
Monte Carlo simulations of clinical PET and SPECT scans: impact of the input data on the

simulated images

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

2011 Phys. Med. Biol. 56 6441

(http://iopscience.iop.org/0031-9155/56/19/017)

Download details:

IP Address: 132.166.112.37

The article was downloaded on 30/09/2011 at 11:26

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0031-9155/56/19
http://iopscience.iop.org/0031-9155
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


IOP PUBLISHING PHYSICS IN MEDICINE AND BIOLOGY

Phys. Med. Biol. 56 (2011) 6441–6457 doi:10.1088/0031-9155/56/19/017

Monte Carlo simulations of clinical PET and SPECT
scans: impact of the input data on the simulated
images

S Stute1, T Carlier2, K Cristina1, C Noblet2, A Martineau3, B Hutton4,
L Barnden4 and I Buvat1

1 IMNC—UMR 8165 CNRS—Paris 7 and Paris 11 Universities, 15 rue Georges Clémenceau,
91406 Orsay Cedex, France
2 INSERM U892—Cancer Research Center, University of Nantes and Nuclear Medicine
Department, University Hospital of Nantes, Nantes, France
3 Department of Nuclear Medicine, Saint-Louis Hospital, Paris, France
4 Institute of Nuclear Medicine, UCL, London, UK

E-mail: stute@imnc.in2p3.fr

Received 16 March 2011, in final form 3 August 2011
Published 20 September 2011
Online at stacks.iop.org/PMB/56/6441

Abstract
Monte Carlo simulations of emission tomography have proven useful to assist
detector design and optimize acquisition and processing protocols. The
more realistic the simulations, the more straightforward the extrapolation of
conclusions to clinical situations. In emission tomography, accurate numerical
models of tomographs have been described and well validated under specific
operating conditions (collimator, radionuclide, acquisition parameters, count
rates, etc). When using these models under these operating conditions,
the realism of simulations mostly depends on the activity distribution used
as an input for the simulations. It has been proposed to derive the input
activity distribution directly from reconstructed clinical images, so as to
properly model the heterogeneity of the activity distribution between and
within organs. However, reconstructed patient images include noise and
have limited spatial resolution. In this study, we analyse the properties of
the simulated images as a function of the properties of the reconstructed
images used to define the input activity distributions in 18F-FDG PET and 131I
SPECT simulations. The propagation through the simulation/reconstruction
process of the noise and spatial resolution in the input activity distribution
was studied using simulations. We found that the noise properties of the
images reconstructed from the simulated data were almost independent of the
noise in the input activity distribution. The spatial resolution in the images
reconstructed from the simulations was slightly poorer than that in the input
activity distribution. However, using high-noise but high-resolution patient
images as an input activity distribution yielded reconstructed images that could
not be distinguished from clinical images. These findings were confirmed by

0031-9155/11/196441+17$33.00 © 2011 Institute of Physics and Engineering in Medicine Printed in the UK 6441

http://dx.doi.org/10.1088/0031-9155/56/19/017
mailto:stute@imnc.in2p3.fr
http://stacks.iop.org/PMB/56/6441


6442 S Stute et al

simulated highly realistic 131I SPECT and 18F-FDG PET images from patient
data. In conclusion, we demonstrated that 131I SPECT and 18F-FDG PET
images indistinguishable from real scans can be simulated using activity maps
with spatial resolution higher than that used in routine clinical applications.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Monte Carlo (MC) simulations of positron emission tomography (PET) and single-photon
emission computed tomography (SPECT) are extremely useful to assist detector design and
optimize imaging and processing protocols. The more realistic the simulations of SPECT
and PET images, the more straightforward the extrapolation of conclusions obtained from the
simulated data to the clinical settings. We have recently proposed an efficient method to model
highly realistic patient PET scans (Stute et al 2008). The method has been extended to model
highly realistic patient SPECT scans (Carlier et al 2009). In this approach, the activity and
attenuation maps needed to define the simulation input are derived from real PET or SPECT and
x-ray computed tomography (CT) scans of patients. By doing so, the intrinsic heterogeneity
of the activity distribution between and within organs can be accurately modelled. This is
a definite advantage compared to the more conventional approach consisting in modelling
a piece-wise constant activity map based on an anthropomorphic phantom (Segars and Tsui
2009) and manual measurements in real PET images (Le Maitre et al 2009, Tomei et al
2010). However, the drawback associated with the use of patient images to define the activity
map serving as an input for MC simulations is that the patient images suffer from limited
spatial resolution and noise. The limited spatial resolution and noise propagate through the
simulation and reconstruction processes, which might result in simulated images substantially
different from those obtained in the clinics. The aim of the work described in this paper was
to investigate how the spatial resolution and noise in the patient images used as an input for
MC simulations impact the images reconstructed from the simulated data. The study was
carried out for both SPECT and PET images, so as to derive recommendations appropriate for
performing MC simulations of SPECT and PET images based on real PET/CT or SPECT/CT
data.

The organization of the paper is as follows: in section 2, we describe the method used
to study the propagation of the limited spatial resolution and noise characterizing the input
data of the MC simulation through the simulation/reconstruction process. Section 3 presents
the results in the PET and SPECT cases. Section 4 discusses the results and derives some
recommendations to simulate highly realistic images from real PET/CT or SPECT/CT images.

2. Methods

To study the propagation of noise or limited spatial resolution in the input activity map through
the simulation and reconstruction processes, we generated activity maps corresponding to a
broad range of noise magnitudes and spatial resolutions. Simulations were performed to
derive the corresponding SPECT and PET sinograms. Finally, SPECT or PET images were
reconstructed from these sinograms. The noise and spatial resolution in the reconstructed
images were then characterized and compared to those of the input activity maps. The goal was
to determine which noise and spatial resolution in the input activity maps led to reconstructed
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Figure 1. Flowchart of the noise propagation study for a cylinder with uniform activity. Each thin
arrow represents an iterative reconstruction process with a specific number of iteration.

images with noise and spatial resolution matching those observed in real clinical data. In this
work, we only considered iterative reconstruction and all simulations were performed within
the GATE (Geant4 Application in Emission Tomography) platform (Jan et al 2004, 2011).
The fictitious interaction tracking algorithm (Rehfeld et al 2009) was used to speed up the
MC computation, as well as the angular response function option (Descourt et al 2010) for the
SPECT simulations.

2.1. Effect of the noise present in the input activity map

To model the correlated noise present in real PET or SPECT images, we simulated PET
and SPECT sinograms from a noise-free uniform activity distribution and reconstructed the
corresponding images. Using reconstructed images corresponding to different numbers of
iterations gave images with different noise levels (this first step is hereafter denoted as ‘step 1’).
The resulting so-called INPUT images were first multiplied by a constant so that the mean
signal was equal to the true signal of the noise-free activity distribution. The resulting images
were then used as an input for simulating new images mimicking those that would be obtained
when using real reconstructed images as input activity maps (denoted hereafter as ‘step 2’).
Figure 1 illustrates the principle of the noise propagation study. The noise in the OUTPUT
images reconstructed with various numbers of iterations from the step 2 simulation was then
compared to the noise in the INPUT images, to characterize the propagation of the noise.



6444 S Stute et al

2.1.1. Simulations and reconstructions. A cylinder filled with uniform activity was
considered. Its dimensions were 18 cm in length and 20 cm in diameter for the PET case,
and 18.6 cm in length and 21.6 cm in diameter for the SPECT case. The sampling of the
object was 124 × 124 × 45 voxels of 4 × 4 × 4 mm3 in PET and 128 × 128 × 39 voxels of
4.8 × 4.8 × 4.8 mm3 in SPECT. An activity of 200 Bq per voxel was set in the cylinder (18F
for PET and 131I for SPECT).

In PET, the GEMINI GXL scanner (Philips Healthcare) was modelled (Lamare et al 2006).
Acquisitions of 120 s duration were considered (one bed position only). Annihilations were
simulated (positron range and non-colinearity were not modelled). Events from the normal
and delayed coincidence windows were recorded in raw non-compressed and non-interpolated
sinograms (Kadrmas 2004). Scatter sinograms were estimated using a convolution–subtraction
method (Bailey and Meikle 1994). The sinogram of the attenuation correction factors was
calculated by forward-projecting an image of the cylinder (4 × 4 × 4 mm3 voxel sampling),
containing the same attenuation coefficients as those used in the simulations. Images of
144 × 144 × 45 voxels of 4 × 4 × 4 mm3 were finally reconstructed using a home-made OP-
OSEM algorithm (Politte and Snyder 1991), which includes the random and scatter corrections
in the iterative loop, and uses a weighted attenuation correction. The Siddon (1985) projector
was implemented. Ten subsets were used for steps 1 and 2, and images corresponding to 10,
20, 40, 70, 100, 150, 200, 300, 500 and 1000 equivalent MLEM iterations were stored. No
post-filtering was applied.

Given that in PET the sensitivity, hence the noise level, varies along the scanner axis,
45 replicates from step 1 were generated and only the central transaxial slice from each
reconstructed image volume was subsequently used. These slices were then stacked up to
build the INPUT activity distribution for step 2. Using this approach, the INPUT noise level
of the activity distribution was axially invariant. Generating multiple replicates consisted in
running exactly the same MC simulation but using a different seed in the generator of pseudo-
random numbers for each replicate. Each replicate was then reconstructed independently
following the procedure described above.

In SPECT, a model of the Siemens SYMBIA T equipped with a high-energy collimator
(8000 holes, hole diameter: 4 mm, septal thickness: 2 mm, hole length: 59.5 mm) was
considered. Acquisitions of 64 projections of 30 s each (matrix size: 128 × 128, pixel size:
4.8 × 4.8 mm2) were simulated, with a radius of rotation of 28 cm. The system spatial
resolution measured in a planar acquisition at 28 cm from the collimator was 27 mm full-
width at half-maximum (FWHM). The Flash3D software developed by Siemens incorporating
a fast OSEM reconstruction with attenuation and 3D resolution modelling (Vija et al 2004)
was used. Volumes were reconstructed with a sampling of 128 × 128 × 39 (voxel size:
4.8 × 4.8 × 4.8 mm3). Eight subsets were used in the OSEM reconstruction for steps 1
and 2, and images corresponding to 16, 40, 80, 120, 160, 200, 240 and 480 equivalent
MLEM iterations (the latter being the maximum permitted by the software) were stored. No
post-filtering was applied.

2.1.2. Figures of merit for noise characterization.

Noise level measurement. Ideally, a precise noise characterization requires the simulation of
many replicates for a given configuration, to derive the variance image (Barrett et al 1994,
Schmidtlein et al 2010, Tong et al 2010). In our study, this was impractical as we wanted
to investigate several different input noise levels in the simulations, implying the generation
of replicates for both step 1 and step 2. We thus used a different figure of merit (FOM) to
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measure the noise from a single replicate. This FOM was first validated against the reference
FOM based on multiple replicates of step 1. The reference noise FOM Bj , in a voxel j of a
given slice, is defined by

Bj = σj

mj

× 100 where mj = 1

K

K∑
k=1

f k
j , σj =

√√√√ 1

K

K∑
k=1

(
mj − f k

j

)2
(1)

Here, mj and σ j are the mean and standard deviation of voxel j through the K replicates of the
reconstructed images f k, respectively. To get better statistics, Bj was measured in J different
uncorrelated voxels inside the same slice of the cylinder, and a noise FOM B (called PIXEL
noise hereafter) was defined by

B = 1

J

J∑
j=1

Bj (2)

The proposed noise FOM B̂r measured inside a given region of interest (ROI) Rr of V voxels
from a unique replicate was defined by

B̂r = σ̂r

m̂r

× 100 where m̂r = 1

V

∑
j∈Rr

fj , σ̂r =
√√√√ 1

V

∑
j∈Rr

(m̂r − fj )2 (3)

Here, m̂r and σ̂r are the mean and standard deviation in the V voxels of ROI Rr in the
reconstructed image f , respectively. B̂r was measured in R ROIs contained in the cylinder,
and a noise FOM B̂ (called ROI noise hereafter) was defined as

B̂ = 1

R

R∑
r=1

B̂r . (4)

Each ROI consisted in a number V of voxels, where V was equal to the number of replicates
used to calculate the reference FOM (V = K). Also, the reference FOM was measured in a
given number of voxels, equal to the number of ROIs considered in the proposed FOM (R = J).
The proposed FOM was validated in step 1, using all stored iterations. In PET, we used the
previously simulated K = 45 replicates, and in SPECT, K = 32 replicates were simulated,
while in both cases R = J = 10. In PET, the sensitivity, hence the noise, varies along the axial
direction. Therefore, we restricted our study to the central slice for both PET and SPECT.
The R ROIs were randomly chosen, in such a way that they were distant by at least two voxels
from each other and three voxels from the cylinder’s border. The R = 10 ROIs obtained for
the PET study are shown in figure 2. The J pixels were chosen at the centre of each ROI.

Noise level propagation. In all configurations, the proposed FOM was used to measure the
noise level. For several output iterations of step 1, the noise level was measured. Each of
these noise levels corresponded to an INPUT noise in step 2. Then, for all step 2 simulations,
the OUTPUT noise level in the images was measured for several iteration numbers. Finally,
these OUTPUT noise levels were plotted against the INPUT noise.

Noise correlation propagation. To calculate the noise correlation, many replicates of the same
simulation are needed. The noise correlation in images from step 1 was first calculated using
the K replicates that were simulated to perform the validation of the proposed FOM B̂ against
the reference FOM B. This noise correlation thus represented the reference, corresponding to
noise-free INPUT images. Then, for the PET (resp. SPECT) case, 45 (resp. 32) replicates
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Figure 2. Transaxial slice across the ideal PET cylinder (in grey) and the R = 10 randomly chosen
ROIs (in black). The J = 10 voxels associated with the reference FOM are at the centre of each
ROI (in white). The voxel size in the image shown here is the same as in the reconstructed PET
images.

of step 2 were simulated for two different INPUT noise levels (calculated with the proposed
FOM): 51% and 89% in PET corresponding to 50 and 600 MLEM iterations (5 and 60 using
ten subsets), and 3.5% and 7.9% in SPECT, corresponding to 40 and 200 MLEM iterations (5
and 25 using eight subsets). The first noise level is close to the one in clinical images, before
post-smoothing. The second one was chosen to represent a higher level of noise.

We calculated the correlation Ci, j between the noise of a voxel i at the centre of the cylinder
on the central axial slice and the noise of all other voxels j within that same slice using

Ci,j =
1
K

K∑
k=1

(
mi − f k

i

)(
mj − f k

j

)

σiσj

. (5)

Two-dimensional correlation images were created and profiles across these images were drawn.
For any INPUT noise from which we calculated the OUTPUT noise correlation, the OUTPUT
MLEM iteration considered was 600 for PET (60 iterations using 10 subsets) and 480 for
SPECT (30 iterations using 16 subsets).

2.2. Effect of the spatial resolution in the input activity map

The impact of the spatial resolution in the INPUT activity map on the spatial resolution in the
OUTPUT reconstructed images was studied by using INPUT activity maps corresponding to
noise-free point sources blurred with different Gaussian point spread functions. The imaging
of each point source was then simulated, and the OUTPUT images were reconstructed from
the simulated sinograms.
The point sources in the reconstructed images were then fit using 2D Gaussian functions to
determine the spatial resolution in the OUTPUT image as a function of the spatial resolution
in the INPUT image.

2.2.1. Simulations and reconstructions. A noise-free point source, represented as a unique
non-zero voxel, was placed in the central slice and approximately at 14 mm from the FOV
centre in PET. In SPECT, the point source was centred in the FOV. This point source was
blurred with 3D isotropic Gaussian functions with FWHM ranging from 1 to 40 mm. The
INPUT matrix size was 490 × 490 × 179 voxels of 1 × 1 × 1 mm3 in PET, and 200 × 200 × 199
voxels of 1.2 × 1.2 × 1.2 mm3 in SPECT. In PET, acquisitions of 120 s were considered with a
total activity of 10 MBq (for FWHM = 1 mm). Annihilations were simulated (positron
range and non-colinearity were not modelled). In SPECT, 64 projections (matrix size:
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256 × 256, pixel size: 2.4 × 2.4 mm2) of 125 s were simulated with a total 131I activity of
12 MBq (for FWHM = 1 mm). For higher INPUT FWHMs, the total activity of the blurred
point source was successively increased in order to preserve a sufficient level of signal in the
sinograms.

The simulated tomographs and the reconstruction algorithms were the same as for the
noise propagation study, except the reconstructed volume size that was set to 192 × 192 × 60
voxels of 3 × 3 × 3 mm3 in PET and 256 × 256 × 163 voxels of 2.4 × 2.4 × 2.4 mm3 in
SPECT.

2.2.2. FOM for characterizing spatial resolution. For both PET and SPECT studies, the
convergence of the solution was first checked by fitting a 2D transaxial Gaussian to the
OUTPUT reconstructed images and deriving the FWHM. It was assumed that the convergence
was reached when the variation between successive FWHM values was less than 1%. The
FWHM of the OUTPUT images was then plotted as a function of the FWHM in the INPUT
images. After applying the Gaussian smoothing kernels to the point sources, the FWHM of
the INPUT images was measured using the same methodology as for the OUTPUT images.
Yet, as the voxel size is smaller in the INPUT images than in the OUTPUT images, a small
discrepancy might exist between the INPUT and OUTPUT FWHM measurements.

2.3. Validation using simulations of real patient scans

To illustrate the validity of findings derived from simple phantom experiments, we simulated
a PET and a SPECT scan from real patient data. Using the images reconstructed from the
simulated data, we checked the impact of the noise and spatial resolution in the INPUT data
on the noise and spatial resolution in the OUTPUT data and compared the results with the
conclusions obtained on the phantom studies.

2.3.1. PET case. A patient was injected with 334 MBq of 18F-FDG and scanned 1 h after
injection. The reconstructed PET and CT images (4 × 4 × 4 mm3 sampling) were considered
to define the INPUT activity and attenuation distribution of the GATE simulations. To define
the attenuation distribution, the CT image was segmented in 23 different materials, from lung
to high-density bones. The model of the Philips GEMINI GXL was used, and acquisitions
of 120 s per bed positions (total of 5) were simulated. No lesions were seen in this patient.
Annihilations were simulated (positron range and non-colinearity were not modelled).

Three different reconstructions of the original data were considered to define three activity
maps. A ‘clinical-like’ reconstruction was used to get a low-noise but low-resolution INPUT
image (RLNL), a highly iterated but post-filtered image was used to get a medium-noise and
medium-resolution (RMNM) activity map, and finally a highly iterated image without post-
filtering was used to get a high-noise and high-resolution (RHNH) activity map. All associated
reconstruction parameters are given in table 1.

As the aim was to produce realistic clinical images, the acquired and simulated
sinograms were reconstructed using parameters used in routine clinical practice (parameters
corresponding to the RLNL situation). Profiles were drawn through the clinical and simulated
images.

2.3.2. SPECT case. The SPECT acquisition of a patient treated for a hepatocellular
carcinoma with an intra-arterial injection of 2.2 GBq 131I-iodized oil (Lipiocis R©) was simulated.
Real SPECT/CT acquisitions were performed seven days after injection. The reconstructed
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Table 1. Reconstruction parameters of the original PET data used to produce the three different
INPUT activity maps. Representative images are also shown.

Input activity map
RLNL (‘low noise–low
resolution’)

RMNM (‘medium
noise–medium
resolution’)

RHNH (‘high noise–high
resolution’)

Reconstruction set-up 32 MLEM iterations 1000 MLEM iterations 1000 MLEM iterations
Attenuation, scatter and
randoms correction
using the OP model
(Politte and Snyder
1991)

Attenuation, scatter and
randoms correction
using the OP model
(Politte and Snyder
1991)

Attenuation, scatter and
randoms correction
using the OP model
(Politte and Snyder
1991)

6 mm 3D Gaussian
post-smoothing

6 mm 3D Gaussian
post-smoothing

No post-smoothing

Coronal section

Table 2. Reconstruction parameters of the original SPECT data used to produce the three different
INPUT activity maps. Representative images are also shown.

Input activity map
RLNL (‘low noise–low
resolution’)

RMNM (‘medium
noise–medium
resolution’)

RHNH (‘high
noise–high resolution’)

Reconstruction set-up 30 MLEM iterations 480 MLEM iterations 480 MLEM iterations
Attenuation correction Attenuation correction Attenuation correction
3D resolution
modelling

3D resolution
modelling

3D resolution
modelling

No post-smoothing 10 mm 3D Gaussian
post-smoothing

No post-smoothing

Coronal section

SPECT and CT images (4.8 × 4.8 × 4.8 mm3 sampling) were used to define the INPUT
activity and attenuation maps for the GATE simulations. To define the attenuation map, the
CT image was segmented in three different materials (air, water and bone). The simulations
mimicked an acquisition of 64 projections over 360◦ using the Siemens Symbia T camera.

Three different reconstructions using the Flash3D algorithm were considered to produce
the INPUT activity maps (table 2). Each sinogram (one acquired and three simulated) was
then reconstructed with the Flash3D algorithm (eight iterations, eight subsets, attenuation
correction, 3D resolution modelling, 5 mm FWHM 3D Gaussian post-smoothing). Profiles
across the reconstructed images were drawn to compare the simulated and real images.



Monte Carlo simulations of clinical PET and SPECT scans 6449

Figure 3. PIXEL noise (=reference FOM) against ROI noise (=proposed FOM) obtained in the
PET simulations. The noise varies with the number of iterations. Each symbol represents a single
PIXEL against its associated ROI (see figure 2) for a given iteration number. Black stars show the
mean of each group of ten ROIs for each iteration number. The dotted line is the identity line. The
thick line corresponds to a linear fit of the black stars.

3. Results

3.1. Effect of the noise present in the input activity map

The two noise FOMs are compared in figures 3 and 4 for the PET and SPECT cases. A
high correlation was found between the proposed and reference FOMs. This showed the
validity of the proposed FOM, based on a single noisy image, for the study regarding the noise
propagation through the simulation process.

The impact of noise present in the INPUT activity map is illustrated in figure 5 for the
PET and SPECT cases for different numbers of iterations after step 2. For ‘low’ INPUT noise
values (typically less than 60% in PET and less than 6% in SPECT), there is a relationship
between INPUT noise magnitude and OUTPUT noise magnitude: the higher the noise in the
INPUT activity map, the higher the noise in the OUTPUT reconstructed image. However,
from a certain level of INPUT noise (greater than 60% in PET and greater than 6% in SPECT),
this relationship gets much weaker, and the OUTPUT noise is relatively constant irrespective
of the INPUT noise.

The noise correlation images for the central pixel and profiles drawn across these images
are shown in figure 6 for the PET and SPECT cases. The SPECT correlation images are much
smoother than the PET correlation images. This is due to the 3D resolution modelling included
in the Flash3D algorithm, as it is known that resolution modelling in the system matrix used
for the reconstruction leads to broader correlation peaks (Sureau et al 2008, Stute et al 2011).
In both SPECT and PET cases however, the correlation images are almost independent of the
INPUT noise.

3.2. Effect of the spatial resolution in the input activity map

Figure 7 shows the convergence of the FWHM calculated in the reconstructed volumes for
different values of the INPUT spatial resolution. In the PET case, the convergence was rapidly
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Figure 4. PIXEL noise (=reference FOM) against ROI noise (=proposed FOM) obtained in the
SPECT simulations. The noise varies with the number of iterations. Each symbol represents
a single PIXEL against its associated ROI (see figure 2) for a given iteration number. Black
stars show the mean of each group of 10 ROIs for each iteration number. The dotted line is the
identity line. The thick line corresponds to a linear fit of the black stars. Note that no more than
30 iterations and 16 subsets (i.e. 480 MLEM iterations) could be performed with the Flash3D
algorithm as implemented in the console.

(a) (b)

Figure 5. OUTPUT noise as a function of the INPUT noise for different OUTPUT iteration
numbers in PET (a) and SPECT (b).

reached whatever the INPUT spatial resolution. In SPECT, our criterion of convergence was
not reached due to the limited number of iterations possible with the Flash3D algorithm.
All subsequent reconstructions were thus performed with the maximum number of iterations
possible with the Flash3D algorithm (30 iterations and 16 subsets).

The OUTPUT spatial resolution is plotted as a function of the INPUT spatial resolution
in figure 8. The OUTPUT spatial resolution tends to be identical to the INPUT spatial
resolution from 10 mm spatial resolution in SPECT and 15 mm in PET. For INPUT spatial
resolution below 10 mm, reconstructed spatial resolution was better in SPECT than in PET.



Monte Carlo simulations of clinical PET and SPECT scans 6451

(a) (b) (c)

(d) (e)

(g)

(h)

(f)

Figure 6. Correlation images for the central voxel of the central transaxial slice and corresponding
profiles across the images. Correlation images in PET with (a) ‘noise-free’ INPUT, (b) 51% of
INPUT noise and (c) 89% of INPUT noise. Correlation images in SPECT with (d) ‘noise-free’
INPUT, (e) 3.5% of INPUT noise and (f) 7.9% of INPUT noise. Horizontal profiles through the
centre of the images are shown in (g) for PET and (h) for SPECT.
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(a) (b)

Figure 7. Convergence of the reconstructed FWHM for various INPUT spatial resolutions:
(a) PET case and (b) SPECT case.

Figure 8. Variation of the OUTPUT spatial resolution as a function of the INPUT spatial resolution
for the PET and SPECT cases. The dotted line is the identity line.

Indeed, unlike the PET reconstruction algorithm, the SPECT Flash3D algorithm included 3D
resolution modelling (details on implementation not known).

3.3. Simulations of real patient scans

3.3.1. PET case. Figure 9 shows the patient PET images reconstructed for the different spatial
resolution/noise compromises in the INPUT data (see section 2.3.1). Associated profiles show
that the reconstructed volumes resulting from the high-noise and high-resolution PET image
(RHNH) or from the medium-noise and medium-resolution image (RMNM) are most similar to
the acquired scan. Visual assessment shows that all OUTPUT images have about the same
level of noise, confirming that there is no substantial propagation of the INPUT noise during
the simulation/reconstruction process.
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(a) (b) (c) (d)

(e)

Figure 9. Patient PET images reconstructed from (a) the acquired sinogram, (b) the sinogram
simulated from the RLNL INPUT image, (c) the sinogram simulated from the RMNM INPUT image
and (d) the sinogram simulated from the RHNH INPUT image. All grey scales are identical. The
red line in (a) shows the position of the profile drawn through the different images (e). Profiles
were normalized to the same area under the curve.

3.3.2. SPECT case. Figure 10 shows the patient SPECT images reconstructed for the
different spatial resolution/noise compromises in the INPUT data (see section 2.3.2). Profiles
through the images (figure 10(e)) confirm that the reconstructed volumes obtained when using
the RHNH or RMNM activity maps as an INPUT for the simulation were most similar to the
reconstructed clinical scan. Again, the noise level did not propagate substantially through the
simulation and reconstruction process: there is no more noise in (d) than in (c) or (b).

4. Discussion

MC simulations of highly realistic scans are needed to evaluate quantification methods under
conditions close to those encountered in a clinical setting (Buvat and Castiglioni 2002). In
this study, we determined what the noise and spatial resolution of the activity map used as an
input of the simulation should be, to obtain simulated PET/SPECT images indistinguishable
from real patient scans for 131I SPECT and 18F-FDG PET.

4.1. Noise in the INPUT activity map

To study the propagation of the noise present in the INPUT activity map through the
simulation/reconstruction process, we used a noise FOM derived from a single slice instead of
using multiple independent realizations of noise. The reason for extracting only one slice was
to avoid the variation of the noise level along the axial direction in PET, due to the variation of
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(a) (b) (c) (d)

(e)

Figure 10. SPECT images reconstructed from (a) the acquired sinogram, (b) the sinogram
simulated from the RLNL INPUT image, (c) the sinogram simulated from the RMNM INPUT image
and (d) the sinogram simulated from the RHNH INPUT image. All grey scales are identical. The
red line in (a) shows the position of the profile drawn through the different images (e). The profile
does not correspond to a straight line to better go through the different foci of activity. Profiles
were normalized to the same area under the curve.

axial sensitivity in PET. The number of independent realizations (‘PIXEL noise’ method) was
equal to the number of voxels in a specific ROI (‘ROI noise’ method). The number of ROIs
was also equal to the number of voxels considered within the slice (‘PIXEL noise’ method).
By doing so, the statistical power was the same in the two methods used to characterize the
noise. Moreover, the noise correlation study shows that the ROIs (hence, the central pixel
inside these ROIs) were far apart to avoid any correlation between them. The pixels used for
the noise study could thus be considered as independent. As already shown by Tong et al
(2010) and Schmidtlein et al (2010), we found that our ‘ROI noise’ was an accurate estimate
of the reference ‘PIXEL noise’ that would be obtained using a much more computationally
demanding approach.

Based on our noise FOM, an important finding was that, from a certain level of noise
in the INPUT activity maps, the noise in the images reconstructed from the simulated data
was almost independent of the noise in the input activity map, both for the PET and SPECT
data. Given that the Flash3D algorithm was limited to 480 equivalent MLEM iterations and
that it included some regularization that prevented us from obtaining images with high noise
level, we could not investigate a range of INPUT noise as large as that investigated in PET,
but the trends regarding the variation of the OUTPUT noise as a function of the level of
INPUT noise were similar. The correlation images obtained for the SPECT data presented a
smoother variation (hence, a higher correlation) than for the PET data (figure 6), consistent
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with a high spatial regularization embedded in the SPECT Flash3D reconstruction involving
resolution modelling. The very small correlation in PET images can be explained by the use
of the Siddon method (Siddon 1985) in the forward and backward projection steps of the
reconstruction algorithm. This method uses the line integral model without any interpolation,
so the number of voxels contributing to a given line-of-response is small, thus introducing
few correlations between them. Other commonly used projectors like the ones described by
Herman (1980) or Joseph (1983) would have involved more voxels in a given line-of-response
as they use interpolations, and thus would introduce more noise correlation.

The fact that a large noise present in the INPUT activity maps does not propagate through
the simulation process can be explained as follows. First, the noise present in our INPUT
activity maps mostly results from an over-fit of the noisy projections when many MLEM
iterations are used (Veklerov and Llacer 1987). Yet, whatever the noise level in these
reconstructed images, they are still consistent with the measured projections, based on the
statistical model underlying MLEM, and the noise in their projections is less than or equal
to the one originally present in the measured data. Second, a MC simulation can be seen
as a highly realistic noisy forward projector, combining a geometric projection (acting as the
Siddon projector) and a stochastic blurring process (due to finite crystal size, crystal penetration
and scattering, collimator fluorescence in SPECT, etc). Therefore, when performing a MC
simulation using a noisy image as the INPUT activity distribution, and for an infinite number
of emitted particles, the MC simulated projections have less noise than the projections that
would be obtained by just ray tracing, because the stochastic blurring smoothes the noise in
neighbouring projection bins. When simulating an acquisition of duration similar to that used
in clinical routine, the noise level inherent to the MC simulation approach is higher than the
remaining noise related to the stochastic blurring. So, the final noise level in the simulated
projections is dominated by the noise level expected for the simulated acquisition duration, and
not by the noise present in the initial activity map. This is why there is no noise amplification
through the MC simulation/reconstruction process, provided the noise initially present in the
acquired projections is not dominant.

4.2. Spatial resolution in the INPUT activity map

Figure 8 suggests that for INPUT spatial resolutions lower than 15 mm, the relationship
between INPUT and OUTPUT spatial resolutions is no longer linear. This is because there
is an inevitable loss of resolution due to the modelling of the scanner spatial response in
the simulations. When the spatial resolution in the INPUT image is larger than the spatial
resolution degradation due to the imaging process, this loss is expected to be negligible. The
unavoidable loss of resolution can be seen on the y-axis in figure 8 for a null INPUT spatial
resolution (i.e. point source without blurring). The SPECT OUTPUT spatial resolutions
are lower than PET ones. This is because of the 3D resolution modelling in the SPECT
reconstruction algorithm, unlike in the PET reconstruction. An important conclusion is that
an OUTPUT spatial resolution similar to that observed in clinical images can be obtained for
both PET and SPECT, provided the best possible INPUT spatial resolution is used (as obtained
at high iteration number). Indeed, real clinical scans usually have a spatial resolution that is
not the highest achievable by the tomograph, because such high resolution would result in
images that would be too noisy to be interpreted clinically. As a result, the spatial resolution
of clinical whole-body PET scans is usually not better than 6–7 mm. Figure 8 shows that
such output resolution can be achieved when using images with about 5 mm input resolution.
This latter resolution is achievable in PET using a high number of iterations (never used in the
clinic). The same reasoning holds for SPECT: clinical SPECT images with a typical resolution
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of 8–10 mm can be simulated using input images with a resolution of 7–8 mm, which can be
obtained using a high iteration number.

4.3. Recommendations and limitations

Our results suggest that highly realistic simulated images indistinguishable from real scans
can be obtained when using an activity map derived from patient images reconstructed with
a higher than usual number of iterations. This was confirmed visually by simulating real
patient 18F-FDG PET and 131I SPECT scans (figures 9 and 10). Subtle differences between
the volumes reconstructed with the RMNM and the RHNH INPUT data suggest that a very high
level of noise might impact some small structures in heterogeneous activity distributions.

The spatial resolution was assessed using a simple FOM: a 2D transaxial Gaussian fit
of the near-central impulse response function. A more complete evaluation could account
for the 3D components of the spatial resolution in air and in presence of scattering medium.
However, we believe that the conclusions drawn with our simple FOM are valid to describe
the link between the INPUT and OUTPUT spatial resolutions.

Only high-energy SPECT (131I) and 18F PET simulations were investigated in our study.
Other radionuclides would yield different compromises between spatial resolution and noise,
due to different energy and collimator features in SPECT, and to different mean-free paths
of the emitted positrons in PET. Although we came to similar conclusions regarding the
propagation of the noise and spatial resolution during the simulation/reconstruction process
in very different settings (131I SPECT and 18F-FDG PET), the applicability of these conclusions
to other radionuclides still deserve to be confirmed. Yet, in PET, no radionuclide dependence is
expected as long as only the annihilation position is simulated and the positron mean-free path
is not corrected for in the reconstructed images, so that INPUT activity maps and reconstructed
images are consistent (both mapping annihilation positions).

All the results obtained in this study hold for iterative algorithms. Extrapolation to
analytical reconstruction like the 2D or 3D reprojection filtered backprojection might need
further investigation. Also, we studied only MC simulations because the basic aim was to
simulate highly realistic clinical images. Similar conclusions were previously reported using
analytical simulations only (Barnden and Hutton 2006).

5. Conclusion and future work

We demonstrated that highly realistic patient SPECT and PET images could be simulated
using MC simulations and input activity maps with appropriate spatial resolution and
noise level. Our results show that spatial resolution in the input activity map has to be
carefully chosen, favouring activity maps with spatial resolution higher than usually used
in the clinics, to produce reconstructed images undistinguishable from clinical ones. The
increased noise associated with high-resolution activity maps does not propagate through the
simulation/reconstruction process, making it possible to simulate images with the same spatial
resolution and noise as that used in the clinical routine.
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