if more than 30% of invasive tumor cells showed

definite membrane staining. Tumors with an IHC score of 2+
were further tested using FISH (fluorescence in situ hybridization).

Tumors 2+ with a positive FISH were classified as HER-2 positive.

Tumors 2+ with a negative FISH were classified as HER-2

negative. Tumors with an IHC score of 0 or 1+ were considered to

be HER-2 negative. A Ki-67 index (percentage of Ki-67-positive

cancer nuclei) was also determined (MIB-1, DAKO, dilution 1/

50). TNBC were defined as hormone receptor-negative and HER-

2-negative tumors.

PET/CT protocol
PET/CT acquisitions were performed 79+/-9 [range: 59–90]

minutes following intravenous injection of 3 MBq/kg of FDG.

Serum glucose level was ,1.4 g/L at the time of injection for all

patients. All FDG-PET/CT images were acquired using a Gemini

TF PET/CT scanner (Philips Medical Systems, Netherlands). The

Gemini TF is a TOF-capable, fully 3-dimensional PET scanner

together with a 16-slice Brilliance CT scanner. CT images were

obtained without contrast media injection using the following

settings: 120 KV, 100 mA, collimation 1661.5 mm, pitch of 0.69,

slice thickness of 3 mm and increment of 1.5 mm. PET images

were reconstructed using a BLOB-OS-TF list-mode iterative

algorithm with 2 iterations and 33 subsets. A single scatter-

simulation model was used for scatter correction [11] and

attenuation correction was performed based on the CT. No

post-reconstruction smoothing filter was used. The image voxel

size was 4 mm64 mm64 mm for PET and 1.17 mm61.17 mm6
1.5 mm for CT. SUVs were calculated from the reconstructed

activity concentration values and normalized to body weight.

Tumor analysis
A 3D solid box was first loosely drawn around each breast

tumor so as not to include surrounding regions with high activity.

The tumor was then automatically delineated using the approach

initially described by Nestle et al [12] where the threshold was

defined by: T = b*I70+Ibgd with b= 0.3. The b parameter was

optimized using 3 acquisitions of a Jaszczak phantom including

spheres from 0.98 to 3.12 cm in diameter, with sphere to

background activity ratios varying from 2.96 to 10 [13]. I70 was

the mean uptake in a contour containing all voxels with a value

greater than 70% of the maximum uptake in the tumor. Ibgd was

defined as the mean uptake in a shell of 2 voxels thickness located

at 6 voxels from the region used to calculate I70 and only voxels

with uptake less than 2.5 SUV units were included in the

calculation of Ibgd. The mean SUV (SUVmean) was then

calculated in the resulting tumor volume (MV).

Texture analysis
All textural indices were calculated from the delineated tumor

volume as defined above. Voxel values within the segmented

tumors were first resampled to yield a finite range of 64 discrete

values between the minimum and maximum SUV in the tumor,

using:

R(x)~64:½I(x){SUV min�=½SUV max {SUV min�

where I(x) is the SUV of voxel x in the original image, SUVmin

and SUVmax are the minimum and maximum SUV in the VOI,

and R(x) is the resampled value of voxel x. The role of such

resampling is to reduce noise and normalize uptake across

patients.

Two 3D matrices describing texture heterogeneity were

calculated from the delineated tumors. The co-occurence matrix

(CM), describing pair wise arrangement of voxels is a 3D matrix

related to texture heterogeneity at a local level [14]. The gray-level

run length matrix (GLRLM), describing the alignment of voxels

with the same intensity is a 3D matrix related to texture

heterogeneity at a regional level [15].

In this study, we focused on 3 textural indices among 31 that

were initially calculated: Homogeneity and entropy calculated

from the CM, and High-Gray-level Run Emphasis (HGRE)

calculated from the GLRLM, all as defined in Haralick et al. [14]

and Amadasun et al. [16]. Homogeneity measures the local
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homogeneity of a pixel pair: the homogeneity is expected to be

large if the gray levels of each pixel pair are similar. Entropy

measures the randomness of a gray-level distribution: the entropy

is expected to be high if the gray levels are distributed randomly

throughout the tumor region. HGRE measures the distribution of

segments of high intensity (high levels of gray). The value is

expected to be large if the number of segments of high intensity is

high.

These three textural indices were selected as they were found to

be robust with respect to the tumor delineation method and were

not highly correlated one with another [17]. In summary, 5 PET-

derived indices were calculated for each patient: Homogeneity,

Entropy, HGRE, SUVmax, and SUVmean.

Statistical analysis
Univariate logistic regression was used to identify the association

between TNBC and all PET indices. Factors that were not linear

in the logit were dichotomized at the median. Then, multivariate

analysis was performed including factors with p,0.05 in the

univariate analysis. Because of strong correlation between texture

parameters, separate models were used. The discrimination of

scores was assessed using univariate and multivariate receiver

operating characteristic (ROC) curves and the areas under the

ROC curves (AUC) [18] were compared using a DeLong’s test

[19]. Because reclassification measures can offer incremental

information over the AUC [20], the net reclassification improve-

ment (NRI) was measured when combining SUVmax and textural

indices. The net reclassification improvement (NRI) measure is

used to assess whether adding texture analysis to SUVmax results

in a better identification of patients with TNBC [20]. Any increase

in probability of having a TNBC in patients with TNBC implies

improved classification, and any decrease in probability indicates

worse reclassification. The improvement in reclassification can be

quantified by the NRI. The NRI is the sum of the net difference

between the proportion of patients correctly reclassified and the

proportion of patients incorrectly reclassified (ideal value is 2) [20].

Correlation between level of Ki-67 on biopsy sample and PET

indices was tested using Pearson’s coefficient correlation. All tests

were two-sided at a 0.05 significance level. Analyses were

performed using R statistical software version 2.15.2 (The R

Foundation for Statistical Computing, Vienna, Austria).

Results

Patients and tumor characteristics
FDG PET/CT scans were performed in 54 patients (median

age 57, range 31–84 years) with invasive breast carcinoma. Tumor

characteristics are listed in Table 1. The median tumor size was

39 mm (range 20–120). 25 patients had a clinical stage II

according to the AJCC 6th edition, 15 had a stage III while 14

had a stage IV. Invasive ductal carcinoma was diagnosed in the

majority of patients (49/54, 91%). Three patients had an invasive

lobular carcinoma (3/54, 5%). The SBR grade was 3 in 76% of

patients (41/54). ER and PR were positive in 78% (38/54) and

35% (19/54) of tumors, respectively. Overexpression of HER-2

was found in 24% (13/54) of tumors. 24% of patients (13/54) had

a TNBC.

PET texture analysis versus ER, PR, HER-2 status and Ki-67
Tumor heterogeneity assessed by textural indices homogeneity

and HGRE was significantly different according to pathological

analysis (Table 2 and Table S1). HGRE was higher in negative ER

tumors than in positive ER tumors (Odd Ratio OR [95%

CI] = 3.57 [1.06;12.5], p = 0.039), negative PR tumors compared

to positive PR tumors (OR = 4 [1.09;14.28], p = 0.036) and SBR

grade 3 tumors compared to non-grade 3 tumors (OR = 5.22

[1.02;26.72], p = 0.047). Homogeneity was lower in TN pheno-

type tumors. SUVmax and SUVmean, were also higher in case of

negative ER and SBR grade 3 tumors.

Entropy was not associated with any of the histological features.

None of the PET indices could identify tumors with overex-

pression of HER-2.

SUV indices were significantly positively correlated with Ki-67

with r ranging from 0.50 to 0.54 (p,0.0004), unlike textural

indices.

Homogeneity, Entropy and HGRE were not linearly correlated

with SUV max (Pearson correlation r = 20.05, 0.15, and 0.29).

HGRE was not linearly correlated with MV (r = 20.13), whereas

Homogeneity and Entropy were moderately correlated with MV

(r = 0.76 and 0.58, respectively).

PET texture analysis for characterizing triple negative
breast cancer (TNBC)

Using logistic regression, factors associated with TN phenotype

were homogeneity, HGRE and SUVs (Table 2). MV was not

associated with TN phenotype (OR = 0.82 [0.23–2.85], p = 0.75).

TNBC exhibited more tumor heterogeneity than non-TNBC:

lower homogeneity (OR = 3.57 [0.98–12.5], p = 0.05) and higher

HGRE (OR = 8.06 [1.88–34.51]) p = 0.005). As expected, SUV-

max was also higher in TNBC (OR = 1.22 [1.06–1.39], p = 0.005).

Table 1. Patient and breast carcinoma characteristics (n = 54).

Clinical Stage

IIA 17 (31)

IIB 8 (15)

III 15 (28)

IV 14 (26)

Tumor size (mm) 39 (20–120)

Histology

Invasive ductal carcinoma 49 (91)

Invasive lobular carcinoma 3 (5)

Others 2 (4)

Histological grade

1/2 13 (24)

3 41 (76)

ER status

Negative 16 (30)

Positive 38 (70)

PR status

Negative 35 (65)

Positive 19 (35)

HER-2

Negative 41 (76)

Positive 13 (24)

Triple negative breast cancer (TNBC)

TNBC 13 (24)

Non-TNBC 41 (76)

Data are presented as number (frequency) or median (range). ER: Estrogen
Receptor; PR: Progesterone Receptor.
doi:10.1371/journal.pone.0094017.t001
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Using multivariate logistic regression, HGRE remained associated

with TNBC after adjusting the effect of SUVmax (OR = 5.28,

p = 0.03), unlike Homogeneity. An illustration of textural hetero-

geneity is shown in Figures 1 and 2.

In order to evaluate the performance of combining texture

analysis and SUVmax for characterizing TN tumors, ROC

analysis was performed. AUC was the highest when combining

SUVmax and HGRE (AUC = 0.83, Figure 3), without however

reaching statistically significant differences compared to SUVmax

alone (AUC = 0.77, p = 0.27). Using reclassification method, when

combining SUVmax and HGRE, the probability of correct

classification increased in 77% (10/13) of TNBC and 71% (29/

41) of non-TNBC, leading to an NRI of 0.95 (p = 0.003) (Figure 4).

Discussion

In this study, we showed that tumor heterogeneity in FDG

PET/CT is higher in invasive breast tumors with poor prognosis

pathological factors, such as negativity of ER/PR, SBR grade 3

and TN phenotype. Using multivariate analysis, SUVmax and one

textural index, High-Gray-level Run Emphasis (HGRE), were

both found to be independently associated with TN phenotype.

Table 2. Textural and SUV indices as a function of pathological characteristics of breast cancer at univariate logistic regression.

Homogeneity
(,0.15) Entropy (.2.2) HGRE (.850) SUVmax SUVmean

OR [95% CI] p OR [95% CI] p OR [95% CI] p OR [95% CI] p OR [95% CI] p

ER negativity 3.22 [0.94–11.05] 0.06 0.57 [0.13–2.39] 0.44 3.57 [1.06–12.5] 0.039* 1.19 [1.05–1.35] 0.005* 1.40 [1.12–1.79] 0.004*

PR negativity 1.46 [0.42–5.03] 0.55 2.33 [0.67–8.33] 0.18 4 [1.09–14.28] 0.036* 1.08 [0.98–1.20] 0.11 1.20 [0.98–1.47] 0.07

HER-2 positivity 1.51 [0.51–5.56] 0.54 0.45 [0.12–1.72] 0.24 0.57 [0.15–2.15] 0.4 0.96 [0.86–1.07] 0.48 0.93 [0.76–1.15] 0.51

High grade (SBR 3) 3.20 [0.6–16.7] 0.18 1.29 [0.32–5.12] 0.72 5.22 [1.02–26.72] 0.047* 1.13 [0.99–1.27] 0.060 1.32 [1.02–1.7] 0.033

TN phenotype 3.57 [0.98–12.5] 0.05 2.28 [0.44–11.85] 0.33 8.06 [1.88–34.51] 0.005* 1.22 [1.06–1.39] 0.005* 1.51 [1.15–1.98] 0.003*

*: p,0.05.
OR: Odd Ratio
95% CI: 95% confidence.
SBR: Scarff-Bloom-Richardson.
ER: Estrogen Receptor;
PR: Progesterone Receptor.
HGRE: High-Gray-level Run Emphasis.
Factors that were not linear in the logit were dichotomized at the median.
doi:10.1371/journal.pone.0094017.t002

Figure 1. Illustration of tumor heterogeneity at FDG-PET/CT in
the different subtypes of breast. Axial PET fusion images (left) and
3D-view of 3 orthogonal plans from the tumor volume (right) after
voxel resampling are displayed. Two histologic types of breast tumor
are displayed: triple negative (top) and luminal B (bottom) tumors. Both
tumors exhibit intense FDG uptake with a central hypometabolic area.
The triple negative breast tumor exhibits higher SUVmax and higher
textural heterogeneity than the luminal B tumor (right). This example
illustrates higher FDG uptake and higher texture heterogeneity in TNBC
compared to non-TNBC.
doi:10.1371/journal.pone.0094017.g001

Figure 2. Axial PET fusion images (left) and 3D-view of 3
orthogonal plans from the tumor volume (right) after voxel
resampling are displayed. The triple negative breast tumor (top)
exhibits lower SUVmax but higher textural heterogeneity than the HER-
2 positive breast tumor (bottom). This example illustrates the ability of
the HGRE textural index to identify higher heterogeneity despite lower
FDG uptake in triple negative breast tumors compared to the non-triple
negative breast tumors.
doi:10.1371/journal.pone.0094017.g002
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Our results suggest also that the combination of uptake intensity

and textural analysis improved the identification of poor prognosis

subtype such as TNBC.

Given that texture analysis of breast tumor on PET is a simple

and reproducible method and that PET has proved to be a

valuable tool in the staging of locally advanced breast tumor, these

findings have potential prognostic implications for these patients.

Texture analysis could be used in addition to SUVmax, as a new

tool to characterize breast tumor aggressiveness.

Figure 3. ROC curves analysis. AUC of SUVmax, SUVmax associated with homogeneity and SUVmax with HGRE for identifying
TNBC.
doi:10.1371/journal.pone.0094017.g003

Figure 4. Plots of the patients with TNBC (left) and non-TNBC (right) illustrating the effect of including a texture parameter (HGRE)
in addition to SUVmax for classification of breast cancer. In both tumor groups (TNBC and non-TNBC), adding HGRE to SUVmax improves the
classification of the tumor if the patient is located above the diagonal. The probability of correct classification increased in 77% of TNBC (10/13) and in
71% (29/41) of non-TNBC (NRI = 0.95, p = 0.003). A perfect combination of indices would reclassify 100% of patients above the diagonal (NRI equal to
2).
doi:10.1371/journal.pone.0094017.g004
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There is some recent evidence that PET texture analysis can

provide significant prognosis data in solid tumors [1,3]. However,

a great variety of indices have been studied and prognostic

significance of different texture indices may varies according to the

type of solid tumor [3]. So, there is a need to increase the

understanding of the histological and biological basis of PET

textural indices. Our study is the first assessing the correlation

between PET texture analysis with pathological analysis. Interest-

ingly, our data are in line with the concept that tumor

heterogeneity is higher in tumor with aggressive pathological

factors. HGRE is the most statistically significant textural index

associated with poor prognosis pathological analysis in this study.

HGRE describes the distribution of segments of high intensity

within the tumor and its value is expected to be large if the number

of segments of high intensity is high. Using simulated tumors, we

showed that the more heterogeneous the tumor uptake, the higher

HGRE (results not shown). This direction of variation of textural

indices has indeed been observed in our population study. It is well

established that tumor exhibits histological heterogeneity because

of high proliferative tissue mixed with low proliferative tissue,

necrosis and hypoxic areas. These different types of tumoral tissue

behave differently regarding the glucose metabolism. Our results

suggest that texture analysis could capture the distribution of FDG

uptake within a tumor.

The relationship between tumor heterogeneity and pathological

analysis in breast cancer has already been investigated in a few

MRI studies [21,22,23]. Bhooshan et al. showed that textural

indices measured in contrast-enhanced MRI could distinguish in

situ ductal carcinoma versus invasive ductal carcinoma, as well as

invasive ductal carcinoma with positive lymph node [22]. Ahmed

et al. recently observed textural differences between TNBC and

other types in contrast-enhanced MRI [23]. Similarly, Uematsu et

al. showed that very high tumoral signal intensity in T2-weighted

MR images, demonstrating tumoral necrosis, was significantly

associated with TNBC [24]. The presence of more frequent

necrosis in TNBC could partly explain the higher texture

heterogeneity observed in FDG PET in these tumors. Necrosis

has been shown to be a prognostic factor in invasive breast cancer,

associated with early systemic metastasis and accelerated clinical

course [25]. Results of Leek et al. also suggest that aggressive

tumors rapidly outgrow their vascular supply in certain areas,

leading to areas of prolonged hypoxia within the tumor and to

subsequent necrosis [26]. Therefore, textural indices derived from

PET images might bring an additional insight into tumor

biological aggressiveness.

Our results confirmed the previous data regarding the absence

of significant influence of HER-2 overexpression on FDG uptake

[27], possibly explaining the absence of association between

textural features and HER-2 status. The absence of relationship

between HER-2 overexpression and FDG uptake is difficult to

interpret as it has been demonstrated that HER-2 promotes

glycolysis in human breast cancer cells [28].

Previous studies have shown that FDG uptake was higher in

breast tumors with poor prognostic pathological factors such as

high grade, hormone receptor negativity or TNBC phenotype

[27,29]. Our results confirm these findings and show that

proliferative index Ki 67 was correlated only with SUVmax and

not with textural indices, suggesting that the textural indices bring

a different piece of metabolic information compared to SUVmax.

This result highlights the histological complexity of tumors. The

proliferative index describes a very small region of the whole

tumor, similar to SUVmax corresponding to the highest FDG

uptake in a voxel. Textural indices are supposed to describe the

spatial distribution of uptake within the tumoral volume, hence the

lack of correlation between textural indices and Ki-67.

As a limitation, only tumors with metabolic volume .5 mL

were included because texture analysis cannot be reliably

performed in small lesions due to the too small number of voxels

included in the texture analysis. As a result, unlike SUVmax,

texture analysis might not be practical in small primitive lesions or

small nodal metastasis. One other limitation is the variability of the

scan start time (range 59–90 min) which can lead to different level

of tumor to background ratio in the reconstructed image, that

could bias texture analysis.

As shown in a recent study where authors demonstrated that

there is a positive relationship between the percentage of high

washout on dynamic-contrast-enhanced MR and SUVmax [30],

correlations between textural indices in FDG PET/CT with MR

imaging features of breast tumors could be of interest but are

beyond the scope of this study.

In conclusion, tumor heterogeneity measured through textural

indices in FDG PET/CT is higher in breast cancer with poor

prognosis pathological factors. Texture analysis might be used, in

addition to SUVmax, as a new tool to assess invasive breast cancer

aggressiveness.

Supporting Information

Table S1 Characteristics of all 54 patients with their
respective tumor type, HGRE and SUVmax values.

(DOC)

Author Contributions

Conceived and designed the experiments: MS FO LZ MZ IB. Performed

the experiments: MS FO LZ VE MZ IB. Analyzed the data: MS FO MB

IB. Contributed reagents/materials/analysis tools: MS MB IB. Wrote the

paper: MS FO MB LZ MZ VE IB.

References

1. Cook GJ, Yip C, Siddique M, Goh V, Chicklore S, et al. (2013) Are

pretreatment 18F-FDG PET tumor textural features in non-small cell lung

cancer associated with response and survival after chemoradiotherapy? J Nucl

Med 54: 19–26.

2. Tixier F, Le Rest CC, Hatt M, Albarghach N, Pradier O, et al. (2011)

Intratumor heterogeneity characterized by textural features on baseline 18F-

FDG PET images predicts response to concomitant radiochemotherapy in

esophageal cancer. J Nucl Med 52: 369–378.

3. Chicklore S, Goh V, Siddique M, Roy A, Marsden PK, et al. (2013) Quantifying

tumour heterogeneity in 18F-FDG PET/CT imaging by texture analysis.

Eur J Nucl Med Mol Imaging 40: 133–140.

4. Gerlinger M, Rowan AJ, Horswell S, Larkin J, Endesfelder D, et al. (2012)

Intratumor heterogeneity and branched evolution revealed by multiregion

sequencing. N Engl J Med 366: 883–892.

5. Lu X, Kang Y (2010) Hypoxia and hypoxia-inducible factors: master regulators

of metastasis. Clin Cancer Res 16: 5928–5935.

6. Groheux D, Espie M, Giacchetti S, Hindie E (2012) Performance of FDG PET/

CT in the clinical management of breast cancer. Radiology 266: 388–405.

7. Fornier M, Fumoleau P (2011) The paradox of triple negative breast cancer:

novel approaches to treatment. Breast J 18: 41–51.

8. Metzger-Filho O, Tutt A, de Azambuja E, Saini KS, Viale G, et al. (2012)

Dissecting the heterogeneity of triple-negative breast cancer. J Clin Oncol 30:

1879–1887.

9. Singletary SE, Allred C, Ashley P, Bassett LW, Berry D, et al. (2002) Revision of

the American Joint Committee on Cancer staging system for breast cancer. J Clin

Oncol 20: 3628–3636.

10. Elston CW, Ellis IO (1991) Pathological prognostic factors in breast cancer. I.

The value of histological grade in breast cancer: experience from a large study

with long-term follow-up. Histopathology 19: 403–410.

11. Accorsi R, Adam LE, Werner ME, Karp JS (2004) Optimization of a fully 3D

single scatter simulation algorithm for 3D PET. Phys Med Biol 49: 2577–2598.

FDG PET Texture Analysis in Breast Cancer

PLOS ONE | www.plosone.org 6 April 2014 | Volume 9 | Issue 4 | e94017



12. Nestle U, Kremp S, Schaefer-Schuler A, Sebastian-Welsch C, Hellwig D, et al.

(2005) Comparison of different methods for delineation of 18F-FDG PET-
positive tissue for target volume definition in radiotherapy of patients with non-

Small cell lung cancer. J Nucl Med 46: 1342–1348.

13. Maisonobe JA, Garcia CA, Necib H, Vanderlinden B, Hendlisz A, et al. (2012)
Comparison of PET metabolic indices for the early assessment of tumour

response in metastatic colorectal cancer patients treated by polychemotherapy.
Eur J Nucl Med Mol Imaging 40: 166–174.

14. Haralick RM SK, Dinstein I (1973) Textural Features for Image Classification.

IEEE Transactions on Systems, Man and Cybernetics 3: 610–621.
15. Xu D-H KA, Furst JD, Raicu DS (2004) Run-Length Encoding for Volumetric

Texture. The 4th IASTED International Conference on Visualization, Imaging
and Image Processing – VIP, Marbella, Spain: 452–458.

16. Amadasun M, King R (1989) Textural features corresponding to textural
properties. IEEE Transactions on Systems, Man and Cybernetics 19: 1264–

1274.

17. Orlhac F SM, Maisonobe J-A, Garcia C, Vanderlinden B, Buvat I (2013) Tumor
texture analysis in 18F-FDG-PET: relationships between texture parameters,

SUVs, metabolic volumes and total lesion glycolysis. J Nucl Med In press.
18. Wang MC, Li S (2013) ROC analysis for multiple markers with tree-based

classification. Lifetime Data Anal 19: 257–277.

19. DeLong ER, DeLong DM, Clarke-Pearson DL (1988) Comparing the areas
under two or more correlated receiver operating characteristic curves: a

nonparametric approach. Biometrics 44: 837–845.
20. Pencina MJ, D’Agostino RB Sr, D’Agostino RB Jr, Vasan RS (2008) Evaluating

the added predictive ability of a new marker: from area under the ROC curve to
reclassification and beyond. Stat Med 27: 157–172; discussion 207–112.

21. Gibbs P, Turnbull LW (2003) Textural analysis of contrast-enhanced MR

images of the breast. Magn Reson Med 50: 92–98.

22. Bhooshan N, Giger ML, Jansen SA, Li H, Lan L, et al. (2010) Cancerous breast

lesions on dynamic contrast-enhanced MR images: computerized characteriza-

tion for image-based prognostic markers. Radiology 254: 680–690.

23. Ahmed A, Gibbs P, Pickles M, Turnbull L (2012) Texture analysis in assessment

and prediction of chemotherapy response in breast cancer. J Magn Reson

Imaging.

24. Uematsu T (2010) MR imaging of triple-negative breast cancer. Breast Cancer

18: 161–164.

25. Jimenez RE, Wallis T, Visscher DW (2001) Centrally necrotizing carcinomas of

the breast: a distinct histologic subtype with aggressive clinical behavior.

Am J Surg Pathol 25: 331–337.

26. Leek RD, Landers RJ, Harris AL, Lewis CE (1999) Necrosis correlates with high

vascular density and focal macrophage infiltration in invasive carcinoma of the

breast. Br J Cancer 79: 991–995.

27. Groheux D, Giacchetti S, Moretti JL, Porcher R, Espie M, et al. (2011)

Correlation of high 18F-FDG uptake to clinical, pathological and biological

prognostic factors in breast cancer. Eur J Nucl Med Mol Imaging 38: 426–435.

28. Zhao YH, Zhou M, Liu H, Ding Y, Khong HT, et al. (2009) Upregulation of

lactate dehydrogenase A by ErbB2 through heat shock factor 1 promotes breast

cancer cell glycolysis and growth. Oncogene 28: 3689–3701.

29. Basu S, Chen W, Tchou J, Mavi A, Cermik T, et al. (2008) Comparison of

triple-negative and estrogen receptor-positive/progesterone receptor-positive/

HER2-negative breast carcinoma using quantitative fluorine-18 fluorodeox-

yglucose/positron emission tomography imaging parameters: a potentially useful

method for disease characterization. Cancer 112: 995–1000.

30. Bolouri MS, Elias SG, Wisner DJ, Behr SC, Hawkins RA, et al. (2013) Triple-

Negative and Non-Triple-Negative Invasive Breast Cancer: Association between

MR and Fluorine 18 Fluorodeoxyglucose PET Imaging. Radiology.

FDG PET Texture Analysis in Breast Cancer

PLOS ONE | www.plosone.org 7 April 2014 | Volume 9 | Issue 4 | e94017


