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Diffusion Regularization for Iterative Reconstruction
in Emission Tomography

Cyril Riddell, Habib Benali, and Irène Buvat

Abstract—We have recently proposed a regularized least square
criterion for adaptive regularization of SPECT reconstruction with
nonuniform attenuation correction. In the present study, we show
that this regularization is closely related to a diffusion scheme used
for Gaussian filtering. For a given value of the regularization pa-
rameter, the amount of smoothing is independent from the patient
attenuation map, and it is mathematically related to the full width
at half maximum (FWHM) of a Gaussian filter. A second regular-
ized least square criterion is then derived for which regularization
also behaves as a diffusion scheme. The new penalty is then shown
to be also applicable to the weighted least square criterion, and
to the Poisson maximum likelihood criterion for PET data (i.e.,
without attenuation) solved by the EM algorithm. For all these cri-
teria, the regularization level can thus be set as the FWHM of a
Gaussian filter.

Index Terms—Diffusion equations, least squares methods,
OSEM, regularization, tomography.

I. INTRODUCTION

B ECAUSE tomographic reconstruction is an ill-posed
problem, regularization is necessary to control the noise

propagation from the projections into the reconstructed images.
For the regularization to be clinically practical, the resulting
noise reduction and concomitant resolution loss should be a
priori known. Unfortunately, with a patient-dependent mod-
eling of the data, a given regularization parameter can produce
smoothing effects that differ from patient to patient. A regular-
ization penalty previously introduced in a least square adaptive
regularization technique [1] is here demonstrated to behave
as a diffusion scheme for Gaussian filtering. Resolution loss
can therefore be set a priori as a full width at half maximum
(FWHM). This regularization penalty is then extended to the
weighted least square case and the OSEM algorithm for PET.

II. THEORY

A. Regularized Least Square Algorithm for SPECT

An image is estimated from a finite set of SPECT attenuated
measurements by solving a linear system such as

(1)
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where is the unknown image vector, is the attenuated
SPECT sinogram, and is a matrix that models SPECT
tomographic acquisition with patient dependent nonuniform
attenuation. A classical regularized least square solution of
system (1) is given by minimizing

(2a)

where is a scalar and is the gradient of image . This
criterion is equivalent to solving

(2b)

where denotes the transpose of a matrix and denotes the
Laplacian operator.

When modeling attenuation, matrix changes with the
attenuation map, whereas the Laplacian is constant. Therefore,
a fixed regularization value generally yields a different
smoothing for different patients.

B. Diffusion Regularization and Approximate Inversion

In a previous work [1], we have proposed to replace criterion
(2) by the penalized frequency weighted least square [PFWLS]
approach given by

(3a)

which is equivalent to solving

(3b)

where represents the Chang correction, stands
for the ramp filtering operation in the sinogram domain, and
is such that . The ramp filter and Chang correction are
used as a preliminary approximate inversion making the system
matrix close to the identity matrix , to speed conver-
gence up and provide a normalization that allows for adaptive
regularization with respect to noise [1].

In the present work, we further explore criterion (3) by con-
sidering that in (3b), differs from the identity for the
effect of attenuation only. Attenuation is responsible for large
biases with underestimation of the distribution values as large as
80% in cardiac SPECT, independently of the size of the structure
[2]. Attenuation correction is thus required for quantification
purpose rather than resolution recovery. We therefore hypoth-
esize that attenuation mainly affects the low frequency content
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of an image so that the regularization constraint in (3b) will pro-
duce the same filtering as in the absence of attenuation, i.e., as
in the following diffusion scheme:

(4)

where is the image to be filtered. The solution of system (4)
tends toward filtered by a Gaussian kernel with FWHM equal
to [3]. We therefore define the regularization penalty in
(3) as a diffusion regularization.

An alternative approximate inversion of (1) is obtained by
applying the ramp filter in the image domain [4], giving

(5)

where stands for the ramp filtering operation in the image
domain. Again, system (5) differs from the diffusion scheme
(4) by the effect of attenuation only. Under the same hypoth-
esis that attenuation mainly affects the low frequency content
of an image, we expect that the Laplacian term will produce a
diffusion filtering. Moreover, using the relation ,
system (5) can be simplified into

(6a)

which leads to the following penalized least square [PLS] crite-
rion:

(6b)

where stands for the filtering of an image by the square
root of the ramp filter.

Criterion (6) is equivalent to (3) in the absence of attenuation
and since we assume that attenuation mainly affects the lower
frequencies of the image, we do not expect significant differ-
ences in the regularization output of criteria (3) and (6). The in-
teresting finding is that the regularization in (6), that is based on
ramp filtering, allows for extending diffusion regularization to
criteria that are not derived from a prior approximate inversion
of the system matrix. This was not the case with the Laplacian
based regularization of (3) that behaves as a diffusion regular-
ization because of the prior approximate inversion of the system.

C. Diffusion Regularization for the Weighted Least Square
Case and the OSEM Algorithm

For the sake of simplicity, we describe the weighted least
square criterion for the nonattenuated case only. It is expressed
as

(7)

where is a diagonal matrix with each diagonal term equal
to the inverse weight of the corresponding measurement (e.g.,
its variance). Matrix and vector respectively replace matrix

and vector in the nonattenuated case. The introduction of
the variance of the measurements makes the criterion dependent
upon each specific patient data set. Adding a regularization con-
straint with fixed strength will therefore not yield uniform res-
olution over the reconstructed image, neither the same filtering

effect from one patient to the other [5]. For constant weights ,
diffusion regularization is obtained with the ramp filter penalty
given in (6). Independence from the weights is obtained by ap-
plying a normalization term through a diagonal operator P such
as the one given in [5], which yields the following regularized
criterion:

(8a)

equivalent to solving

(8b)

where is such that .
If the data variance estimates are set equal to the data mean

estimates, the criterion is similar to maximizing a Poisson like-
lihood. This suggests that applying the same penalty based on
ramp filtering to the EM algorithm should provide equivalent
diffusion regularization. In this study, the penalty was imple-
mented with the one-step-late method combined to the ordered
subset acceleration technique [6]. The penalty term was com-
puted at each subiteration, and the normalization matrix P was
computed for each subset as a simple backprojection over the
subset of the measurement weights.

In the case of attenuation, the Chang correction can be mul-
tiplied to the P matrix for normalizing the weighted least square
criterion for SPECT [5]. With OSEM, this is not possible be-
cause the algorithm formula already contains a normalization
term that includes attenuation. A separate analysis is therefore
required as a future work. Diffusion regularization as given by
the penalty of (8a) was therefore applied with OSEM to nonat-
tenuated emission data (such as attenuation pre-corrected PET
data) in this work.

D. Class-Dependent Diffusion Regularization

When diffusion regularization is applied with the Laplacian
operator, it offers the additional possibility of selectively
smoothing the reconstructed image by regions. Here, the
regions are supposed to be defined a priori, for instance as
classes resulting from the segmentation of the attenuation map,
which keeps the problem linear. The Laplacian operator, scaled
by , can be implemented as the four-point spatial kernel that
is, at pixel , the sum of each difference of pixel minus its
neighbors, weighted by . A simple modification of this sum
allows for a class-dependent filtering: each difference between
two neighboring pixels and is weighted with a different
“local” , denoted , which determines the local level of
smoothing. By setting , the system is kept symmetric.
This level is held constant for all differences between pixels
belonging to the same class, but can change from class to class.
For a given class, it is denoted (class). In addition, a level
of smoothing is defined between all classes that is denoted

. When pixels and belong to the same class, is set
to (class), otherwise it is set to . The values of (class)
and are related to FWHM values by the same relation

and .
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(a) (b)

Fig. 1. (a) Simulated cardiac emission distribution and (b) CT attenuation map
from the Zubal phantom.

III. EXPERIMENTS

Effectiveness of diffusion regularization was examined
through simulation of attenuated SPECT data in the case of the
least square criteria and nonattenuated data in the case of the
OSEM algorithm.

A segmented CT slice at the heart level of the Zubal phantom
[7] was considered. Activity was simulated by setting the car-
diac muscle region to 10, the blood pool region to 3, and the
lung region to 2, while all other tissues were set to 1 [Fig. 1(a)].
This activity distribution is called “reference image” in the fol-
lowing.

Three sets of projections of the reference image (120 projec-
tions over 360 , 128 measurement bins, parallel geometry) were
obtained, corresponding to three different attenuation maps. The
first set corresponded to the no attenuation case , the
second, called “Tc-99m” data, corresponded to the CT attenu-
ation map [Fig. 1(b)] scaled to 140 keV, and the third, called
“Tl-201”, corresponded to the CT attenuation map scaled to
70 keV. Using Poisson noise simulations, 40 replicate noisy
sinograms were computed for each data set. The total number of
counts per sinogram was about 1 000 000 for the nonattenuated
data, 270 000 for the Tc-99m data and 200 000 for the Tl-201
data.

All attenuated projection sets were reconstructed (128 128
grid, pixel size 4 mm) with the conjugate gradient algorithm to
solve the PFWLS criterion defined by (3) and the PLS criterion
defined by (6) with 15 iterations in each case. All nonattenuated
data sets were reconstructed with the OSEM algorithm with 10
iterations and 10 subsets. For all algorithms, the regularization
parameter was varied between 2 and 6 pixels when expressed as
FWHMs, corresponding to values ranging from 0.36 to 3.25.
Convergence of the reconstruction algorithms was monitored by
computing the root mean square error (RMSE) between the im-
ages obtained at each iteration and the reference image. Diffu-
sion regularization was compared to the direct filtering of the
reference image with the diffusion scheme derived from (4) that
is described in [3] using the same values for . Resolution was
assessed by comparing such filtering to the average of the repli-
cate regularized reconstructions which were virtually noise free.
For OSEM, robustness of the regularization output with respect
to the amount of noise was also tested by simulating a high noise
level corresponding to an acquisition of ten times less counts
(i.e., 100 000 counts per sinogram).

Five impulses (defined as one voxel set to 0.1) sampling both
lungs, the heart, and the surrounding tissues, were also projected
and added to the replicate data sets. Reconstruction of the im-
pulses was obtained by subtracting the average reconstruction

Fig. 2. Horizontal profiles through PFWLS average reconstruction for
Tc-99m data with FWHM values of 2 (triangles), 4 (circles) and 6 (squares)
pixels compared to the PFWLS average reconstruction for Tl-201 data with
the same FWHM values of 2 (solid line), 4 (dashed line), and 6 (bold dashed
line) pixels.

of the impulse-free data from the average reconstruction of the
data containing the added impulses. Due to the interpolation of
the projection step, the impulses were smoothed in the data and
their reconstruction did not correspond to the impulse response
of the regularization, but it allowed for analyzing the stationarity
of this response.

Class-dependent regularization was applied to one Tc-99m
noisy data set, to demonstrate class-dependent noise reduction.
The CT attenuation map was segmented into three classes: bone
and soft tissues (i.e., including blood pool and myocardium),
lungs, and background (outside of the body). Four FWHM
values were used: 2 pixels for the soft tissues, 4 pixels for
the lungs, 6 pixels for the background, and 4 pixels between
classes. Selective noise reduction was assessed by considering
the difference between the reconstructed image and the images
reconstructed with PFWLS and uniform regularization with
FWHM values of 2, 4, and 6 pixels.

IV. RESULTS

Convergence of the PFWLS algorithm was monitored when
reconstructing noise free Tc-99m data and Tl-201 data with

set to 0.81. With a normalized in (3b), the ratio
between the patient-dependent model and the regularization
term was kept constant enough from one attenuation map to
the other to maintain the same regularization bias in each case
(final RMSE of 0.197 for the Tc-99m data and 0.198 for the
Tl-201 data). This was not true without normalization (
in (3b), with set to 0.05). In that case, the matrix describing
the highest attenuation had the smallest norm yielding the
highest bias and smoothing (final RMSE of 0.225 for the
Tc-99m data versus 0.268 for the Tl-201 data). On Fig. 2,
profiles at the heart level through the average of the replicate
PFWLS reconstructions show the amount of filtering that was
obtained with the Tc-99m data and regularization with FWHM
values of 2 (triangles), 4 (circles), and 6 (squares) pixels, and
with the Tl-201 data with the same FWHM values (lines). A
very good overlap of the symbols over the corresponding lines
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Fig. 3. Horizontal profiles through PFWLS average reconstruction for Tc-99m
data with FWHM values of 2 (triangles), 4 (circles), and 6 (squares) compared
to the reference image filtered with the same FWHM values of 2 (solid line), 4
(dashed line), and 6 (bold dashed line) pixels.

was obtained for the three levels of regularization. Diffusion
regularization was therefore independent from the attenuation
map, and from the noise level since the more attenuated Tl-201
data had more noise.

Fig. 3 compares the same profiles of Fig. 2 obtained with
PFWLS and the Tc-99m data, to diffusion filtering of the ref-
erence image. A very good agreement is seen for a 2-pixel reg-
ularization (triangles for PFWLS and solid line for diffusion fil-
tering). However, as the regularization level increased to 4 (cir-
cles) and 6 (squares) pixels, the regularization constraint pro-
duced less smoothing than the diffusion scheme (dashed lines).

Fig. 4 compares the profiles at the same level of the heart
through the average of the replicate OSEM reconstructions
(symbols) to the same profiles through the reference image
filtered with the diffusion scheme (lines) as in Fig. 3. The
agreement between the regularization and the diffusion filter is
shown by a good overlap of the symbols over the corresponding
lines. However, for an FWHM value of 6 pixels (squares
versus bold dashed line), the smallest peak on the left was less
smoothed by the regularized OSEM than by the diffusion filter.
The results obtained from averaging replicate reconstructions
with ten times more noise were identical (profiles not shown).

Fig. 5 top image shows the impulse locations over the atten-
uation map (impulses were one pixel wide). Horizontal profiles
were taken through each impulse. The plot of Fig. 5 shows these
profiles in the case of the PFWLS reconstruction of Tc-99m data
with FWHM of 2, 4, and 6 pixels. For each FWHM value, the
profiles of the five impulses have been concatenated. The plot
shows that filtering was not perfectly uniform: for attenuated
data, the amount of filtering was inversely proportional to the
distance to the center. Considering the standard deviation of the
peak values of the five impulses, the variation was 8.3% (resp.:
8.7% and 9.2%) of the average peak value for an FWHM of
2 (resp.: 4 and 6) pixels. The same dependency was observed
with the Tl-201 data. With OSEM, this variation was 13.5%
(resp.: 10.4% and 12.3%) for the same FWHM of 2 (resp.: 4
and 6) pixels, but it did not show any radial pattern (profiles not
shown).

Fig. 4. Horizontal profiles through OSEM average reconstruction with
FWHM values of 2 (triangles), 4 (circles), and 6 (squares) compared to the
reference image filtered with the same FWHM values of 2 (solid line), 4
(dashed line) and 6 (bold dashed line) pixels.

Fig. 5. Concatenated horizontal profiles of five small impulses obtained from
PFWLS reconstructions of Tc-99m data with FWHM values of 2 (solid line), 4
(circles), and 6 (squares) pixels. (The center of the black and white circles added
to the attenuation map indicate the locations of the impulses.)

Fig. 6 allows for a direct comparison of the averages of the
replicate reconstructions according to the data set, the algo-
rithm, and the regularization level. The columns correspond to
OSEM, PFWLS with Tc-99m data, PLS with Tc-99m data, and
PFWLS with Tl-201 data. Each row shows a different level of
regularization, from row A with no regularization (0) to row D
that corresponds to a diffusion regularization with an FWHM of
6 pixels. In spite of the variations in the noise level (the noise
increased with attenuation), the attenuation maps, and the re-
construction algorithms, differences in the regularization output
are not visible on row B, i.e., for an FWHM value of 2 pixels.
As the FWHM increased (rows C and D), images produced by
diffusion regularization with PFWLS were, as already shown
on Fig. 2, independent from the attenuation map, but slightly
less smoothed than OSEM, whereas PLS images were notice-
ably less smoothed. PLS results were also independent from the
attenuation map (Tl-201 images not shown).
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Fig. 6. Average reconstruction for OSEM (1st column), PFWLS (2nd column for Tc-99m data and 4th column for Tl-201 data) and PLS (3rd column) according
to the level of regularization (FWHM values from 0 to 6 pixels).

Fig. 7. Standard deviation images computed from reconstruction of high noise replicate nonattenuated data (images are scaled to their own maximum). Top row:
nonregularized OSEM reconstruction has been post-filtered by a diffusion filter with FWHM values of 0 to 6 pixels. Bottom row: diffusion regularized OSEM
reconstruction with the same FWHM values.

Fig. 7 compares the noise properties of the OSEM reconstruc-
tion with regularization and without regularization but diffusion
post-filtering. The images show the standard deviation at each
pixel computed from the 40 replicate reconstructions. Without
regularization nor post-filtering (left column, the same image
is shown twice) the standard deviation of the noise at a given
pixel is proportional to the mean intensity of that same pixel,
as expected with OSEM [8]. With diffusion post-filtering, the
standard deviation is more and more uniform as the FWHM in-
creases (top row). Using diffusion regularization, the standard
deviation also becomes more uniform, but at a faster pace than
with post-filtering (bottom row). Note that, as shown on the pro-
files of Fig. 4, the comparison is made at matched resolution
for a small FWHM value, whereas for higher values, the use
of the diffusion regularization yielded slightly less smoothing
than post-filtering. Still, regularized reconstructions led to the
most uniform noise images. For an FWHM value of 2 pixels,
the standard deviation was on average 25% greater in the my-
ocardium with diffusion post-filtering. There was no significant
difference in the lungs and the cavity, whereas the noise was on

average 18% higher in the external tissues with diffusion regu-
larization.

Fig. 8 shows the PFWLS reconstruction of noisy data with a
region-dependent regularization of FWHM values of 6 pixels
in the background outside of the body, 4 pixels in the lungs,
and 2 pixels in all other tissues (left image, inverse grey scale).
Images A, B, C are the difference images between the re-
gion-dependent regularization and the PFWLS reconstructions
with uniform regularization of FWHM value of 2 (image A), 4
(image B), and 6 (image C) pixels. Image A (resp.: B and C)
shows that the region-dependent regularization had the same
smoothing effect over the tissues (resp.: lungs and background)
than a uniform 2-pixel (resp.: 4-pixel and 6-pixel) regulariza-
tion, as expected. Therefore the PFWLS algorithm regularized
with the modified Laplacian operator allows for a modulated
noise reduction according to a priori defined regions.

V. DISCUSSION

Iterative reconstruction algorithms are used to correct
for nonuniform attenuation in SPECT or improve the noise
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Fig. 8. Left image: PFWLS reconstruction of noisy data with a region-dependent regularization with FWHMs of 6 pixels outside of the body, 4 pixels in the
lungs, and 2 pixels in all other tissues. Images A, B, C: difference images with PFWLS reconstructions with uniform regularization and FWHM of 2 (A), 4 (B),
and 6 (C) pixels.

properties of low-count PET data. In order to control the noise
increase inherent to tomographic reconstruction of noisy data,
regularization is applied. However, setting the proper regular-
ization parameter has proved difficult in clinical routine, due
to the fact that a given regularization weight produces different
smoothing levels according to the patient dependent model [5].
In the present work, we have proposed three reconstruction
criteria whose regularization output was not dependent upon
the patient attenuation map or data weighting for reasonable
amounts of regularization. For the OSEM algorithm and two
penalized least square criteria, that all produce regularized
images based on patient dependent models, it was possible to
interpret the regularization constraint as a diffusion scheme
independent from the attenuation map or variance estimates,
and to relate the regularization parameter to the FWHM of a
Gaussian filter. For a smoothing level of 2 pixels, the proposed
regularization produced the same smoothing effect as the
diffusion scheme independently of the attenuation map, the
noise level, and the statistical criterion.

In the presence of attenuation, the PFWLS and PLS algo-
rithms showed less-than-expected filtering for FWHM values
of 4 and 6 pixels, suggesting an increasing interference between
attenuation and regularization. The reason why this interference
affected PLS more than PFWLS will require further investiga-
tion. This interaction also affected the uniformity of the filtering,
with a slightly sharper response away from the center of the
image.

In the case of OSEM, diffusion regularization and diffusion
filtering resulted in a very similar resolution loss, with still a
slightly less-than-expected filtering at 6 pixels when using the
regularization, and slight nonstationarity. Both diffusion regu-
larization and diffusion post-filtering lead to uniform standard
deviation images as the FWHM increased, removing the propor-
tionality between the level of noise and the level of intensity at a
given pixel of a reconstructed image, a specificity of the OSEM
algorithm [8]. However, this removal happened at a faster pace
with diffusion regularization than with diffusion post-filtering.
One must therefore be careful when using OSEM and diffusion
regularization, that one is not losing the specific noise proper-
ties that called for the use of OSEM in the first place, as in on-
cology where OSEM ability to avoid noise spread of the image
can be an advantage over analytical reconstruction [9]. Similar
results have been obtained in [10] where the authors derived fil-
ters that matched common regularization penalties tuned to pro-
duce uniform and patient independent output. Contrary to our
study, these filters were different from common filters such as
Gaussian diffusion, but the authors also concluded that regular-

ization yielded noise characteristics that were different from that
of the corresponding post-filtering.

Since a 2-pixel diffusion filtering is very close to using the
Hamming filter with cut-off frequency 0.5 of standard filtered
backprojection, this regularization value could be applied in all
cases, ensuring and speeding convergence to an image with a
well characterized filtering, while preserving the noise prop-
erties enforced by the statistical criterion. To compensate for
increased noise from one patient to the other, further filtering
could be applied after reconstruction with (faster) digital filters.

Further work is needed to combine diffusion regularization
with OSEM in the presence of attenuation, as the question of the
normalization is not a direct extension of the least square case
any more. Diffusion regularization remains compatible with the
weighted least square criterion, which is a valid approach to
reconstructing attenuated SPECT data affected by Poisson noise
[11].

The adaptive procedure proposed in [1] is an alternative so-
lution for noise removal in the clinical setting that is even more
attractive now that we have a characterization of the filtering and
an interpretation of the regularization value delivered by the al-
gorithm in terms of resolution.

Finally, region-dependent diffusion regularization based on
anatomical information was also demonstrated in the framework
of least square reconstruction. In such a case, high regulariza-
tion values were used in background areas where precise pre-
diction of the filtering effect was not as important, allowing for
the “cleaning” of the image.

VI. CONCLUSION

We have proposed two regularization penalties adapted to ei-
ther the least square, the weighted least square or the OSEM
algorithm that provide the same filtering effect as a diffusion
scheme used for Gaussian filtering. Diffusion regularization is
independent from the patient model and the regularization pa-
rameter is mathematically linked to the FWHM of a Gaussian
filter, making the level of smoothing induced by regularization
easy to control.
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