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Abstract
Positron emission tomography (PET) images suffer from low spatial resolution
and signal-to-noise ratio. Accurate modelling of the effects affecting resolution
within iterative reconstruction algorithms can improve the trade-off between
spatial resolution and signal-to-noise ratio in PET images. In this work, we
present an original approach for modelling the resolution loss introduced by
physical interactions between and within the crystals of the tomograph and we
investigate the impact of such modelling on the quality of the reconstructed
images. The proposed model includes two components: modelling of the inter-
crystal scattering and penetration (interC) and modelling of the intra-crystal
count distribution (intraC). The parameters of the model were obtained using
a Monte Carlo simulation of the Philips GEMINI GXL response. Modelling
was applied to the raw line-of-response geometric histograms along the four
dimensions and introduced in an iterative reconstruction algorithm. The impact
of modelling interC, intraC or combined interC and intraC on spatial resolution,
contrast recovery and noise was studied using simulated phantoms. The
feasibility of modelling interC and intraC in two clinical 18F-NaF scans was also
studied. Measurements on Monte Carlo simulated data showed that, without
any crystal interaction modelling, the radial spatial resolution in air varied
from 5.3 mm FWHM at the centre of the field-of-view (FOV) to 10 mm at
266 mm from the centre. Resolution was improved with interC modelling
(from 4.4 mm in the centre to 9.6 mm at the edge), or with intraC modelling
only (from 4.8 mm in the centre to 4.3 mm at the edge), and it became stationary
across the FOV (4.2 mm FWHM) when combining interC and intraC modelling.
This improvement in resolution yielded significant contrast enhancement, e.g.
from 65 to 76% and 55.5 to 68% for a 6.35 mm radius sphere with a 3.5 sphere-
to-background activity ratio at 55 and 215 mm from the centre of the FOV,
respectively, without introducing additional noise. Patient images confirmed
the usefulness of interC and intraC modelling for improving spatial resolution
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and contrast. Based on Monte Carlo simulated data, we conclude that four-
dimensional modelling of the inter- and intra-crystal interactions during the
reconstruction process yields a significantly improved contrast to noise ratio
and the stationarity of the spatial resolution in the reconstructed images.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Positron emission tomography (PET) images suffer from low spatial resolution and signal-
to-noise ratio, which impair lesion detection and accurate quantification. Spatial resolution
could be improved by building PET tomographs with a greater number of smaller crystals.
However, this would considerably increase the scanner cost, processing complexity and noise
in the measured sinograms. Lengthening the scan duration could increase the signal-to-noise
ratio, but the concomitant reduction in patient comfort and daily number of scans is not
acceptable. Using image post-smoothing is not satisfactory either, as it reduces image noise
at the expense of spatial resolution.

Alternatively, it has been shown that accurate modelling of the phenomena affecting
resolution within iterative reconstruction algorithms could significantly improve the spatial
resolution and signal-to-noise ratio in the reconstructed PET images (Veklerov et al 1988). The
model is included in the so-called system matrix (SM) involved in iterative reconstruction.
This matrix describes the set of probabilities that a positron emitted in image voxel j be
detected in line of response (LOR) i, for all (i, j) pairs. These probabilities depend on
many factors, among which are the detector response function (including crystal interactions,
defined as the crystal response function—CRF, photomultiplier response and light sharing),
the positron range and photon non-collinearity, the geometric effects and the patient-related
effects (attenuation, scatter, motion).

Direct calculation of the SM using Monte Carlo simulations has already been performed
for a pre-clinical tomograph by Rafecas et al (2004). However, even when excluding the
animal-related effects, achieving reasonable statistics, hence a robust SM, was extremely
challenging. Recently, Ortuño et al (2010) used all possible symmetries (including axial
translation) to efficiently reduce the number of SM elements to be calculated, thus enabling
good statistics and efficient storage of the SM. However, this work was also performed
for a small-animal PET device involving less than 1013 matrix elements without symmetry.
Therefore, comprehensive modelling of the detector response in the SM by direct Monte Carlo
calculation is extremely challenging for a currently available clinical tomograph, due to the
large number of matrix elements to be stored (between 1013 and 1016 for a standard clinical
PET).

To overcome this issue, several strategies have been proposed. The SM can be expressed
as a product of three components (Mumcuoglu et al 1996, Qi et al 1998): a matrix modelling
the blurring effects affecting the projection measurements, a matrix defining the geometrical
relationship between the projection space and the image space and a matrix modelling the
blurring effects affecting the image. As any blur of the projections results in a blur in
the reconstructed image, and any initial blur in the activity distribution (for instance due to
the mean-free path of the positron) results in a blur in the projections, this expression of
SM yields various options to model the overall resolution loss affecting the imaging process.
The resolution loss can thus be modelled in the projection space only (Johnson et al 1995,
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Mumcuoglu et al 1996, Qi et al 1998, Selivanov et al 2000, Yamaya et al 2005, Alessio
et al 2006, Panin et al 2006, Alessio et al 2010) or in the image space only (Reader et al 2003,
Sureau et al 2008).

The projection space component can be expressed as a product of sparse matrices, each
describing a particular effect, as described by Mumcuoglu et al (1996) and Qi et al (1998). The
drawback is that it can make the reconstruction computationally intensive as many sinogram
convolutions are needed. To avoid that, only non-zero matrix elements can be pre-calculated
and stored to be later loaded during reconstruction (Johnson et al 1995, Selivanov et al 2000,
Alessio et al 2006, Moehrs et al 2008), still requiring a large amount of memory. When
modelling an overall resolution loss in the image space component only, without explicit
decomposition of the various sources of blur, the image estimate is blurred at each iteration
before forward projection, using an empirical model, also accounted for in the back-projection
process. Although this approach improves spatial resolution, it cannot accurately model
angular-dependent crystal blurring effects. Modelling some resolution effects in the projection
space and others in the image space (positron range) has also been reported with encouraging
results by Rahmim et al (2008). However, this work concerned 82Rb, not one of the most
common isotopes in PET, the mean range of which (5.9 mm in water) is much larger than that
of 18F (0.6 mm in water).

Regardless of the level of modelling (projection and/or image space), the derivation of
the blurring parameters can be performed theoretically (Yamaya et al 2005, Moehrs et al 2008,
Rahmim et al 2008), empirically (Johnson et al 1995, Selivanov et al 2000, Reader et al 2003)
or using Monte Carlo simulations (Veklerov et al 1988, Mumcuoglu et al 1996, Qi et al 1998,
Rafecas et al 2004, Alessio et al 2006, Moehrs et al 2008, Ortuño et al 2010) or experiments
(Panin et al 2006, Sureau et al 2008, Tohme and Qi 2009, Alessio et al 2010).

In previous studies regarding resolution modelling (RM), reconstruction was performed
either using sinograms (with projection space and/or image space RM) or using list-mode
data (with image space RM only). List-mode data have the advantage of retaining the exact
crystal locations for each coincidence but do not allow for grouped LOR manipulations. Raw
geometric LOR histograms (LORH) can be defined based on the complete set of all possible
geometric LORs, without any distance or angular compression (Kadrmas 2004). Using LORH
is thus strictly identical to using list-mode data where all coincidences belonging to the same
LOR are grouped and processed simultaneously. So far, in papers related to RM, only Moehrs
et al (2008) and Alessio et al (2010) have used LORH data as the reconstruction input.

This study investigates an original RM approach, in which the blur in resolution introduced
by the interactions in the tomograph crystals is estimated using Monte Carlo simulations and
modelled in the LORH space along all dimensions. The approach is studied for the Philips
GEMINI GXL scanner, and its impact is demonstrated using simulations and clinical images.

2. Materials and methods

2.1. Derivation of the detector response function

The Philips GEMINI GXL is a ring of 28 blocks of 22 × 29 GSO crystals (4 × 6 mm2

respectively in transverse and axial directions, 30 mm in depth) (figure 1(A)). The crystal
pitch is 4.3 and 6.3 mm in the transverse and axial directions respectively, and a minimal
transaxial distance between two crystals is set to 169 crystals for a coincidence to be validated.
The field-of-view (FOV) is 576 mm in transverse and 180 mm in axial directions and the
LORH consists of 71 750 756 physical LOR. Considering the geometry of the scanner, a
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Figure 1. Schematic views of the cylindrical scanner (A), interC kernel at the block level (B),
intraC kernel at the crystal level (C) and a 2D view of different effects in the crystals (D).
The different coloured tracks represent different photon detection scenarios used to calculate the
kernels. The yellow star in C indicates where all detections occurring in the crystal are assigned in
usual reconstruction, while our model accounts for the probabilities associated with the different
coloured tracks. The green and red tracks in D represent the crystal scattering and penetration
effects respectively.

∼16-fold symmetry (8 transaxial and 2 axial) can be used to reduce the number of LORs
to 4492 872.

In our model, the detector response function only includes the blur due to interactions in
the crystals, and is divided into two components: the inter-crystal scattering and penetration
(interC) and the intra-crystal count distribution (intraC). The interC component represents the
probability that a photon detected in crystal i (whatever the depth) should have been detected in
that crystal at a depth d of interaction (figure 1(D)), blue track) or in a surrounding crystal i′ at
depth d (figure 1(D), green and red tracks). The intraC component represents the probability
that a photon detected in crystal i should have been detected at position [xi, yi, zi] (local
Cartesian coordinates) inside this crystal (figure 1(C), blue and red tracks correspond to two
different detection positions accounted for in our model while the two are located at the same
position in a real PET scanner).

The interC component is represented by a 2D kernel of odd dimensions composed of
4 mm × 6 mm pixels representing crystals (figure 1(B)). It is calculated for a certain depth d
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of interaction inside the crystals. The central pixel of the kernel is placed at the location of
the crystal in which a signal has been detected. This central pixel thus gives the probability
that the actual crystal of detection i is the correct one and has detected the signal at a depth
of interaction d. The other pixels of the kernel give the probability for each surrounding
crystal i′ to be the crystal in which the signal should have been detected at this depth d
(figure 1(D), green and red tracks). Considering the GEMINI GXL, 11 × 15 kernels were
calculated considering a given depth d, one for each crystal composing a quarter of a block
(22 × 29 crystals in a block). All blocks were thus supposed to be affected by the same
interC effect, as well as the four quarters of each block. An interC kernel positioned near the
transaxial border of the block can run over the neighbouring block, so inter-block penetration
and scattering effects are taken into account.

The intraC component is represented by a 3D kernel covering the whole crystal
(figure 1(C)). Each element of the kernel gives the probability for a signal detected in the
crystal to have been detected in this crystal element. Only one kernel was calculated and used
for all crystals, assuming all crystals had the same count probability distribution. The interC
and intraC components are independent but can be combined.

To calculate the interC and intraC kernels, a Monte Carlo simulation based on a clinical
whole-body PET/CT scan was performed using the GATE software (Jan et al 2004) and the
model of GEMINI GXL (Lamare et al 2006). In this simulation, for each photon that produced
a signal, its position and direction when leaving the simulated patient were used to project it
towards the detector. The crystal i′ intersected by this projection at a given depth d gave the
ideal position of interaction for this depth d in crystals (figure 1(D)). Knowing this photon
was actually detected in crystal i in the Monte Carlo simulation, the interC kernel associated
with crystal i and depth d was modified by adding a unit in the pixel associated with crystal
i′. In this way, the 11 × 15 interC kernels were built considering a certain depth d, and
normalized so that the sum of all kernel values was 1. To build the intraC kernel, the energy
weighted centroid of all intra-crystal interactions in the crystal of detection was recorded for
each detected single and a unit was added in the corresponding element of the 3D intraC
kernel. After the simulation, the kernel was normalized so that the sum of all kernel values
was 1. For these kernels to be smooth, 5 billion signals were recorded.

In the simulations, the interactions of a photon inside the crystals were processed in two
steps. First, the crystal in which the highest energy was deposited was taken as the crystal
of detection. Second, a unique interaction was determined by calculating the energy centroid
of all interactions inside this crystal. This means that the effects of the light readout system,
affecting the determination of the detection crystal, were not modelled. This also implies that
the interC and intraC kernels only modelled crystal scattering and penetration effects (i.e. the
CRF). They both modelled these two effects, but at different levels (i.e. inter- or intra-crystal).

2.2. Reconstruction algorithms

The interC and intraC kernels were used to model the detector response function in the
reconstruction. Let kt and ka be the transaxial and axial dimensions of the interC kernel
(figure 1(B)). For a LOR between two crystals, accounting for the interC component means
projecting kt

2 × ka
2 rays instead of one. Similarly, if n is the number of elements in the intraC

kernel, modelling the intraC component involves projecting n2 rays instead of one. Modelling
both effects results in projecting kt

2 × ka
2 × n2 rays instead of one. The SMs associated with

the two effects separately and in combination were calculated only once and only non-zero
values were stored. The Siddon algorithm (Siddon 1985) in its optimized version (Jacobs
et al 1998) was used to determine the contribution of a ray to the image voxels.
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For the intraC model, we empirically chose n = 300 with 240 cubic elements (1 mm
side) sampling the first centimetre of the crystal depth, and 60 cubic elements (2 mm side)
sampling the next 2 cm thickness of the crystal. For the interC kernels, 95.6%, 98.8%, 99.6%
and 99.8% of singles were respectively included in kernels of 3 × 3, 5 × 5, 7 × 7 and 9 ×
9 pixels. As the size of the stored SM significantly increases with the interC kernel size, we
considered kt = ka = 5 to build the SM including the interC component only, and kt = ka =
3 to build the combined matrix including both interC and intraC components. Reconstructed
images were 144 × 144 × 45 with cubic voxels of 4 mm side (original sampling of images
provided by the manufacturer).

Four SMs, noted MGEOM, MintraC, MinterC and MCRF, were considered. MGEOM was built
considering only one projected line between the centre of the two crystals defining the LOR,
at a depth d = 9.5 mm (mean depth of interaction, yellow star in figure 1(D)). MintraC included
the intraC component only with n = 300. MinterC included the interC component only for a
depth d = 9.5 mm, and using 5 × 5 kernel size. MCRF combined the intraC component with
n = 300 and the interC component using 3 × 3 kernel size. As the intraC kernel had 20
elements in depth, 20 sets of 11 × 15 interC kernels were built, one for each set of the 20
depths (taken at the mid-depth of an intraC kernel element).

The ordinary-Poisson maximum likelihood expectation maximization (Politte and Snyder
1991) in its ordered-subset form (OP-OSEM) was used by incorporating random and scatter
estimates in the denominator during the image update step. Also, weighting for attenuation
and normalization (Michel et al 1998) was included. The reconstructions were performed
considering exact LORs in the LORH space. Details on the SM storage, reconstruction
program and computing time are given in the appendix.

2.3. Phantom simulations

2.3.1. Resolution phantom. An acquisition of nine point sources in air was simulated using
GATE (Jan et al 2004). No attenuation was included and pairs of 511 keV photons in opposite
directions were generated (i.e. ignoring positron range and photon-pair non-collinearity). The
point sources were aligned parallel to the Y axis and off-centered by 2 mm (i.e. exactly
at the centre of a reconstructed voxel). The first point source was placed at X = 10 mm
(figure 1(A)) and the others were aligned 32 mm apart each. In this way, the last point
source was 266 mm away from the transaxial centre of the FOV, i.e. close to the useful FOV
edge (288 mm). This simulation was performed at three axial positions: 0, 32 and 64 mm
(0 is the axial centre of the FOV). Three million coincidences were recorded per point source
(including random coincidences). All coincidences were considered for reconstruction (ten
iterations, eight subsets), without correcting for randoms as randoms were less than 1% of
the total number of coincidences at this activity concentration (0.25 MBq per point source).
Images were reconstructed using each of the four previously described SMs. No correction
for scatter nor for attenuation were used since point sources were in air. Also, no correction
for variable crystal efficiency was needed since all crystals had the same efficiency in the
simulation. Tangential, radial and axial resolutions were estimated for each reconstructed
point source by measuring the full-width at half-maximum (FWHM) of the count profiles.

2.3.2. Contrast and noise phantom. Contrast recovery (CR), given by equation (1), as a
function of noise was studied using simulations of a water cylindrical phantom (110 mm
radius, 190 mm length) parallel to the scanner axis, filled with homogeneous activity. Six
water spheres with homogeneous activity were placed in the mid plane of the phantom, with
their centres 55 mm from the phantom axis. The radii of the spheres were 6.35, 7.95, 9.55,
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12.7, 15.9 and 19 mm and the sphere-to-background activity ratio was 3.5. Two simulations
were performed: one with the phantom centred in the transaxial FOV, and another 160 mm
off-centred so that the smallest sphere was the farthest from the transaxial FOV centre.
Twenty five MBq was inserted in the FOV and 100 million coincidences were recorded
for each simulation. As for the point source simulations, pairs of 511 keV photons were
generated. Images were reconstructed for each SM, with 50 iterations and 16 subsets. A
delayed coincidence window was used for random estimation, and scatter was estimated using
a convolution-based method (Bailey and Meikle 1994). Attenuation was corrected using a
4 mm sampled attenuation map of the cylindrical phantom (0.096 cm−1 attenuation coefficient).
As for the point source simulations, no correction for variable crystal efficiency was needed.
For all four reconstructions and for a given number of iterations, we measured the mean
activity Asph in the real sphere contours, the mean activity Abg and the standard deviation σ bg

in voxels contained in a large background region (excluding the five first and last slices, and
at least two voxels away from the cylinder and sphere boundaries). CR and background noise
(BN) were calculated as defined in equations (1) and (2):

CR = Asph/Abg

3.5
× 100 (1)

BN = σbg

Abg
× 100. (2)

Using this phantom placed at the centre, 40 independent simulations of 30 million
coincidences were also performed. Each simulation was corrected and reconstructed using
exactly the same processing as for the simulation involving 100 million coincidences. The 40
replicates were used to calculate the covariance for the central pixel in a uniform slice axially
located 32 mm off-centre.

2.4. Patients

Two patient studies (P1 and P2) were performed using a clinical Philips GEMINI GXL
PET/CT scanner. Patients were injected with 18F-NaF (269 MBq for P1—63 kg—and
289 MBq for P2—92 kg) and scanned 1 h after intravenous injection. CT scanning used a
120 kV tube voltage, rotation time of 0.5 s, beam current of 188 mA for 100 mAs per
reconstructed slice, pitch of 0.94, 16 × 1.5 mm2 collimation and 5 mm slice thickness
reconstruction. In PET, prompts and delay sinograms were collected for 2 min per bed
position, and converted into LORH. The crystal efficiency and geometric normalization factors
were derived in the LORH space from the correction factors given by the console. Scatter
LORH were estimated using Monte Carlo simulations (Holdsworth et al 2002). Dead-times
were corrected using a single scale factor given by the scanner console for each bed position,
derived from the single count rates. Patients were scanned with 19 bed positions. Images were
reconstructed using the MGEOM and MCRF SMs and the same OP-OSEM algorithm (8 subsets)
as for the contrast phantom, but including weighting for attenuation and normalization (Michel
et al 1998).

Using MGEOM, images at iteration 5 were considered and post-smoothed using a 3D
Gaussian kernel of 4 mm FWHM, to mimic clinical conditions. Using MCRF, images
corresponding to iteration 4 were considered without post-smoothing. These parameter
settings ensured a similar noise level in the abdomen for the two SMs. As an illustration,
images from the original clinical protocol (two iterations of the LOR-RAMLA algorithm (Hu
et al 2007), relaxation parameter of 0.04, blob radius of 8 mm, blob shape parameter of 4.3363,
Bessel function order of 2, and 95 × 95 × 33 blob matrix) were also calculated. LOR-RAMLA
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(A)
(C)

(E)
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Figure 2. The 3D intraC kernel (A)–(C) and a 2D interC kernel (D)–(F) used to derive the CRF.
(A) and (B) are summed projections of the intraC kernel along the depth and along the axial axis
of the crystal, respectively (figure 1(C)). (C) The interaction probability along the crystal depth,
derived from (B). (E) A 2D 5 × 5 interC kernel and (F) its logarithm (with 29 × 29 crystals). (D)
The axial and transaxial profiles over the centre of the kernel shown in (E). All grey scales were
normalized with minimum at 0 and maximum at 1.

included random coincidence correction using delayed sinogram and scatter correction based
on single scatter simulation (Accorsi et al 2004) inside the iterative loop (Politte and Snyder
1991), weighted attenuation correction (Michel et al 1998), and dead-time correction. LOR-
RAMLA used 295 × 161 × 841 sinogram sampling with radial bins aligned with respect to the
crystals (considering scanner geometry) and azimuthal angular mashing. The LOR-RAMLA
algorithm uses a pre-calculated and stored SM defining geometric relationship between LORs
and blobs, using a 16-fold symmetry and axial translation symmetry (Hu et al 2007).

3. Results

3.1. Kernels and system matrices

Figures 2(A) and (B) show 2D views of the 3D kernel modelling the intraC component. For
illustration purpose, a fine sampling (i.e. cubes of 0.1 mm) of the kernel is used, and the actual
sampling used to calculate MintraC is represented in red (sampling of the first cm of the crystal
depth in figure 2(A)). Summing all elements corresponding to the same depth (figure 2(B))
gives the interaction probability along the depth of the crystal (figure 2(C)). The median depth
of interaction (9.5 mm) is also shown (identical curve integrals on the left and right side of
this depth). Figure 2(E) shows an interC 2D 5 × 5 kernel for a crystal at the centre of a block
and for a depth of interaction of 9.5 mm. The logarithm of the interC 2D 29 × 29 kernel is
also shown in figure 2(F), with the border of the actual 5 × 5 kernel in red. Transaxial and
axial profiles over the centre of the interC kernel are plotted in figure 2(D). The profile was
broader along the transaxial dimension due to the smaller crystal size (4 mm compared to
6 mm axially). The pixel at the centre contained 67.3% of the total number of singles, 31.7%
were distributed in the rest of this 5 × 5 kernel, and 1.0% were not included in this kernel.
Table 1 shows the characteristics of the 4 SMs.

3.2. Simulations

3.2.1. Resolution phantom. The radial, tangential and axial FWHM averaged over the
three axial positions are plotted for the nine point sources in figure 3, with associated
standard deviations. The radial resolution obtained using MGEOM changes from 5.3 to
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(A) (B)

(C) (D)

Figure 3. Radial (A), tangential (B) and axial (C) FWHM for the four reconstructions of the point
source simulations, averaged over the three axial positions of the point sources. Details for MinterC
results at each axial position are given in the graph in (D).

Table 1. Characteristics of the four SMs.

Number of rays Minimal number Maximal number Mean number
System Size traced for the system of non-zero voxels of non-zero of non-zero
matrix (GB) matrix calculation in an LOR voxels in an LOR voxels in an LOR

MGEOM 6.5 4.5 × 106 34 325 178
MintraC 46 4.0 × 1011 288 3212 1478
MinterC 175 2.8 × 109 1020 11 176 5184
MCRF 155 2.5 × 1014 1296 8473 4594

10 mm when moving away from the transaxial FOV centre. MinterC shows the same trend, with
a systematically improved radial resolution. MintraC yielded an improved radial resolution,
varying from 4.8 at the centre to 4.3 mm at the edge. The correction for both intraC and interC
effects using MCRF yielded a stationary radial resolution of 4.2 mm FWHM. The tangential
resolution was almost stationary across the FOV, varying only from 5.3 to 5.9 mm with MGEOM.
Similar stationary tangential resolution was obtained with MinterC (∼1 mm smaller FWHM
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Figure 4. Reconstructed images of the centred and off-centred contrast phantom, using the different
SMs. All images have a background noise of 27%. The original phantom giving the simulated
activity distribution is also shown. The three spheres associated with arrows are those for which
CR is shown in figure 5.

than with MGEOM). Using MintraC, spatial resolution was also stationary at ∼4.8 mm. The
best tangential stationary resolution was obtained with MCRF (4.2 mm). The axial resolution
was stationary whatever the SM. MGEOM, MintraC, MinterC and MCRF yielded axial resolutions
of 5.8, 5.0, 4.8 and 4.2 mm FWHM respectively. Along this direction, MinterC improved
resolution slightly less than MintraC, with a larger dependence on the axial position (larger error
bars for MinterC in figure 3(C). Mean and standard deviation of the MintraC axial FWHM are
plotted against the axial FWHM using MinterC for each axial position (i.e. 0, 32 and 64 mm) in
figure 3(D), showing that the improvement brought by MinterC was greater for point sources
near the edge of the axial FOV compared to sources centrally located in the axial FOV. Also,
for 0 and 32 mm axial positions, the improvement is less than that brought by MintraC.

3.2.2. Contrast and noise phantom. Figure 4 shows the contrast phantom images obtained
using the different SMs at a same value of BN (27%), for the centred and off-centred
phantoms. The corresponding iteration numbers for the centred phantom are 8, 9, 10
and 15 for reconstructions using MGEOM, MintraC, MinterC and MCRF respectively (8, 13, 10
and 17 for the off-centred phantom). The simulated activity distribution is also shown as a
reference.

Figure 5 shows the trade-off between CR and BN for all reconstructions, for both centred
and off-centred phantoms. Results for the 6.35 (S1), 9.55 (S4) and 19 (S6) mm radius spheres
are plotted. Considering the centred phantom, for a given level of noise, MintraC improved CR
compared to MGEOM. MinterC improved CR more than MintraC, and the best CR was obtained
using MCRF. This is in agreement with the point source measurements made at a distance
of 55 mm from the transaxial FOV centre (figure 3). However, for the off-centred phantom,
the smallest sphere S1 was at 215 mm from the FOV centre. In this case, MintraC gave a
better CR compared to MinterC, unlike what was observed for the centered phantom. The same
observation, but less pronounced, can be made for the sphere S6, that was a bit closer to the
FOV centre in the off-centred phantom. For the sphere S4, the closest to the FOV centre, MinterC

gave a better CR than MintraC, as for any sphere of the centred phantom. These observations
are all in agreement with the point source observations at each considered distance from the
FOV centre (figure 3).

For any reconstruction and any sphere, the CR was poorer for the off-centred phantom
than for the centred one. At the level of noise (36.5%) reached by MGEOM reconstruction
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Figure 5. CR versus BN curves for the centred (upper row) and off-centred (lower row) phantom,
and for the four different reconstructions. S1, S4 and S6 are the 6.35, 9.55 and 19 mm radius
spheres, respectively. Iteration numbers shown by the symbols from left to right are 1, 2, 5, 10,
15, 20, 30, 40 and 50.

for its best CR (for both centred and off-centred phantoms), the CR for the S1 sphere were
about 65, 69, 72.5 and 76% for the MGEOM, MintraC, MinterC and MCRF respectively for the
centred phantom. These CR were 55.5, 63.5, 59.5 and 68% for the off-centred phantom. The
CR improvement was the highest for the smallest sphere as partial volume effect is greater
for small objects. Convergence of the reconstructions modelling physical effects was slower
than for MGEOM, and MCRF converged even more slowly than MintraC and MinterC. For both
phantoms, at iteration 5, any of these reconstructions already achieved better CR than the
MGEOM reconstruction could ever reach.

Figure 6 shows the covariance profiles obtained for a voxel at the centre of the transaxial
FOV and along the X axis. The covariance was compared at a given resolution (figure 6(A)),
at a given iteration (iteration 10 in figure 6(B)), and for images with the same amplitude of
BR (figure 6(C)). When accounting for detector blurring effects, the peak of covariance was
reduced (also observed in figures 4 and 5) with less negative values. Figure 6(C) shows that
the width of the peak slightly increased when modelling the detector response, which explains
why in figure 4 images at the same noise level (defined by BN) showed different noise
textures.

3.3. Patient images

Figure 7 shows coronal slices for P1 and P2 for each reconstruction method. All images have
approximately the same level of noise in the abdomen. Images from MCRF showed improved
resolution compared to those from MGEOM, particularly along the spine. An improvement
compared to LOR-RAMLA was also observed. To the best of our knowledge, the LOR-
RAMLA algorithm does not include more details regarding the modelling of the detector
response than MGEOM, except that it is a blob-based algorithm that somehow intrinsically
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(A) (B) (C)

Figure 6. Covariance profiles observed for the four reconstructions, for a voxel at the centre of
the transaxial FOV and along the X axis, at (A) equal resolution for the smallest sphere, (B) equal
iteration and (C) equal variance. These graphs were obtained for the centred phantom.

(A) (B) (C)

Figure 7. Coronal PET images from P1 (top) and P2 (bottom), and from LOR-RAMLA (A),
MGEOM (B) and MCRF (C).

models the image point spread function. Figure 8 shows the 511 keV attenuation maps of the
two patients and the ROIs used to draw the intensity profiles from images in figure 7. These
profiles confirm that MCRF gives higher resolution than the other methods.

Table 2 gives the computing times required for the different patient reconstructions,
considering the 19 bed positions. The LOR-RAMLA reconstruction was performed on
3.60 GHz Xeon processors (using 1 CPU of 2 cores) and our reconstructions were performed on
2.27 GHz Xeon processors (using 10 CPUs of 8 cores). Times are given as if a reconstruction
was performed using only one CPU (meaning one core of a processor), and included all
iterations needed to obtain the images shown in figure 7 (see section 2.4).
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Figure 8. Data from P1 (top) and P2 (bottom). Left: 511 keV attenuation maps. Right: profiles
plotted for each patient and for the three PET images (in figure 7), along the lines drawn in the 511
keV attenuation maps.

Table 2. Computing times for the different patient reconstructions.

Patient LOR-RAMLA (s) MGEOM (s) MCRF (s)

P1 4785 8555 55 500
P2 8410 8690 55 200

4. Discussion

It is known that accurate modelling of various sources of blurring during reconstruction can
improve the spatial resolution in the reconstructed images. Unlike most of the previous
studies reporting CRF modelling using various strategies, here, by performing reconstructions
in the LORH space, we distinguished between the intraC and interC effects in the CRF
(figure 2), and considered resolution blurring effects along all dimensions. Modelling these
effects improved resolution and CR, and each component had a significant effect. Moehrs
et al (2008) have proposed a similar approach by considering two CRF components. They
distinguished between scatter effects that occur between crystals (determined by Monte Carlo
simulations), and penetration effects that occur inside crystals (determined by analytical
considerations). However, scatter and penetration can actually both occur within or between
crystals. In our work, we considered the combination of the two effects both within and
between crystals, based on Monte Carlo simulations.

When modelling the two components simultaneously, spatial resolution and CR were
further improved, and most important, we obtained an isotropic stationary resolution inside
the FOV of ∼4.2 mm FWHM (figure 2), close to the voxel size. The resolution values shown
here do not reflect the actual resolution observed in clinical conditions, as well demonstrated
and discussed by Alessio et al (2010). Still, they make it possible to precisely characterize
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the improvement in resolution brought by each of the interC and intraC components. We
intentionally neglected light readout effects, photon-pair non-collinearity and positron range
in the phantom simulations. Indeed, we wanted to only investigate the role of crystal scattering
and penetration at the intra crystal and inter crystal levels. Introducing other resolution-
degrading effects in these phantom simulations would have introduced confounding factors
preventing a specific analysis of the crystal interactions.

When modelling only simple geometric effects using the Siddon algorithm as in MGEOM

(one ray per LOR), some image voxels are not crossed by any LOR when the voxel size
becomes small. For the GEMINI GXL, this limit is about 3 mm for cubic voxels. The
manufacturer actually offers reconstruction with 2 mm voxel size, filling the zero-voxel values
using blob-basis functions. Other projection algorithms such as the ray-driven (Joseph 1983)
or distance-driven (De Man and Basu 2004) algorithms could be used. However, when
modelling the intraC effect, the LORH space is oversampled, and the Siddon algorithm
remains the most appropriate algorithm for multi-ray approaches, giving the exact path
of a ray in a voxel-based geometry, and avoiding any interpolation. This LORH space
oversampling thus makes reconstruction with smaller voxels theoretically feasible without
empirical interpolation. However, a new matrix must be calculated for each voxel size and its
size increases as the voxel size decreases. We could not build SMs using voxel size smaller
than 4 mm due to the current hardware capacities.

When building the interC and intraC kernels, we assumed that all blocks and each
block’s quarter were affected by identical interC effects. This was true for the simulations
as dimensions and materials were strictly the same between crystals. In a real scanner, this
assumption remains realistic as the tolerance on dimension and material compounds is small.
Dead-times, crystal efficiency and PMT efficiency do not affect this assumption as they are
compensated before or during reconstruction. Pile-up effects were accounted for in simulations
and can be supposed to be the same anywhere in the scanner. Nevertheless, checking this
assumption practically remains a challenge.

A second assumption is that all crystals had the same distribution of probability of
interactions within the crystal. In our simulation, we found that crystals at the border of the
blocks had different count distributions from central crystals of the blocks. The 3D shape of
the distribution looked the same but signals were more often detected deeper in the crystals at
the edge of a block than at the centre. We could refine the method by considering four intraC
kernels: one for crystals not at the edge of a block, one for crystals on the transaxial border,
one for crystals on the axial border and one for the crystals in the corner. Inside these four
categories, count distribution changes are negligible.

The intraC and interC kernels were derived by considering the simulated singles. As
a result, in a given kernel, incidence angles were averaged. This means that during
reconstruction, for a LOR passing through the centre of the transaxial FOV, too many large
incidence angles are considered when using these kernels. Inversely, for a LOR passing at the
edge of the transaxial FOV, too many small incidence angles are considered. When building
the kernels by considering single events (and thus averaging incidence angles), we used real
PET/CT data of a patient as the input of the simulation performed to build these kernels, in
order to get a realistic sampling of the incidence angle distribution. Ideally, a couple of intraC
and interC kernels should be calculated for each crystal involved in the definition of a LOR to
accurately consider the incidence angles. Considering the scanner geometry, 3058 transaxial
positions leading to different incidence angles are possible, and 29 axially. Storing these
kernels individually considering isotropic 1 mm sampling for intraC kernels and 9 × 9 interC
kernels in double precision format would require roughly about 77 GB, which is still feasible.
However, the simulation time needed to estimate smooth kernels would be huge and is beyond
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what can be practically achieved with conventional computational resources. Still, taking the
incidence angle into account would certainly result in even better image quality. If applied to
a rotating scanner made of a few heads that only admit coincidences between facing heads, the
number of different possible incidence angles would be dramatically reduced. This method
would thus be feasible by rotating the projector, as done by Moehrs et al (2008). However,
such rotations involve interpolations, that would introduce some additional blur in the image.

MCRF matrix did not have the largest number of non-zero voxels (table 1). When the
dimensions of the interC kernel increase, the image space covered by the rays traced from
this kernel increases too. However, when increasing the dimensions of the intraC kernel, its
physical size does not increase much. Thus combining a 3 × 3 interC kernel with the intraC
kernel did not produce larger matrix size than just using a 5 × 5 interC kernel. In our study,
we empirically sampled a crystal using 300 elements. We tried smaller crystal sampling,
but did not observe any substantial improvement (results not shown). We were not able to
consider broader interC kernels, either used alone (in MinterC) or coupled to the intraC kernel
(in MCRF). Indeed, the size of the corresponding system matrices made them impossible to
handle considering our current computer resources.

In the clinical study, data from the patients were saved as sinograms on the scanner
console. At this stage, a sinogram element can already contain multiple geometric LORs
of the LORH space, due to azimuthal angular mashing. When converting the sinograms
into LORH, such elements were equally distributed to all contributing LORs, destroying the
Poisson noise nature. Also, this smoothing process somehow disturbed the CRF physical
properties and better improvements should be expected by considering data without angular
mashing. However this was not practically feasible with our scanner in clinical routine. On
the other hand, real data are affected by light-readout effects, photon-pair non-collinearity and
positron range, that were not modelled in our SM. This explained why the improvements in
resolution were smaller than those observed on the simulated data. However, these patient
studies were only part of this work as an illustration, i.e. to show that even modelling a small
part of all resolution degrading effects could significantly improve image quality.

5. Conclusion and future work

A new approach for modelling the CRF (i.e. crystal penetration and scattering effects) in four
dimensions has been proposed and integrated into an iterative reconstruction algorithm based
on LORH. In Monte Carlo simulated data, this algorithm yielded an isotropic and space-
invariant resolution for point sources in air, and resulted in a significantly improved CR for
any given level of noise. 18F-NaF bone scans were also reconstructed to illustrate the potential
of such an algorithm in clinical conditions.

Further work will consist in developing methods to compress the SM so that finer CRF
modelling becomes achievable. Also, light readout effects will be incorporated into our model
with an approach similar to that used to model the interC component. Photon-pair non-
collinearity and positron range effects will be introduced separately as image-space sources
of blur, thus depending on the patient/object scanned. These extensions will allow us to
investigate the limits of such modelling techniques to improve the properties of reconstructed
images.

Appendix. Details on the SM storage and reconstruction program

To store the SMs, the 4492 872 calculated LORs were grouped by 1000 in 4500 separated
files. The data arrangement is described in table A1.
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Table A1. Data arrangement for a LOR stored on the hard disk drive or in RAM.

Description of the data Type of data Size in memory (Bytes)

Number of symmetries (S) Unsigned short int 2
Index of symmetrical LORs Unsigned int S × 4
Number of non-zero voxels (V) Unsigned short int 2
Index of the voxels Unsigned int V × 4
Probability of the voxels Float simple precision V × 4

The reconstruction program was written in C++ and run under a Linux system. It was
parallelized using the open-source OpenMPI3 library to distribute the calculation on multiple
computers. Each computer reads its own part of the SM to fully load it in RAM. Multi-threading
using the open-source Boost library4 was used to further parallelize the code execution on
each computer, and to take advantage of direct SM memory sharing. The code was run on ten
computers, each composed of two Intel Xeon 2.66 GHz quad-core processors and 24 GB of
RAM.

Considering MGEOM, the computation using eight threads of a single computer where the
SM elements are calculated on-the-fly (OTF) is more than 20 times slower than when using
pre-calculated MGEOM. Considering MintraC, MinterC or MCRF, the matrices were too large for
the reconstruction to be performed on a single computer. However for the same total number
of calculation threads, computation time performing OTF reconstruction was about twice as
slow as that for MintraC. Overall, OTF reconstruction was about twice as fast as for MinterC

or MCRF. Time-comparison factors are given for the program to perform a complete MLEM
iteration (i.e. without subset) and with all LORs different from 0; thus, no time for data transfer
between threads and/or computers, nor image update, is needed.
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