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Abstract
Positron emission tomography (PET) images are corrupted by noise. This is
especially true in dynamic PET imaging where short frames are required to
capture the peak of activity concentration after the radiotracer injection. High
noise results in a possible bias in quantification, as the compartmental models
used to estimate the kinetic parameters are sensitive to noise. This paper
describes a new post-reconstruction filter to increase the signal-to-noise ratio
in dynamic PET imaging. It consists in a spatio-temporal robust diffusion of the
4D image based on the time activity curve (TAC) in each voxel. It reduces the
noise in homogeneous areas while preserving the distinct kinetics in regions of
interest corresponding to different underlying physiological processes. Neither
anatomical priors nor the kinetic model are required. We propose an automatic
selection of the scale parameter involved in the diffusion process based on
a robust statistical analysis of the distances between TACs. The method is
evaluated using Monte Carlo simulations of brain activity distributions. We
demonstrate the usefulness of the method and its superior performance over
two other post-reconstruction spatial and temporal filters. Our simulations
suggest that the proposed method can be used to significantly increase the
signal-to-noise ratio in dynamic PET imaging.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Positron emission tomography (PET) can measure changes in the biodistribution of
radiopharmaceuticals within organs of interest over time. Dynamic acquisitions associated
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with kinetic modelling can yield physiological parameters characterizing the functional state
of tissue. However, dynamic PET images suffer from high statistical noise that affects the
quantitative accuracy of the parameters derived from compartmental modelling.

Spatial filtering methods have been proposed to reduce the noise in individual frames.
Links et al (1992) proposed a high-frequency roll-off filter combined with the inverse of the
transfer function in the Fourier space. Wavelet denoising was proposed by Lin et al (2001).
More recently, anisotropic diffusion has been used in PET image reconstruction to incorporate
anatomical priors (Chan et al 2009). Being based on the data from a single frame, these
methods can reduce noise but they do not take advantage of the temporal consistency of the
signal. In dynamic PET imaging, they can penalize spatial resolution and bias quantitative
analysis when the differences in activity between two regions of interest (ROI) and the noise
amplitude are of the same order of magnitude.

Consequently, there has been an increasing interest for methods making use of the signal
change over time. These methods fall into two categories: (i) reconstruction methods and
(ii) post-reconstruction methods. One of the key ideas behind 4D reconstruction methods
is to use smooth temporal basis functions rather than the rectangular pulse commonly used
in most clinical studies (Rahmim et al 2009). These basis functions model the correlation
between data from adjacent frames. They can be either model based (Meikle et al 1998) or
based on interpolation (Nichols et al 2002, Li et al 2007) or data driven (Matthews et al 1997,
Reader et al 2006). These methods demonstrated the improvement brought by modelling
the correlation between time frames. Recently, E-spline wavelets have been proposed for
spatio-temporal reconstruction as an alternative to B-splines (Verhaeghe et al 2008). Post-
reconstruction methods have also been proposed to account for the temporal consistency of the
images. Herholz (1988) proposed a Gaussian filter with an adaptive range based on the TAC
differences. Christian et al (2010) used the information contained in a time-averaged frame
to filter each individual frame and increase the signal-to-noise ratio (SNR). Wavelet denoising
was first restrained to the time domain to improve the SNR in PET kinetic curves (Millet et al
2000). Wavelets were also used for denoising 3D images and for kinetic analysis performed
on the wavelet transform of the dynamic frames (Turkheimer et al 1999, 2003, Alpert et al
2006). Iterative temporal smoothing was applied to dynamic PET data, assuming similarity
between close time frames (Walledge et al 2004) or by fitting the data to a predefined kinetic
model (Kadrmas and Gullberg 2001).

The proposed approach is a post-reconstruction vector-based robust anisotropic diffusion
(VRAD). It aims at facilitating the segmentation and improving the SNR in dynamic PET
images. Unlike previous 4D processing methods, it takes advantage of both the spatial
and temporal consistencies of the data and does not require a prior kinetic model. After
the description of the method (section 2), we assess its performance using numerical head
phantoms in comparison with two other post-processing methods (section 3). Results are
presented in section 4 and discussed in section 5.

2. Methods

2.1. Definitions

Let us denote �0(X) : R
3 �→ R

K the dynamic PET image, � ∈ R
3 the spatial 3D

domain of �0, X a point in � and K the number of frames in the PET image series. Let
k (k ∈ {1, 2, . . . , K}) be a time frame of the series, �k the duration of that frame and � the
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total duration of the acquisition. We denote by I 0
k the 3D PET image corresponding to the kth

time frame:

∀X ∈ �,�0(X) = (
I 0

1 (X), I 0
2 (X), . . . , I 0

K(X)
)
. (1)

With these notations, vector �0(X) is the time activity curve (TAC) at point X of the
reconstructed PET image. We denote by V +(X) the spatial neighbourhood of point X.

2.2. VRAD modelling

Our approach consists in a 3D diffusion of the vector-valued image obtained from the
reconstruction of the entire 4D data, where the vector associated with each voxel corresponds
to its TAC. We assume Neumann boundary conditions on the border of the image domain ∂�.
The diffusion problem, denoted P, is defined as follows:

(P )

⎧⎪⎨
⎪⎩

∂�
∂t

− divK(c(||∇�||)∇�) = 0, everywhere in �, 0 < t � T ,
∂�
∂n |∂�

= 0, ∀t ∈ [0, T ] (boundary conditions),

�(x, y, z, 0) = �0(x, y, z) = �0(X), (initial conditions),

(2)

where �(x, y, z, t) is the TAC of point X = (x, y, z) at diffusion time t; T is the total diffusion
time and n is the outward vector normal to ∂�. The diffusion coefficient c is a non-negative
function of the magnitude of the local vector gradient ||∇�||; we specifically tailor both for the
dynamic PET. ∇� is the K rows × 3 columns Jacobian matrix of � and divK is the classical

divergence operator
(

∂fx

∂x
+ ∂fy

∂y
+ ∂fz

∂z

)
applied to each component of ∇� (in other words, to

each line of the Jacobian matrix).
To measure the local vector geometry, we associate the following gradient vector norm:

||∇�|| =
[

1

�

K∑
k=1

�k||∇Ik||2
]1/2

, (3)

where ||∇Ik|| is the L2 norm of the gradient of the scalar image Ik. �t is used as a weighting
factor to account for the noise dependence on the duration of the frame acquisition.

2.3. Coefficient of diffusion

In the dynamic PET, a filtering process should be unbiased to preserve the activity measured in
each frame. In the diffusion problem, this can be achieved by adopting the Neumann boundary
conditions (Weickert 1998, Tauber et al 2010). It is also desirable that in a given frame, the
diffusion process does not change the total radiotracer activity within each homogeneous
region, which implies some constraints on the coefficient of diffusion.

Let V be a 3D region of the image bounded by S = ∂V and n be the outward vector
normal to S. The divergence theorem applied to frame Ik leads to∫∫∫

V

∂Ik

∂t
dV =

∫∫∫
V

div(c(||∇�||)∇Ik) dV =
∫∫

S

c(||∇�||)∇Ik · n dS. (4)

Applying this result to all the frames of a dynamic PET image, this yields the following.

(i) If V is set to the spatial image domain �, then the symmetrical (Neumann) border
conditions ensure that the dot product ∇Ik · n = 0 on ∂V = S. Thus, no diffusion occurs
through the image borders and the global energy is strictly preserved if the minimum–
maximum principle is respected.
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(ii) When V represents any homogeneous region of the image, the intra-region energy is
preserved if the coefficient of diffusion is zero on its border ∂V . Indeed, if c(||∇�||) = 0
everywhere on ∂V = S, then

∫∫∫
V

∂Ik

∂t
dV = ∫∫

S
c(||∇�||)∇Ik · n dS = 0, which ensures

that the total activity within V remains constant over time.

Classical coefficients of diffusion (Perona and Malik 1990, Charbonnier et al 1997,
Tchumperle and Deriche 2002) can take low values but never reach zero and therefore cannot
strictly preserve intra-region energy along diffusion time. To avoid contamination between
ROIs with different TAC profiles, the coefficient of diffusion is based on Tukey’s biweight
function (You et al 1996, Black et al 1998, Tauber and Spiteri 2010), which can reach zero
value on the borders of image regions:

c(||∇�||) =
⎧⎨
⎩

[
1 −

(
||∇�||

λ

)2
]2

if ||∇�|| � λ,

0 elsewhere.
(5)

2.4. Scale parameter estimation

Controlling the process of anisotropic diffusion requires a precise edge detection via the
definition of the scale parameter λ. This parameter measures the degree to which a voxel
belongs to an edge by defining the distance beyond which two TACs represent different
physiological processes. To avoid a user-dependent parameter setting, we present an automatic
estimation of λ to identify the edges at each iteration. This λ estimation assumes that the
majority of voxels is within homogeneous regions. Under this assumption, most distances
between voxels are expected to be low. Voxels across edges can then be detected as their
distance will appear as outlier among the set of distances. We thus consider the set D of all
the distances between neighbour pixels:

D =
⎧⎨
⎩

[
1

�

K∑
k=1

�k|Ik(Xi) − Ik(Xj )|2
]1/2

; i < j,Xi ∈ V +(Xj )

⎫⎬
⎭ . (6)

The Qn estimator is given by (Rousseeuw and Croux 1993)

Qn = d{|Di − Dj |; i < j}(η), (7)

which is the ηth-order statistic of the interpoint distance |Di − Dj | for i < j , where η = Ch
2

and h = [N/2] + 1. The coefficient d = 2.2219 is included to ensure no bias at convergence
when data are Gaussian. To avoid any dependence on the size of the field of view, only voxels
inside the head are considered. The selection is performed via a pre-processing step in which
we automatically threshold the sum image of all dynamic PET frames by multiscale analysis
as proposed by Mangin et al (1998) and Maroy et al (2008).

The observations are normalized as follows:

vi = Di − med(D)

Qn

, (8)

where med(D) is the median of all the distances between TACs at the current iteration. The
scale λs is defined by setting vi = 1, as established by Rousseeuw and Leroy (1987) for
robustly standardized data:

λs = Qn + med(D). (9)
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Note that parameters λs and λ have to be distinguished.

• λs is the threshold above which a pixel is considered to be on a contour;

• λ is the threshold above which the diffusion is totally stopped in the corresponding
direction.

Let � = c(||∇�||)||∇�|| be the influence function of the diffusion process. The
point where the influence of outliers first begins to decrease occurs when the derivative
of the �-function is zero, which should correspond to λs (Black et al 1998). Under this
condition, diffusion will be strong when ||∇�|| � λs , which indicates a homogeneous region.
The diffusion flow will progressively decrease thereafter, until it becomes totally nil when
||∇�|| � λ.

The relationship between λs and λ can thus be derived as

�′(||∇�|| = λs) = 0 ⇔
[
x

(
1 − x2

λ2

)2
]′

λs

= 0 ⇔ λs = λ√
5
. (10)

λ can thus be deduced as

λ =
√

5 (Qn + med(D)). (11)

2.5. Discretization

We solve the vectorized problem P as K coupled diffusion problems (Pk) on univariate
images Ik.

(Pk)

⎧⎪⎨
⎪⎩

∂Ik

∂t
− div(c(||∇�||)∇Ik) = 0, everywhere in �, 0 < t � T ,

∂Ik(x,y,z,t)

∂n |∂�
= 0, ∀t ∈ [0, T ] (boundary conditions),

Ik(x, y, z, 0) = I 0
k (x, y, z), (initial conditions),

(12)

where the positive coefficient of diffusion c(||∇�||) = c(x, y, z, t, I1, I2, . . . , IK) depends
on the intensities from all time frames I1, I2, . . . , IK . At each iteration, the scale parameter λ

and the coefficient of diffusion are estimated using all images. Diffusion is then iterated once
on each frame separately, using the global coefficient of the diffusion matrix for all images,
with an explicit scheme and a timestep set to τ = 0.05:

I t+1
k (X) = I t

k (X) +
τ


V +(X)

∑
M∈V +(X)

c
(||∇�t

X,M ||)∇I t
k;X,M, (13)

where 
V +(X) denotes the number of spatial neighbours of point X. In this study, VRAD
was applied on 2D+t slices and four neighbours were considered. Finally, ∇I t

k;X,M =
I t
k (X) − I t

k (M) is the gradient of the intensity of voxel X with respect to M in image I t
k

and

||∇�t
X,M || =

[
1

�

K∑
k=1

�k

(∇I t
k;X,M

)2

]1/2

(14)

is the corresponding vector gradient norm which measures the TAC differences between X
and M.
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3. Simulations and experimental study

3.1. Simulations

3.1.1. TAC simulation. TACs were simulated according to the three-compartment model
proposed by Kamasak et al (2005) and Maroy et al (2008). This model assumes a homogeneous
vascular fraction in each region. The input function is denoted CP and is given by

CP (t) = α0[(α1t − α2 − α3) exp(−λ1t) + α2 exp(−λ2t) + α3 exp(−λ3t)]. (15)

The kinetics of the tissue compartment i, denoted Ci, was computed as

Ci(t) =
(

3∑
w=1

[ai,w exp(−t/bi,w)]

)
∗ CP (t), (16)

where ∗ denotes the convolution operator. Parameters α0, α1, α2, α3, λ1, λ2, λ3, ai,w and bi,w

are randomly set using the constraints proposed by Maroy et al (2008): α0 ∈ [1E4, 3E5],
α1 ∈ [0, 0.8], α2 ∈ [0, 1 − α1], α3 = 1 − α1 − α2, λ1 ∈ [30, 45], λ2 ∈ [λ1, 180],
λ3 ∈ [λ1, 180], α0 × ai,w ∈ [1E3, 3E7] and bi,w ∈ [48, 120].

3.1.2. Image simulation. GATE Monte Carlo simulations (Jan et al 2004, 2011) of Philips
Gemini GXL PET 4D acquisitions were performed, using the Zubal head phantom as a
voxelized brain source (Zubal et al 1994). This phantom consists in a labelled MR image with
voxels of 1.1×1.1×1.4 mm3. Six regions of the phantom were considered for the simulations:
cerebellum, frontal lobes, occipital, thalamus, parietal lobes and the remaining parts of the
head (called background), plus a seventh region with no activity corresponding to air around
the head, as shown in figure 1(a). These regions constituted the ground truth for segmentation
evaluation. We generated three sets of TACs and simulated the three corresponding dynamic
sequences, hereafter called simulations 1, 2 and 3. Each of these sequences consisted in 5×30s

followed by 15 × 60s dynamic frames. Activities of all ROIs were simulated according to
equation (16). Examples of simulated TACs used in simulation 1 are presented in figure 1(b).
The total number of coincidences for each time frame varied between 5 and 70 millions.
No attenuation medium was used and therefore no correction for attenuation and scatter was
included in the reconstruction. The reconstruction of dynamic PET images was performed
with a fully 3D OSEM iterative method, using five iterations and eight subsets, into 2.2×2.2×
2.8 mm3 voxels. Neither correction for randoms nor post-smoothing were used.

3.2. Comparison of VRAD to other methods

3.2.1. Anisotropic diffusion (AD). The spatial anisotropic diffusion process proposed by
Perona and Malik (1990) was implemented for each frame Ik separately. The following
coefficient of diffusion was used:

c(s) =
[

1 +

(
s

σA

)2
]−1

, (17)

where s is the local gradient of Ik and σA is a scale parameter. We used an explicit scheme
with the same timestep used for VRAD (τ = 0.05). For each image, the number of iterations
and σA were chosen manually to maximize the total SNR (see equation (20)) of the resulting
image.
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Figure 1. (a) ROIs used in the Zubal head phantom and (b) sample simulated TACs.

3.2.2. Gaussian temporal filtering (GTF). All images were also convolved with the following
low-pass Gaussian temporal kernel (Gundlich et al 2006):

g(t) = 1√
2πσG

exp

(
− t2

2σ 2
G

)
, (18)

where t is the temporal distance and σG is the temporal scale parameter. We used replicated
temporal image borders. For each image sequence, the optimal scale parameter σG was chosen
manually to maximize the total SNR (see equation (20)) of the resulting images.

3.3. Figures of merit

3.3.1. Signal-to-noise ratio. A SNR index was defined as

SNR�(Ik) = μ�/σ�, (19)

where � is a homogeneous area manually drawn inside the phantom, far from the ROI borders,
and μ� and σ� are the mean and standard deviation of Ik over �. The same region � was used
for all SNR calculations.

3.3.2. Total SNR (TSNR). The SNR only considers a part of the image and does not measure
the bias between ground truth values and estimated values. Therefore, we also used the TSNR
(Gonzalez and Woods 2008) defined by

TSNR
(
I res
k

) = 10 log10

(||I truth
k ||/||I truth

k − I res
k ||)2

, (20)

where I truth
k is the piecewise constant ground truth image at frame k. I truth

k was obtained by
assigning to each ROI the mean value calculated over the same ROI in the image reconstructed
without any filtering (called raw image thereafter). I res

k is the kth frame of the 4D image
resulting from a filtering process.

3.3.3. Contrast. Contrast was measured using entire frontal and background ROIs defined
from the Zubal phantom labelling:

Contrast = 100 · |μbg − μfront|/μbg, (21)

where μbg and μfront denote the mean intensity value within the background ROI and the
frontal ROI. The Contrast versus TSNR was plotted for different numbers of iterations of the
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filtering processes to observe the behaviour and convergence properties of the AD, GTF and
VRAD methods.

3.3.4. Pratt’s figure of merit. Pratt’s figure of merit (PFOM) returns a number between 0
and 1 based upon the quality of the edge preservation and enhancement. PFOM is based on
edge detection, localization and spurious responses. An automatic Canny edge detector from
Matlab v2008b was applied on each image as a prior step for objective evaluation. The PFOM
was then calculated as follows:

PFOM
(
I res
k

) = 1

max(NA,ND)

ND∑
i=1

1

1 + αd2
i

, (22)

where NA and ND are respectively the number of the actual and detected edge voxels, di denotes
the distance from the ith-detected edge voxel to the nearest actual edge voxel and α is a scaling
constant set to 1/9 as in Pratt’s work (Pratt 1977).

3.3.5. Root mean square error (RMSE). The RMSE was defined as

RMSE
(
I res
k

) =
√

1

N

∑
X∈�

[
I truth
k (X) − I res

k (X)
]2

. (23)

4. Results

4.1. Processed images

Figure 2 presents some results of AD, GTF and VRAD for three different simulations. All
images were scaled to a common greyscale. The first two rows present a sagittal view of
the fourth time frame of simulation 1, where all ROIs are visible. A visual comparison
suggests that the level of noise and artefacts decreased when using VRAD for which ROIs are
more homogeneous and almost as piecewise smooth as the ground truth. The thalamus has
disappeared with AD because the uptake level was very close to that of the background. In
contrast, it is still visible with GTF and VRAD both of which use the temporal information.
Edges between ROIs are sharper with VRAD and AD than with GTF, and more precise with
VRAD than with AD, indicating good edge detection. The middle and bottom rows in figure 2
present respectively an axial view of the 18th frame of simulation 2 and an axial view of
the 13th frame of simulation 3. In both images, all structures are recovered with VRAD,
especially the thalamus in simulation 2 and the frontal and occipital lobes in simulation 3. The
result with VRAD is less biased compared to GTF in simulation 3, where GTF overestimates
activity in the background region. This can also be seen in figure 2(d) where the cerebellum
uptake is lower with GTF than in ground truth, while the activity is correctly recovered with
VRAD (figure 2(e)). Once again, AD fails at preserving the differences in uptake between
different ROIs. These trends are confirmed in figure 3 which presents 1D profiles of images
shown in figures 2(f)–(j) along the line plotted in figure 2(f).

4.2. Quantitative criteria

Figure 4 presents the quantitative results obtained across all frames for the images presented
in figures 2(b)–(e). Table 1 summarizes the quantitative results averaged over 300 images
(5 slices × 3 simulations × 20 frames). Among the five slices, three were chosen in the
transaxial plane and two in the sagittal plane. Three of them are shown in figure 2. They
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(a) (b)

(c) (d) (e)

(f) (g) (h) (i) (j)

(k) (l) (m) (n) (o)

Figure 2. Sample views of the results obtained for three simulations. Top rows: the sagittal
view of the results obtained for simulation 1: (a) ground truth, (b) raw image, (c) AD, (d) GTF,
(e) VRAD. Middle row: transaxial view of the results obtained for simulation 2: (f) ground truth,
(g) raw image, (h) AD, (i) GTF, (j) VRAD. Bottom row: transaxial view of the results obtained
for simulation 3: (k) ground truth, (l) raw image, (m) AD, (n) GTF and (o) VRAD.

were chosen to contain several ROIs with different spatial arrangements. The SNR was highly
increased with VRAD with an average SNR of 64.3 (see table 1), indicating strong smoothing
of the noise within homogeneous areas. Results with AD and GTF lead to the average SNR of
12.4 and 12.1, respectively, while the SNR of the raw image was 4.1 on average. In contrast
with the SNR, the TNSR is calculated over the entire field of view, better representing the
overall quality of filtering. All three filters improve the quality of the image, with VRAD
most increasing the TSNR from 10.6 to 15.7. The contrast was decreased with the three filters
compared to the raw images. On average, the contrast was 39.0 with no post-processing, and
31.1, 33.4 and 35.4 with AD, GTF and VRAD, respectively. This decrease was expected as
the three filters smooth the data. Figure 4(c) shows that the contrast varies along the frames
of the dynamic sequence and that the variations are similar for the three filters. The edge
detection and preservation measured with PFOM were the highest with VRAD. The average
PFOM of raw images without post-reconstruction processing was 0.23, and increased by 35%,
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Figure 3. 1D profiles along the line drawn in figure 2(f).
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Figure 4. Quantitative criteria for all frames of simulation 1. (a) SNR, (b) TSNR, (c) contrast,
(d) PFOM, (e) RMSE and (f) TNSR over 10000 iterations.

22% and 126% for AD, GTF and VRAD, respectively. On an average, the three filters reduced
RMSE by a factor of 1.4, 1.4 and 1.9 with AD, GTF and VRAD, respectively.

The reduction of RMSE is further illustrated in figures 5(a) and (b), which respectively
show the variability within the occipital lobes and background from simulation 3. The area
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Figure 5. Areas covered by (mean±sd) with AD, VRAD and without post-reconstruction
processing in simulation 3. (a) Occipital lobes and (b) background.

Table 1. Figures of merit averaged over 300 images.

Method SNR TSNR (dB) Contrast PFOM RMSE (× 104) CPU time (s)

Noisy 04.1 10.6 39.0 0.23 3.9 –
AD 12.4 13.9 31.1 0.31 2.7 11.5
GTF 12.1 14.0 33.4 0.28 2.7 07.8
VRAD 64.3 15.7 35.4 0.52 2.1 13.5

associated with AD, VRAD and the raw image corresponds to [μROI ± σROI], where μROI is
the mean uptake measured in the ROI and σROI is the standard deviation. The result of GTF
was not plotted for readability. In both figures, the ground truth TAC is plotted as a dashed
line. VRAD filtering diminishes the variability of the TACs within both ROIs, while avoiding
distortions that could introduce quantitative biases.

4.3. Convergence

Figure 6 shows the joint evolution of contrast and TSNR along the iterative filtering processes.
As in figure 4(f), both AD and VRAD were iterated 10000 times, while GTF was used with
values of σG ∈ [0.5, 4.4], expressed in minutes of acquisition. The point located at the bottom
right corresponds to the contrast and TSNR of the raw image. For both AD and GTF, the
TSNR first increases, reaches a maximum and then decreases, while the contrast decreases
as the iteration number increases. Parameters involved in AD and GTF were manually set
to obtain the maximum TSNR. The evolution with VRAD is very different as the TSNR
always increases and converges to an upper bound. The contrast decreases but remains above
a specific convergence value.

5. Discussion

The spatio-temporal anisotropic diffusion algorithm described in this paper is designed to
improve the SNR in dynamic PET acquisitions, as a pre-processing step before kinetic
modelling or image segmentation. VRAD is based on the TAC variations between voxels.
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Figure 6. Contrast versus TSNR over 10000 iterations of AD, GTF and VRAD. (a) Simulation 1
and (b) simulation 3.

The smoothing is controlled by a coefficient of diffusion that accounts for the duration of
each frame and which can prevent inter-ROIs TAC diffusion. VRAD does not include any
assumption about the location of the functional structures. This avoids the use of possibly
mismatched anatomical boundaries that might also not necessarily be relevant to the underlying
biochemistry (Maroy et al 2008). The filtering is based on the entire temporal information
available in each voxel to account for the underlying physiological processes rather than
anatomical organs.

Due to the low spatial resolution and SNR, the main challenge in PET image filtering is
to remove noise while preserving edges. In the proposed approach, the edges are detected
by a statistical analysis of the distance between the voxel TACs. The scale parameter of the
coefficient of diffusion is re-evaluated at each iteration to control the diffusion. The proposed
coefficient of diffusion can not only reduce but also completely stop the diffusion across
edges. As a consequence, it was demonstrated in section 2.3 that, under some conditions,
VRAD preserves intra-region energy. This is especially relevant in dynamic PET images
where inter-ROI filtering creates spill-over that introduces errors in quantitative analysis. This
property of VRAD also explains its convergence behavior illustrated in figure 6. The diffusion
is stopped between ROIs with different TACs; therefore, the method can maintain the contrast
while improving the SNR. It converges towards an almost piecewise constant image in each
frame. With conventional spatial anisotropic diffusion or Gaussian filtering, the filtering is
never completely stopped and converge towards a homogeneous image. This property of
VRAD adds more flexibility on the choice of number of iterations, as there is no risk to
overdiffuse and miss the maximum of TSNR. This parameter can be adapted to the CPU time
constraints. The estimation of the scale parameter requires the calculation of a Qn estimator
which represents a large part of the CPU time of VRAD. Alternatively, the median absolute
deviation (MAD) can be used as a legitimate candidate for robust estimation instead of Qn to
reduce the computational time. We did not use MAD as it has some limitations (Rousseeuw
and Croux 1993).

Partial volume effect affects PET imaging and can cause spill-over between regions (Soret
et al 2007). The intra-region energy preservation of the proposed filtering scheme prevents
additional spill-over but does not correct for PVE. However, VRAD can be used as a pre-
processing step before PVE correction methods that rely on ROI definition (Rousset et al
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1998). The fact that the PFOM increased with VRAD suggests that VRAD facilitates the
detection of edges between ROIs.

The temporal filtering in VRAD is indirect: the diffusion occurs spatially in each frame
which homogeneizes the TACs within homogeneous regions. As the distance between voxels
in VRAD is based on their TACs, it might benefit from prior mild temporal filtering methods
that reduce noise. Therefore, VRAD is complementary with 4D reconstruction methods or
iterative temporal filtering, as it can be used as a post-processing on any reconstructed dynamic
PET image.

Like other time-based methods, VRAD is sensitive to motions that can occur during
acquisition. Indeed, the TACs associated with voxels located near the interface of different
functional regions would be a mixture of temporal profiles of the underlying tissues. Therefore,
VRAD is not directly applicable for dynamic imaging of tissues affected by significant motion
without prior motion correction.

Monte Carlo simulations of the Zubal brain phantom allowed us to perform a careful
evaluation of the proposed approach for known activity maps. The results with VRAD
compared favourably with two other filters. This validation would not have been possible on
real data. The next step will consist in evaluating the impact of VRAD on even more realistic
PET images and in patient images, and in determining how VRAD impacts the results of
kinetic modelling in brain pathologies.

6. Conclusion

We have described an original VRAD spatio-temporal filtering scheme for dynamic PET
imaging, based on the TACs of voxels. We introduced an automatic estimator of the scale
parameter involved in the proposed diffusion method. Using PET brain images obtained from
Monte Carlo simulations, we demonstrated that VRAD improved the SNR in dynamic PET
images compared to spatial filtering or temporal filtering. As a result, VRAD appears as a
promising pre-processing step before segmentation or quantitative analysis in clinical dynamic
PET imaging of the brain.
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