# Quantification en tomographie d'émission de positons

## Irène Buvat U494 INSERM Paris

#### http://www.guillemet.org/irene buvat@imed.jussieu.fr

Janvier 2005

#### Plan du cours

- Prérequis : rappels sur le PET
- Enjeux de la quantification en PET
- Phénomènes biaisant la quantification en PET
- Quantification en PET
  - Atténuation Problème
    - Méthodes de correction
  - Diffusion Problème Méthodes de correction
  - Coïncidences fortuites Problème Méthodes de correction
  - Effet de volume partiel Problème Méthodes de correction
  - Mouvement
  - Normalisation
  - Temps mort
  - Etalonnage
- Au delà de la mesure d'activité : exemple du FDG

• Emetteurs de positons  $\beta$ +



• Détection des photons gamma par un circuit de coïncidence



- 2 événements détectés simultanément
  - émission d'un positon β+ sur la ligne reliant les deux événements
  - pas de collimateur physique : multiplication du flux incident de photons d'un facteur 10 000 par rapport au SPECT
- Fenêtre de coïncidence ~ 5 à 20 nanosecondes



#### Ligne de réponse :

#### ligne joignant les 2 détecteurs ayant reçu un signal en coïncidence

ligne de coïncidence

#### Notion de sinogramme en PET



1 ligne du sinogramme : événements enregistrés sur un ensemble de LOR parallèles => 1 projection



l pixel (x,  $\theta$ ) du sinogramme y<sub>i</sub> : nombre d'événements enregistrés sur la LOR repérée par la distance d et l'angle  $\theta$ .

Ensemble de LOR passant par un détecteur situées le long d'une diagonale du sinogramme



#### PET « dédié » : principe



Quantification en tomographie d'émission de positons - Irène Buvat - janvier 2005 - 6

#### PET avec détecteurs en anneau



#### Caractéristiques du PET avec détecteurs en anneau

• Machines "dédiées"

⇒ configuration optimisée pour le PET

• Paramètres "typiques"

plus de 500 détecteurs par anneau diamètre de l'anneau ~ 80 cm ~ 30 couronnes de détecteurs intervalle entre 2 couronnes ~ 5 mm fenêtre de coïncidence  $\tau$  ~ 5 - 20 ns



#### Evénements détectés en PET





#### vuc axiaic

#### Caractéristiques du PET 2D

- Imagerie 2D
  - reconstruction tomographique "coupe par coupe"
  - ⇒ coupes reconstruites indépendamment



Inconvénients :

- Echantillonnage axial limité (égal à la distance axiale  $\delta$  entre 2 détecteurs)
- Sensibilité par coupe limitée

• Adjonction de lignes de mesures obliques



 N<sub>c</sub> coupes « directes » : plans droits et N<sub>c</sub> - 1 coupes intermédiaires : plans croisés soit 2N<sub>c</sub> - 1 coupes distantes de δ/2.



#### Vue axiale

#### PET 3D : contrôle des LOR acceptées

Distance maximale des couronnes (DMC) entre lesquelles les LOR sont acceptées



#### Si toutes les LOR sont acceptées, $DMC = N_c-1$

#### Sensibilité de détection variable axialement

- Imagerie réellement tridimensionnelle
  - reconstruction intégrant les lignes de coïncidence inter-coupe
- Augmentation de la sensibilité : plus d'événements sont comptabilisés
  - grâce au retrait des septas
  - grâce à l'augmentation du nombre de lignes de mesures
  - $\Rightarrow$  e.g., multiplication de sensibilité par ~ 5
- Augmentation sensible de la proportion de diffusé
  - 10% à 20% en 2D deviennent 40% à 60% en 3D



- Augmentation sensible de la proportion de fortuits
- Augmentation du temps mort
- Complexité de l'algorithmique de reconstruction accrue

## Détecteurs bimodaux PET/CT

• Combinaison d'un tomographe PET et d'un tomodensitomètre



Proof of concept : 1998 (Université de Pittsburgh)



#### Caractéristiques de l'imagerie bimodale PET/CT

- 4/5 machines opèrent en PET 3D seulement
- Différents cristaux : BGO (Discovery LS, GE) LSO (ACCEL, CPS) GSO (Allegro, Philips)
- Scanner spiralé, 2 à 16 coupes

• Informations anatomiques et fonctionnelles acquises lors de la même session d'imagerie

• Possible fusion des informations anatomiques et fonctionnelles



## Enjeux de la quantification en PET

• Enjeux cognitifs, diagnostiques, pronostiques, et thérapeutiques (voir cours quantification en SPECT)

• Dans le contexte de l'oncologie :

- Caractérisation des hyperfixations (inflammation, tumeur, grade de la tumeur)



- Suivi thérapeutique : suivi objectif de l'évolution de la taille ou du métabolisme d'une tumeur sous thérapie



- Radiothérapie : définition du volume cible pour la radiothérapie



- Obstacles intrinsèques
  - interactions rayonnement matière
    - → atténuation
    - ➡ diffusion Compton
  - limites du dispositif d'imagerie
    - → résolution spatiale limitée et non stationnaire
    - → coïncidences fortuites en PET
    - → bruit de mesure
    - → reconstruction tomographique
- Obstacles potentiels
  - mouvements du patient
    - physiologiques : battements cardiaques, respiration
    - → fortuits car examens relativement longs
  - défauts du détecteur
    - ⇒ uniformité
    - $\Rightarrow$  temps mort

$$N_1 = N_{\beta^+} \exp \int_0^{d_1} -\mu(1) d1$$
  $N_2 = N_{\beta^+} \exp \int_0^{d_2} -\mu(1) d1$ 



$$N_1 N_2 = N_{\beta^+} exp \int_{d_1}^{d_2} -\mu(1) d1 = N_{\beta^+} exp \int_0^{D} -\mu(1) d1$$

Caractéristiques de l'atténuation en PET

$$N_1 N_2 = N_{\beta^+} exp \int_{d_1}^{d_2} -\mu(l) dl = N_{\beta^+} exp \int_{0}^{D} -\mu(l) dl$$

- Ne dépend pas du lieu d'émission sur la ligne de projection
- Dépend uniquement de l'atténuation intégrale sur d1+d2=D
- Dépend de la densité du milieu atténuant comme en SPECT
   nécessaire mesure de la densité du milieu atténuant
- Identique pour tous les émetteurs de positons puisque tous donnent lieu à des photons  $\gamma$  de 511 keV

A 511 keV,  $\mu = 0,096$  cm<sup>-1</sup> dans les tissus mous (rappel :  $\mu = 0,15$  cm<sup>-1</sup> à 140 keV)

• Plus pénalisante en PET qu'en SPECT, car 2 photons doivent atteindre le détecteur

#### Conséquences de l'atténuation en PET

- Perte d'un grand nombre de photons
  - ⇒ diminution du rapport signal-sur-bruit

e.g. :

- en PET cérébral, ~17% des paires de photons émises au centre du cerveau en émergent

- en PET cardiaque,  $\sim 5\%$  des paires de photons émises au centre du thorax en émergent

- Quantification erronée
- Atténuation inégale suivant la profondeur

→ nuisible à la détection de lésions profondes

#### PET FDG



# sans correction d'atténuation



#### avec correction d'atténuation

Principe des mesures de transmission en PET

• Pour connaître la densité des tissus à l'origine de l'atténuation





• Ge68 (511 keV) ⇒ utilisable sur une grande durée (T=271 jours)

• Temps mort important pour le bloc de détecteurs proche de la source

• Difficile manufacture d'une source en anneau homogène

## Source de transmission $\beta$ + linéaire



• Ge68 (511 keV) ⇒ utilisable sur une grande durée (T=271 jours)

• Possible acquisition simultanée de données émission et transmission par collimation électronique

• Temps mort important pour le bloc de détecteurs proche de la source

## Source de transmission $\gamma$ monophotonique



• Enregistrement d'un plus grand flux de photons qu'avec un système de coïncidence

• Cs137 (662 keV)

⇒ utilisable sur une grande durée (T=30,2 ans)

→ différentiation spectrométrique entre événements 511 keV et 622 keV

⇒ nécessité de convertir les valeurs des coefficients d'atténuation mesurées à 622 keV en coefficients d'atténuation à 511 keV

## Acquisitions émission / transmission simultanées

Si l'isotope émission différent de l'isotope transmission et possible séparation spectrométrique des isotopes - e.g., Cs137 en PET



• OU si collimation électronique possible - e.g., ligne source Ge68 en PET



- ⇒ pas d'augmentation de la durée des examens
- données E et T en parfaite correspondance spatiale : pas de recalage d'images nécessaire

- T avant E
  - toujours possible
- T après E
  - si l'isotope émission différent de l'isotope en

transmission et possible séparation spectrométrique des isotopes

- si collimation électronique possible
- mêmes contraintes que pour les acquisitions simultanées

- ⇒ allongement de la durée totale d'examen
- ⇒ possible mouvement du patient entre T et E
  - données E et T décalées spatialement
  - artefacts dans les images reconstruites avec correction de l'atténuation

#### Problèmes de contamination

- Si acquisitions E et T simultanées ou acquisition T après acquisition E
- Contamination spectrale
  - événements diffusés issus de l'isotope de plus haute énergie (T) détectés dans la fenêtre spectrométrique de plus basse énergie



- → activité du radiotraceur surestimée
- Contamination électronique
  - événements en émission vrais ou diffusés dans la fenêtre électronique de transmission



→ atténuation sous-estimée

#### Solution alternative : systèmes bimodaux



acquisition de projections scanner 2D en transmission sous différentes incidences angulaires





cartographie des coefficients d'atténuation de Hounsfield

## Systèmes bimodaux PET/CT



cartographie des coefficients d'atténuation µ dérivée du CT mais...

- problème du mouvement respiratoire, notamment dans le cas des cancers pulmonaires

- extrapolation des valeurs de  $\mu$  mesurées à ~70 keV à 511 keV

## Correction d'atténuation en PET : stratégie

• Atténuation indépendante de la position sur la ligne de projection, mais uniquement de D



 nécessité de connaître uniquement la distribution d'atténuation mais pas la distribution d'activité
 solution analytique au problème

Mesure de la densité du milieu atténuant
au moyen de dispositifs de transmission



⇒ mise à l'échelle des coefficients de transmission si mesurés à une énergie différente de 511 keV  $\mu_{E2}$ (milieu i) =  $\mu_{E1}$ (milieu i) . [ $\mu_{E2}$ (eau) /  $\mu_{E1}$ (eau)]

→ correction d'atténuation

## Correction d'atténuation en PET : méthodes

- 2 approches seulement
- Correction des projections acquises
  - calcul de coefficients de correction (CCA) à appliquer aux projections acquises
  - multiplication des projections par les CCA
  - reconstruction tomographique des projections corrigées



N' coincidences . CCA détectées

- Correction pendant la reconstruction tomographique
  - reconstruction tomographique de la cartographie 3D des coefficients d'atténuation  $\boldsymbol{\mu}$
  - modélisation de l'atténuation dans le projecteur d'un algorithme de reconstruction itérative
  - reconstruction tomographique

$$p = R_{\mu} f$$

#### Correction des projections

• Calcul des coefficients de correction d'atténuation (CCA) à partir des mesures en transmission



N coïncidences détectées pour cette raie de projection

$$\frac{N_0}{N} = \exp \int_0^D \mu(l) \, dl = CCA$$

Mesure affectée par l'atténuation :



⇒ Reconstruction tomographique des projections corrigées

#### Correction d'atténuation pendant la reconstruction

• Reconstruction tomographique de la cartographie des coefficients d'atténuation  $\mu$  à partir des projections de transmission acquises (comme en SPECT)



• Reconstruction itérative avec modélisation de l'atténuation dans le projecteur



• Adapté à tous les algorithmes de reconstruction itérative

- Problèmes communs au PET et SPECT
  - Mouvement du patient entre les examens émission et transmission
  - ⇒ biais quantitatifs
  - ⇒ solutions potentielles :
    - recalage des données émission et transmission
    - acquisitions émission/transmission simultanées avec traitement des problèmes de contamination

- Bruit dans les acquisitions en transmission

- propagation du bruit dans les images corrigées de l'atténuation
- ⇒ solutions potentielles :
  - filtrage des cartes des  $\mu$

- segmentation des cartes des  $\mu$  et affectation de valeurs de  $\mu$  a priori dans les différentes régions (os, tissus mous, poumons)



- carte des  $\mu$  issue d'une tomodensitométrie sur les machines bimodales PET/CT
#### Le solution : les machines bimodales ?

• Calcul de la carte des  $\mu$  à partir de l'image CT



 $HU = 1000 \frac{\mu - \mu_{eau}}{\mu_{eau}}$ 

- Avantages
  - Acquisition en transmission très rapide
  - Données anatomiques utiles pour la localisation des anomalies fonctionnelles
  - Haute résolution spatiale
  - Données très peu bruitées
  - Examens en émission et en transmission en correspondance spatiale
- Difficultés
  - Conversion des unités Hounsfield en  $\mu$  à 511 keV
  - Flous cinétiques différents
  - Résolution spatiale différente de celle des examens PET

#### Impact de la cartographie d'atténuation utilisée



Concentrations d'activité environ 10% supérieure avec la correction utilisant la carte CT

Nakamoto et al, J Nucl Med 2002:1137-1143

#### Correction d'atténuation en PET : synthèse

- Dispositifs d'acquisition en transmission systématiquement associés aux caméras dédiés PET ou PET/CT
- Solution théoriquement exacte par précorrection des projections au moyen des CCA
- Correction indispensable à la quantification absolue de l'activité (mesure de SUV)
- Pratique de routine
  - correction via les CCA la plus fréquente
  - correction fréquemment utilisée en imagerie cardiaque et cérébrale
  - intérêt de la correction davantage discuté en imagerie oncologique



sans correction d'atténuation

avec correction d'atténuation



- Dans le patient (1 ou 2 photons diffusés)
- Dans le cristal
  - → coïncidences mal localisées

détection possible de coïncidences en dehors de l'objet



- Photons mal positionnés
  - ⇒ flou
  - ⇒ diminution du contraste dans les images
  - ⇒ activité extérieure à l'objet
  - ⇒ biais quantitatifs
- Phénomène pénalisant beaucoup le PET 3D
  - ⇒ ~30% en 2D
  - ⇒ >50% en 3D



• En 3D, diffusion provenant d'activité extérieure au champ de vue



- Trois stratégies
  - estimation du diffusé à partir des événements détectés dans différentes fenêtres en énergie
    - e.g., :
    - \* double fenêtre en énergie
    - \*estimation des vraies coïncidences

- ajustement de la distribution spatiale des photons diffusés à partir des mesures

- e.g., :
- \* convolution
- \* ajustement des événements diffusés à partir des événements détectés à l'extérieur de l'objet
- calcul direct de la contribution du diffusé
  - e.g., :
  - \* par simulations analytiques
  - \* par simulations de Monte Carlo

# Méthode de la double fenêtre en énergie

• Enregistrement des coïncidences dans deux fenêtres en énergie distinctes



- Hypothèses
  - $N_{BE} = N_{BE-nondiffusé} + N_{BE-diffusé}$
  - $N_{HE} = N_{HE-nondiffusé} + N_{HE-diffusé}$
  - $R_{diffusé} = N_{BE-diffusé}/N_{HE-diffusé}$  connu (calibration)
  - $R_{nondiffusé} = N_{BE-nondiffusé}/N_{HE-nondiffusé}$  connu (calibration)
- Mise en oeuvre
  - estimation des sinogrammes des photons diffusés dans la fenêtre haute énergie par  $N_{HE-diffusé} =$
  - [N<sub>BE</sub>/(R<sub>diffusé</sub>-R<sub>nondiffusé</sub>)]- [N<sub>HE</sub>. R<sub>nondiffusé</sub>/(R<sub>diffusé</sub>-R<sub>nondiffusé</sub>)]
     filtrage de cette image pour réduire les fluctuations statistiques
    - soustraction de l'image filtrée à l'image des photons détectés dans la fenêtre haute énergie

 $N_{\text{HE-nondiffusé}} = N_{\text{HE}} - N_{\text{HE-diffusé}}$ 

#### Ajustement des queues de distribution

- Hypothèses
  - activité mesurée en dehors de l'objet = événements diffusés
  - image du diffusé = image basse fréquence
- Mise en oeuvre

- filtrage des sinogrammes pour réduire l'influence du bruit

- ajustement par une fonction analytique simple (e.g., gaussienne) de l'activité enregistrée en dehors de l'objet dans les sinogrammes

- soustraction la contribution du diffusé ainsi estimée



• Hypothèses

distribution d'émission connue (~ images reconstruites sans correction de la diffusion)
distribution d'atténuation connue (reconstruite à partir des acquisition en transmission)
majorité des photons diffusés diffusés une fois seulement

• Mise en oeuvre

1. simulation analytique (diffusé 1er ordre) ou Monte Carlo simplifié (diffusé multiple) des projections (sinogrammes) des photons diffusés à partir des images reconstruites sans correction de la diffusion

⇒ sinogrammes des photons diffusés

2. soustraction des sinogrammes correspondant aux photons diffusés des sinogrammes acquis
 sinogrammes corrigés de la diffusion
 reconstruction des sinogrammes résultants
 coupes reconstruites corrigées de la diffusion
 réestimation des projections (sinogrammes) des photons diffusés à partir des coupes corrigées de la diffusion obtenues à 1 'étape 3
 sinogrammes des photons diffusés

#### Amélioration indéniable de la quantification, et faibles biais résiduels en 3D

| Figure of merit           | Absolute concentration (kBq/ml) |           |
|---------------------------|---------------------------------|-----------|
| Case/compartment          | В                               | D         |
| Calibration concentration | 5.88                            | 4.86      |
| AC                        | 7.66±0.28                       | 5.31±0.17 |
| DEW                       | 6.05±0.23                       | 4.62±0.18 |
| CVS                       | 6.49±0.30                       | 4.68±0.23 |
| SRBSC                     | 6.52±0.30                       | 4.76±0.22 |
| MCBSC1                    | 6.51±0.24                       | 4.81±0.21 |
| MCBSC2                    | 6.55±0.27                       | 4.78±0.15 |

- correction d'atténuation : erreurs : 9% à 30%
- différentes corrections de diffusion : erreurs : -5% à 12%

Zaidi et al, Eur J Nucl Med 2000:1813-1826

# Correction de diffusion en PET : synthèse

- Correction indispensable pour une quantification non biaisée

   activité apparente dans des régions dénuées d'activité
   sans correction, surestimation de l'activité > 10%, notamment en PET 3D
- Pas de solution exacte mais de nombreuses approches de correction

- approche spectrale :

⇒ simple, rapide, prise en compte du diffusé émanant de l'extérieur au champ de vue

⇒ calibration nécessaire

ajustement de la distribution spatiale des photons diffusés
simple, rapide, pas de mesures supplémentaires
nécessaires, prise en compte du diffusé émanant de
l'extérieur au champ de vue

modèle d'ajustement simpliste et non nécessairement réaliste

- calcul direct de la contribution du diffusé

⇒ théoriquement séduisant

⇒ complexe en pratique, pas de prise en compte du diffusé émanant de l'extérieur au champ de vue

• Pas de correction de la diffusion systématique par une méthode "standard" mais quelques méthodes disponibles sur les caméras

- ajustement gaussien des queues de distributions

- calcul direct de la contribution du diffusé premier ordre

#### Coïncidences fortuites en PET



- Dépendent de :
  - la longueur de la fenêtre en coïncidence
  - la quantité de radioactivité dans le champ de vue de la caméra (proportionnel au carré de l'activité vue par le détecteur)
- Mauvaise localisation
- Réduction des capacités de comptage
- Biais quantitatif

→ Nécessite une correction systématique

#### Correction des fortuites en PET : stratégies

• Estimation du nombre de coïncidences fortuites  $N_{random(i,j)}$  pour chaque ligne de coïncidence (i,j) au moyen d'une des deux approches suivantes :

- Estimation à partir des nombres d'événements non coïncidents enregistrés



- Mesure directe au moyen d'une ligne à retard



• Soustraction du nombre de coïncidences fortuites  $N_{random(i,j)}$  pour chaque ligne de coïncidence (i,j) avant reconstruction

• Nombre de coïncidences fortuites

Nb d'événements simples enregistré par le détecteur 1

$$N_{random} = 2 \tau S_1 S_2$$

longueur de la fenêtre de coïncidence

proportionnel au carré de l'activité A vue par le détecteur

- Coïncidences vraies proportionnelles à l'activité A
   ⇒ (fortuits / vrais) proportionnel à A
- Réduction des coïncidences fortuites

   par réduction de la fenêtre de coïncidence
   une correction reste cependant nécessaire

• Nombre de coïncidences fortuites pour une ligne de coïncidence entre les détecteurs 1 et 2 :



#### Estimation via une ligne retard



• Utilisation de deux circuits de coïncidences

• Correction systématique sur toutes les caméras, le plus souvent par une ligne retard

• Pourtant, nécessité de limiter le nombre de coïncidences fortuits, car :

- sans coïncidences fortuites :

$$\sigma(\text{vraies} + \text{diffusées}) = \sqrt{(\text{vraies} + \text{diffusées})}$$

incertitude sur le nombre de coïncidences détectées

- avec coïncidences fortuites, après soustraction des coïncidences fortuites :

 $\sigma(\text{vraies} + \text{diffusées}) = \sqrt{(\text{vraies} + \text{diffusées} + 2*\text{fortuites}))}$ 

La détection de coïncidences fortuites augmente le bruit dans les images, même si on sait les soustraire !

#### • Effet identique au phénomène rencontré en SPECT



Caractéristiques de l'effet de volume partiel en PET



• Libre parcours moyen des positons avant annihilation



| Isotope           | Parcours moyen<br>dans l'eau<br>(mm) | LMH<br>(mm) |
|-------------------|--------------------------------------|-------------|
| Idéal             | 0                                    | 4*          |
| Fluor 18 : F18    | 0,6                                  | 4,1         |
| Carbone 11 : C11  | 1,1                                  | 4,3         |
| Gallium 68 : Ga68 | 3,1                                  | 5,0         |

\* pour un scanner de résolution idéale = 4 mm

• Non-colinéarité des deux  $\gamma$  émis de (180°±0,6°)



effet dépendant du diamètre d de l'anneau
dégradation de LMH de 1 à 2 mm

#### Résolution spatiale en PET : non uniformité transverse

• Dans le plan transverse



- positionnement incorrect plus probable pour les lignes de coïncidence écartées du centre
- effet relativement faible (variation de LMH
   1 mm entre le centre et la périphérie du champ de vue)
- dépend de la taille et de l'arrangement des détecteurs

#### Résolution spatiale en PET : non uniformité axiale



- positionnement d'autant plus incorrect que l'émission est éloignée de l'axe du tomographe
- positionnement d'autant plus incorrect que l'angle d'acceptance entre couronnes est élevé
- ⇒ variation de LMH de ~ 1 à 1,5 mm
- dépend de la taille et de l'arrangement des détecteurs et de l'espacement entre couronnes

- Deux mêmes stratégies qu'en SPECT
  - coefficients de recouvrement



- inversion d'une matrice de contamination croisée



$$m_1 = \mathbf{c_{11}} \ \mathbf{a_1} + \mathbf{c_{12}} \ \mathbf{a_2}$$
$$m_2 = \mathbf{c_{21}} \ \mathbf{a_1} + \mathbf{c_{22}} \ \mathbf{a_2}$$

• Plus de travaux effectués initialement en PET qu'en SPECT sur la correction de volume partiel

# Correction de volume partiel : synthèse

- Correction non nécessaire pour estimer l'activité dans des structures de grande taille (> 3 FWHM)
- Correction indispensable pour une estimation non biaisée de l'activité dans les structures de taille < 2-3 FWHM



Tumeur du poumon Ø = 10,5 mm -1

Sous-estimation (%) des SUV



Corrections

= diffusion (D) + coïncidences fortuites (F)
 = D + F + atténuation (A, carte Cs)

- = D + F + A (carte TDM)
- = D + F + A (TDM) + volume partiel (CC)
- Pas de correction systématiquement appliquée en routine

• Pas de consensus quant à la meilleure méthode de correction : différentes méthodes actuellement en développement

• Quantification absolue

- corrections d'atténuation et de coïncidences fortuites indispensables

 - correction de diffusion nécessaire pour éviter de fortes surestimations d'activité, notamment en PET 3D

 - correction de volume partiel indispensable pour éviter une sous-estimation de l'activité dans les structures de petites tailles (< 2-3 FWHM)</li>

- Quantification relative
  - correction de diffusion nécessaire pour réduire
  - l'activité parasite dans les structures pas ou peu fixantes

- correction de volume partiel nécessaire pour diminuer les biais

• En pratique

- correction de coïncidences fortuites systématique

- correction d'atténuation quasi-systématique (parfois en sus des images non corrigées)

- corrections de diffusion disponibles mais encore peu utilisées

- correction de volume partiel non disponible en routine et utilisée seulement en recherche

- Même problématique qu'en SPECT :
  - fortuits
  - physiologiques (respiratoire et cardiaque)
- Exemple d'impact quantitatif du mouvement en PET oncologique pulmonaire :

#### PET FDG pulmonaire



avec flou cinétique

« sans » flou cinétique

- volume apparent des lésions augmenté de 10% à plus de 30% du fait du mouvement
  - valeur de fixation diminuée de 5% à plus de 100%

Nehmeh et al, J Nucl Med 2002:876-881

- Même solutions qu'en SPECT :
  - synchronisation à l'ECG
  - synchronisation respiratoire (plusieurs travaux en cours)



#### Problème de normalisation



• Les cristaux peuvent être très légèrement différents en dimensions, ou fraction de la lumière de scintillation arrivant sur les tubes photomultiplicateurs, ou épaisseur du cristal vue par les photons incidents suivant l'angle d'incidence

réponses variables des différents cristaux détecteurs

• Correction de ces effets = normalisation

• Enregistrement de la réponse du tomographe lorsque celui ci est soumis à un flux de photons uniforme



• Idéalement, toutes les LOR (i,j) devraient recevoir le m eme nombre d'événements  $N_{ij}$ 

• Facteur de normalisation de la LOR  $(i,j) = N_{ij} / \overline{N}$ , ou  $\overline{N}$  est la valeur moyenne de  $N_{ij}$  pour toutes les LOR

• Correction : pour chaque acquisition, le nombre de coups enregistrés sur la LOR (i,j) est divisé par le facteur de normalisation.

#### taux de comptage mesuré



effet surtout pénalisant en TEP 3D (> 100 kcps/s)

• effectuer si possible les mesures dans la zone de flux correspondant à une réponse linéaire du détecteur

• effectuer l'étalonnage de sensibilité dans la zone de flux d'intérêt

Relier un nombre de coups par seconde à une activité, i.e., rendre compte de la sensibilité de détection





• Calcul du facteur d'étalonnage K par une expérience préliminaire d'étalonnage (utilisant généralement un cylindre uniforme), d'activité connue : K = Y/X

• Activité =  $K \cdot X$ 

Au delà de la mesure de concentration d'activité...



# Estimation de paramètres d'interprétation physiologique ?

# Principe de l'estimation de paramètres physiologiques



#### ajustement des mesures au modèle



paramètres physiologiques relatifs à la région, e.g., constante d'échange, flux sanguin, densité de récepteurs

#### Imagerie du métabolisme du glucose : PET au FDG





• Diagnostic

• Bilan d'extension (examens corps entiers) : détection de métastases

• Suivi thérapeutique

#### Modélisation du FDG en PET



FDG tumeur(t)



# Simplification de l'analyse cinétique complète




Singles : événement détecté à l'intérieur de la fenêtre en énergie, qqsoit son instant d'arrivée par rapport à une fenêtre de coïncidence

Prompt : événement détecté à l'intérieur de la fenêtre en énergie et dans la fenêtre de coïncidence

Multiples :  $\geq 2$  prompts dans une fenêtre temporelle

Random (fortuit) : événement non coïncident détecté dans la fenêtre de coïncidence

Scattered (diffusé) : prompts issus d'une diffusion Compton Delayed : événements enregistrés dans une fenêtre

temporelle décalée (pour correction de coïncidences fortuites)

Prompts = Trues + Scattered + Multiples + Randoms