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Introduction 
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•  Simulation : a computational model of a physical 
system. 

•  A model is a simplified version of reality, in which all 
parameters (usually hidden in the real system) are 
perfectly known, i.e. fully under control. 

•  The role of simulations is to help understand or predict 
the behavior of a complex system: 

-  financial markets 
-  traffic flow 
-  environmental sciences 
-  particle physics 
-  quantum field theory 
-  astrophysics 
-  molecular modeling 
-  light transportations 
-  radiation therapy 
-  medical imaging 
-  …  

Introduction : Simulations ? What for ?  
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•  Analytical simulations 
    - deterministic : yield always the same result with 
the same input  

•  Stochastic simulations (= Monte Carlo simulations): 
    - new paradigm: randomness is an experimental 
tool ! 
    - it can be used to solve problems ! 

Two types of simulations 



ENTERVISION School - Irène Buvat – june 2012 - 6  

•  How can randomness give us solutions to problems? 

Basic example: estimation of π   

Basic principle of stochastic simulations 

1 

area of the circle : Ac = π  
area of the square : As = 4  

throw dots randomly in the square :  
number Ns of dots in the square / number Nc of dots in 
the circle = 4/π	


⇒ π = 4 Nc / Ns	
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•  Stochastic simulations (= Monte Carlo simulations): 
    - Even more puzzling: randomness can be used to 
solve problems for which no analytical solution can be 
derived ! 

The power of stochastic simulations 



ENTERVISION School - Irène Buvat – june 2012 - 8  

•  French Comte de Buffon (1777) : estimated π by 
tossing a needle on a line background. 

•  Fermi (1930) : random method to calculate the 
properties of the newly discovered proton 

•  John von Neumann, Stanislas Ulam and Metropolis 
(1940’s) used simulations to determine the distance that 
neutrons traveled through radiation shielding 

•   Rapid growth with the availability of digital 
computers 

•  First numerical Monte Carlo simulation of photon 
transport by Hayward and Hubbell (1954) who 
generated 67 photon histories using a desk calculator 

•  Berger (1963) : first coupled electron-pgoton 
transport code that became known as ETRAN 

•  Exponential growth in Medical Physics and Medical 
Sciences 

A brief history of stochastic simulations 
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Increasing use of Monte Carlo methods in Medicine 
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Reasons explaining this growth 

•  Increase in computing power and availability in the 
last 5 decades 

•  Increase availability of powerful software tools 
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Where does the wording “Monte Carlo” come from?  

•  The legend says that the method was named in honor 
of Ulam’s uncle, who was a gambler, at a suggestion of 
colleague Metropolis. They both produced the first 
paper describing the approach:  
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The key ingredient 
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The random number generator 
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•  It can’t. 

•  Pseudo random numbers are used instead. 

•  This is actually more practical for debugging, as a 
sequence of random numbers can be reproduced.  

•  PRNG = pseudo random number generator (sometimes 
just called RNG). 

•  Many PRNG are implemented in mathematical 
libraries. 

How can a computer generate random number ? 
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•  LNG 

•  Start from a sample rn. 

•  rn+1 = (a rn + c) mod m, i.e., remainder of (a rn + c)/m 

where a, c and m should be careful chosen (from tables). 

•  Easy to implement, quick, requires minimal memory. 

•  Short period: the same number sequence repeats itself 
after a relatively small number of samples. 

•  The period is at most equal to m 

Simple example: the linear congruential generator 
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•  Park and Miller (period = 231-2) 

•  Lüscher (period = 10171) 

•  Mersenne Twister invented in 1997 (period = 219937-1) 

Series of tests have been developed to characterize the 
quality of an RNG. A well known suite of test that can be 
used is the TestU01 of l’Ecuyer (ACM Trans Math Soft, 
2007). 

Other PRNG 

Note that in MC simulations for medical physics, an 
extremely large number of random drawings is 
performed. The quality of the PRNG is thus of foremost 
importance to avoid bias. 
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•  Most PRNG sample positive integer values between 0 
and N. 

•  A uniform distribution between 0 and 1 is obtained by 
dividing the value by N.  

•  Most often, one has to sample from a non-uniform 
probability density function (PDF). 

Several methods can be used to go from a uniform 
distribution to a non-uniform PDF. 

Sampling any distribution of interest 

Reminder: 

If a PDF is p(x), 

the Cumulative Distribution Function CDF is : 

 P(x) =    p(x)dx ∫ 
-∞ 

x 

In the following, we will sample p(x) 
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1.   Sample u from the uniform distribution on [0,1] 

2.   Locate u on the y-axis of the CDF P(x) of p(x) 

3.   Find the x value such as P(x)=u 

Easiest method: The inversion method 

The sampling method can be used whenever the target 
CDF is invertible 

P(x)  

0	



1	



u 

x following p(x) 0	

 10	





ENTERVISION School - Irène Buvat – june 2012 - 18  

•  Also called rejection sampling 

•  Often used when the CDF is not analytically invertible 
or when the inversion is computationally burdensome   

•  This is an exact sampling method 

The acceptance - rejection sampling method 

1.   Choose an easy-to-sample PDF g(x) and a constant 
c so that c x g(x) ≥ p(x) for every x 

2.  Generate a random number y from g(x) (for instance, 
using the inversion method)  

3.  Generate a random number u distributed uniformly 
between 0 and 1 

4.   If  u < p(y)/ [c x g(y)], then accept y as the random 
sample 

5.   Otherwise, reject y and start again at step 2  

How does that work ? 
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•  Sampling y from g gives the wrong distribution for p 

•  But we reject the sample y in proportion of how far off 
we are at y 

The acceptance - rejection sampling method (2) 

0	



0.9	



y 0	

 8	



p(x)  g(x)  

c x g(x) is a majorizing function   

u 

 If  u < p(y)/ [c x g(y)], then accept y as the random 
sample 

 Otherwise, reject y and start again 
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•  Especially when the PDF is derived from experimental 
data (for example cross-sections) 

•  The finer the sampling, the lower the bias (interpolation 
has to be used between samples) 

Using look-up tables 
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•  Random sampling functions of many common PDF are 
available in  mathematical code libraries 

•  The use of these functions is usually recommended, 
especially for the Gaussian PDF and the Poisson PDF 
often used in simulations in Medical Physics 

Library functions 
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Monte Carlo simulations in imaging and RT 

Basic principles 
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Four main steps 

•  Modeling a geometry	



•  Modeling the sources of particles	


-  Nuclear decay in emission imaging	


-  Sources of photons for X-ray CT	


-  Beams (photons, electrons, protons, 
Carbon ions) for radiation therapy	



•  Modeling the interactions between particles 
and matter	



-  Electromagnetic interactions	


-  Hadronic interactions	



-  within the phantom / patient	


-  within the detector in imaging simulations	



•  Storing relevant information	


-  related to the detected events in imaging 
applications	


-  related to dose deposit in radiation 
therapy applications	
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Modeling a geometry of the object / detector 

•  2 types of object / patient / detector models	


-  analytical description: the phantom/
patient is described using a set of 
geometric primitives (box, cylinders, 
spheres, ellipsoids)	



-  voxelized description: a series of images 
(i.e. a volume)	



from Handbook in Particle Detection and Imaging, Springer, 2012, p 1106 	
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•  Analytical:	


-  optimizes computational efficiency: 
navigation through geometric primitives is 
faster than navigation through voxels	



-  easy modelling of deformation and 
motions	



-  any sampling	



-  hard to model a realistic patient only with 
primitives, or the number of geometric 
primitives gets so high that the benefit of 
using primitives disappears	



•  Voxelized:	


-  can be highly realistic, starting from a CT 
scan for instance	



-  when navigating, the simulation must 
update the object properties at each voxel 
change: computationally intensive !	



Advantages and drawbacks of the patient description 
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•  Programming a geometry description is not 
difficult conceptually, but can be very tedious 
for complex geometries 

⇒ Describing the simulation geometry is 
reduced to learning the syntax of an input file 
or learning to operate a Graphical User 
Interface 

Modeling a geometry 
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Modeling nuclear decays 

•  Generate one decay at a time	



•  Stop through the voxels, or primitives in the 
patient volume and 	



-  calculate the mean number n of decays 
for the current time frame (activity in Bq x 
duration of the frame in s)	



-  sample a Poisson variable with this mean 
n to get the number of decays in this voxel 
or primitive 	



-  For each decay :	


  randomly pick a point within the 
voxel or primitive for the decay	


  randomly pick a time within the time 
frame from a truncated exponential 
distribution with λ being the half life of 
the isotope (or from a uniform 
distribution if radiactive decay can be 
ignored)	
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Gamma decays 

•  Single decay mode: the photon is always 
simulated with the same energy	



•  Multiple decay mode: photons are produced 
with different energies and different 
probabilities, with a time correlation between the 
various decay products. 	


If the half life of the intermediate decay products 
is very short, multiple decays are simulated 
simultaneously (with the same time stamp) 	



•  Select the direction of travel of the photon 
given by a unit director vector v  :	



-  sample θ from a uniform distribution on [0;2π)	


-  sample µ from a uniform distribution on [-1;1]	


-  Let φ = cos-1(µ)	


-  Set v = (cos(θ)sin(φ), sin(θ)sin(φ), cos(φ))	
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Positron decays 

•  Positron travel before annihilation can be 
simulated but this is computationally expensive	



•  Most often, « back-to-back » annihilation 
photons are simulated instead	



•  Ideally, if back-to-back simulations, the 
annihilation location should be chosen away 
from the positron location (e.g., using the 
distribution by Palmer and Brownell 1992)	



•  One photon direction is chosen as in the 
gamma decay modeling	



•  The other is chosen either at 180°, or modeling 
the acolinearity: the angle between the 2 photons 
is 180° + ε, where ε is a normal random variable 
with mean 0° and standard deviation of 
approximately 5° (Evans 1955).	



Palmer and Brownell 1992 IEEE Trans Med Imaging 11:373-378	


Evans 1955 The atomic nucleus McGrax-Hill, New York 	
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Sources of X-rays for transmission imaging 

•  X-ray sources are polyenergetic and are 
collimated	



•  This can be simulated but is computationally 
expensive	



•  Most often: 	


-  a point source is modelled	


-  an idealized energy distribution is used, 
sometimes based on experimental 
measurements or preliminary simulations	
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Beam(s) in Radiation Therapy	



•  Most often the beam is assumed to be radially 
symmetric, having a Gaussian angular spread	



•  Iterative adjustment of the energy and 
divergence to match experimental profiles	



Monte Carlo modelling of a 135 MeV proton beam 	





ENTERVISION School - Irène Buvat – june 2012 - 32  

Prerequisite: modeling the properties of the 
object/patient 

•  Whatever the object / patient / detector 
description, the material in each component of 
it should be precisely described, so that 
particle-matter interaction can be properly 
simulated.	



•  Each primitive or voxel is associated with a 
material, corresponding to a particular 
chemical composition.	



Modeling the particles / matter interactions 

mass fraction	
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•  When a CT is used to describe the patient, one 
has to convert the Hounsfield Units into materials 

•  Methods have been described for such a so-
called stoichiometric calibration, see for instance:	



Schneider et al, Correlation between CT numbers 
and tissue parameters needed for Monte Carlo 
simulations of clinical dose distributions. Phys. 
Med. Biol. 45 459–78, 2000 

Deriving materials from CT units 
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Where will the particle interact? (1) 

•  The most computationally expensive 
calculation, because it needs to be calculated 
an extremely high number of times !	


•  In a uniform medium, the exponential 
distribution based on the mean-free path of the 
particle gives the distribution of distances a 
particle travels before an interaction.	



•  Using the inversion method, we can sample 
from this distribution using:	



	

d= -ln (u) / λ	


where λ is the mean free path and u follows a 
uniform distribution on (0;1)	



•  As we are not tracking through a uniform 
medium, we calculate:	



	

d= -ln (u)	


and we adjust to non-uniform media by 
travelling until:	



	

Σ µidi = d	

i=1	



D	

 µi is the length of particle path 
across the ith material segment	



µi is the attenuation for i <D	
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Where will the particle interact? (2) 

•  If the particle leaves the space defined in our 
simulation before the sum reaches d, we 
conclude it has escaped without interacting	


•  Otherwise, we simulate an interaction at 
position:	



 	

(x,y,z) +              (u,v,w)	



where (w,y,z) was the initial position of the 
particle 	


and (u,v,w) gave the direction of the particle	



i=1	



D	


Σ µidi = d	



i=1	



D	


(Σ di)	



µi is the length of particle path 
across the ith material segment	



µi is the attenuation for i <D	
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Which interaction ? 

•  Let’s consider the example of a photon 
undergoing electromagnetic interactions	



•  4 types of interactions are possible: 
photoelectric, Compton, Rayleigh, pair 
production, so that 	



 	

µ = µpe + µc + µr + µpp	



•  To sample which interaction will take place, we:	


-  sample u from the uniform distribution on [0,1)	


-  simulate a photoelectric absorption if 0 ≤u< µpe/µ	


-  simulate Compton scatter if µpe/µ ≤u< (µpe+µc)/µ	


-  simulate Rayleigh if (µpe+µc)/µ ≤u≤(µpe+µc +µr)/µ	


-  otherwise simulate pair production	



Same principle for other particles, as a 
function of the interactions they can undergo	





ENTERVISION School - Irène Buvat – june 2012 - 37  

Simulating photoelectric absorption 

•  In imaging applications:	


-  when a photon is absorbed by 
photoelectric absorption in tissues, it 
disappears: end of history for this photon	



•  In dosimetry applications:	


-  when a photon is absorbed by 
photoelectric absorption, the energy 
dissipation has to be modelled	



•  In collimators:	


-  the energy might be re-emitted as X-rays 
characteristics of the collimator component 
(e.g. lead) and these X-rays can be 
simulated	



•  In scintillators:	


-  the energy is re-emitted as scintillation 
photons, that can also be simulated (but 
VERY TIME CONSUMING !)	
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Simulating Compton scatter 

•  The photon changes direction and loses energy with:	



[1 + Ein(1-cos α)/511]	


Eout =	



Ein	



where α is the angle between the incoming and outgoing 
photon directions.	



α can be sampled from the Klein-Nishina distribution:	



Kahn developed an acceptance-rejection method to 
sample the KN distribution.	



Beware: this distribution does not account for the 
binding energy of the electron, which becomes a 
significant factor for low-energy photons in high Z 
materials: either use an adjustement (Ljungberg et al 
1998) or use Look Up Tables (Cullen et al 2010)	



Ein	


Eout

	



Eout
2	



Ein
2	

 +	



Eout	


Ein

	

 - 1 + cos α	



•  Ljungberg. 1998 Introduction to the Monte Carlo method.  In Monte Carlo calculations 
in nuclear medicine, IOP. 
•  Cullen et al 2010  http://www-nds.iaea.org/epdl97/ 
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Simulating Compton scatter (2) 

•  α determines a cone of possible outgoing 
directions.	



•  A uniform distribution on [0, 2π) is used to 
sample that cone and determines the final 
outgoing direction 	



α	
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Simulating Rayleigh scatter 

•  At low photon energy, the likelihood of 
scattering at an angle α with respect to the 
initial photon direction is proportional to 	



                        Z(1 + cos2α)	



in an element with atomic number Z.	



•  As photon energy and Z increase, atomic 
form factors should be accounted for.	



•  Look-up tables should be used at high energy 
and high Z-materials.	
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Simulating pair production 

•  Only for photons with energy > 1 022 keV	



•  In medical applications, does not occur in 
biological tissues, but can occur in high-Z 
materials (lead) for high energy photons (> 
2MeV)	



•  If pair production, the excess energy above 
1022 keV is shared between the electron and 
the positron as kinetic energy.	



•  Total cross sections are based on highly 
sophisticated partial-wave analysis calculations 
which are known to be accurate to much better 
than 1%. The details of energy sharing 
between the electron and positron is not of 
importance for medical physics applications. 
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Simulating the photon detection in imaging 

•  In crystals (PET and SPECT)	


-  same physics as in the patient/phantom, 
except the material is different	


-  the energy deposited in the detector is of 
interest, as its gets converted into 
scintillations photons that are ultimately 
collected by the photomultipliers	


-  most often, one assumes that the gamma 
energy is deposited locally: good 
approximation as electrons have a very 
short range in detector crystals	


-  scintillation photons can be tracked by 
general purpose codes, but given they are 
many, this is not computationally efficient. 
For instance, a photon of 140 keV in a NaI
(Tl) crystal yields 6000 fluorescence 
photons	



-  for most applications, simpler models for 
the detector response can be used 	
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Modeling electron and positron interactions 

•  Inelastic collisions with atomic electrons that 
lead to ionizations and excitations 

 - Interactions with energy transfer large 
compared to the binding energies: Møller (e−) or 
Bhabha (e+) cross sections 

 - Bethe-Bloch stopping power theory, excellent 
agreement with measurements 

•  Bremsstrahlung in the nuclear and electron 
fields 

 - Very well understood at high energies (100+ MeV) 
 - Well understood at low energies (≤ 2 MeV) in 

terms of partial-wave analysis calculations 
 - Interpolation schemes in the intermediate 

energy range, excellent agreement with measurements 

•  Elastic collisions with nuclei and atomic 
electrons: very well understood in terms of 
partial-wave analysis calculations 

•  Positrons: annihilation 
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Simulation of photon transport vs of e- / e+ transport 

•  Simulation of photon transport: easy as the 
mean number of event in each photon history is 
small: the photon is absorbed after single 
photoelectric interaction or after few Compton 
interactions (typically ~10) 

•  Much more difficult for electrons and 
positrons: the average energy loss of an electron 
at each interaction is very small (~ 0.1 eV). 
Many interactions occur before the electron is 
absorbed in the medium.  
-  Tractable only for low energy electrons (< 100 
keV) or thin targets 
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Modeling transport of charged particles 

•  Unlike photons, charged particle undergo a 
huge number of collisions before being locally 
absorbed (∼ 106 for an electron in a typical 
radiotherapy application)  
⇒ Event-by-event simulation is not practical  

•  Fortunately, most interactions lead to very 
small changes in energy and/or direction 
⇒ combine effect of many small-change 
collisions into a single, large-effect, virtual 
interaction ⇒ Condensed History (CH) 
simulation (introduced by Berger in 1963) 

•  The PDF for these large-effect interactions are 
obtained from suitable multiple scattering 
theories 

•  The CH technique is used by all general 
purpose MC packages and by fast MC codes 
specializing in RTP calculations 
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Modeling hadronic interactions 

•  Many models: 
-  Bertini model for p and n 
-  Cascade exciton model 
-  Binary cascade model 
-  JAERI quantum molecular dynamic 
-  JET AA microscopic transport model 
-  Boltzmann master equation model 
-  Shen model 
-  Tripathi model 
-  …  

The models should be selected as a function of 
the intended application (mostly energy and 
particle involved) 

•  Fortunately, recommendations are usually 
published to help the user chose the appropriate 
model in a given code  
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Choice of the physics models 

•  All physics relies on the physics models, and 
in the total and differential cross-section tables	



•  Photon and electron interactions with atoms 
and molecules are described by Quantum 
Electrodynamics 

•  QED is a very well understood physics 
theory 

•  Complications at low energies (as energies 
and momenta are comparable to the binding 
energies) or at very high energies (radiative 
corrections, formation time, possibility to 
create muons and hadrons, etc) 

•  Interactions are very simple to model in the 
energy range of interest for emission 
tomography, transmission tomography and 
external beam radiotherapy. Far more 
challenging for hadrontherapy. 
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Useful resources for physics models  

•  Photon cross-sections database:	


http://www.nist.gov/pml/data/xcom/index.cfm	



•  X-ray form factors, attenuation and scattering 
tables 
http://physics.nist.gov/PhysRefData/FFast/
html/form.html 

•  Table of nuclides 
http://atom.kaeri.re.kr/index.html 

•  Stopping power and range tables 
http://physics.nist.gov/PhysRefData/Star/Text/
ESTAR.html for electrons 
http://physics.nist.gov/PhysRefData/Star/Text/
PSTAR.html for protons 
http://physics.nist.gov/PhysRefData/Star/Text/
ASTAR.html for Helium ions 

•  X-ray transition energies 
http://www.nist.gov/pml/data/xraytrans/
index.cfm 

•  IAEA photon and electron interaction data 
http://www-nds.iaea.org/epdl97/ 
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Models for the detector response 

•  Need for accounting for the imperfect 
detector response in terms of energy resolution, 
event positionning, and time resolution 	



•  Energy resolution	


Edetected = Edeposited + N(0,σ)	



where N is a sample for a centered Gaussian 
distribution with 	



2     2ln2	


σ =	



FWHM     E0Edeposited	



with FWHM of the energy response measured 
at energy E0.	



When multiple energy deposits occur in the 
same crystal, they should be summed (before 
or after adding an error term) to get an 
estimate of the detected energy.	
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Models for the detector response 

•  Spatial resolution	



Event positioning is usually performed at the 
energy-weighted centroid of the interaction 
location in the crystal 	



An error term (most often Gaussian) can be 
added (as for energy determination) to account 
for the limited spatial resolution of the 
photomultipliers and associated electronics	



•  Time resolution	



Time management is important in a number of 
applications, especially PET (for coïncidences, 
time of flight), dynamic scanning, modelling 
detector motion, modeling tracer distribution, 
etc… 	



For these applications, dedicated models of 
dead time (paralyzable or non-paralyzable), 
pile up, random coincidences exist	
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Models for the detector response 

Models of the detector response are almost 
always based on experimental measurements 
to get key parameters involved in the models:	



-  energy resolution at a certain energy	


-  PMT mispositioning 	


-  pile-up	


-  dead-time coefficients	


-  handling of multiple coincidence in PET 
(although the company could tell)	


-  etc	
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Storing relevant information out of simulations 

•  Wording: 	



The storage of relevant information regarding 
the simulations can be called:	



	

- histogramming	


	

- scoring	


	

- sorting	


	

- binning	


	

- defining tallies	



as a function of the software.	



Don’t get mixed up by these different words.	



•  The user can usually define the pieces of 
information that he wants to store  	
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Storing relevant information 

•  Simulation strengths: all parameters related 
to the history of the particles can theoretically 
be tracked	


•  Most relevant information include:	


-  nature of the detected event (unscattered, 
scattered)	


-  initial emission location/energy of the 
detected event	


-  detected energy	


-  number of scatter and type of scatter	


-  location of interactions within the patient and 
within the detector	


-  time of decay	


-  time of detection	


-  momentum at emission	


-  momentum at detection 	



-  particle fluence	


-  amount of energy deposited in a certain 
volume	
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Accelerating the simulations 
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Two main approaches 

•  The computational burden of MC simulations 
is still the bottleneck for their wide use in 
research and clinical environments	



•  Algorithmic approaches	


-  Variance reduction techniques	


-  Fictitious interaction tracking	


-  Convolution forced detection	


-  Hybrid simulations	



•  Hardware approaches	
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Algorithmic approaches 

•  Variance reduction techniques (also called 
importance sampling)	



- Reduce the variance of the estimates without 
adding bias	



- Principle: simulate more of the particles that 
have a high likelihood to effectively contribute 
to the end result (e.g., be detected, deposit 
energy) than the others 	



- Bias is avoided by assigning weights to the 
simulated particles: weights are incremented/
reduced as a function of the biased sampling 
we use 	



•  Includes stratification sampling and forced 
detection	
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Variance reduction techniques 

•  Stratification	


Simulate particles in proportion to the 
probability that they will yield a useful event 
(i.e. not exit the simulation without yielding 
any useful signal like event detection or energy 
deposit)	



For instance, simulate more particles towards 
the detector than in the opposite direction	
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Variance reduction techniques 

•  Stratification	


Determination of the weights	



run 1	



run 2	



optimize stratification cells	



optimize stratification cells	



optimize stratification cells	



+	



+	



+	



initial stratification cells	



run 3	
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Variance reduction techniques 

•  Forced detection	


When a photon interacts in a patient:	


-  force a Compton scatter instead of a 
photoelectric absorption, 	


-  for the scattered photons to travel towards the 
detector (e.g.,  within the acceptance angle of 
the collimator in SPECT) 	



In FD, the choice of the photon angle is 
stochastic, so that each scatter point in the 
object produces a small noisy cloud on the 
projection	
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Fictitious interaction 

•  Also called delta tracking or Woodcock tracking	



•  Unbiased	



•  Principle: photons of energy E are tracked as if the 
total linear attenuation coefficient μi(E) is the same for 
all voxels i and such that:	



	

μrep(E) ≥ μi(E) 	



The travel distance to the next interaction (real or 
fictitious) will always be equal or shorter than in reality.	



For each interaction in voxel i with material m = m(i)	


	

Rm(E) = μm(E) / μrep(E)	



represents the probability that the interaction is a real 
interaction. 	



Using a uniform random number r ∈ ]0, 1], it is then 
tested if a real or fictitious interaction takes place.	



If r > Rm(E), the particle remains unchanged. This 
occurs more often in less attenuating materials and 
reduces the number of real interactions to the correct 
value.	
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Fictitious interaction (2) 

•  The heterogeneity of the phantom is incorporated by 
introducing fictitious interactions instead of 
recalculating the remaining path length at each voxel 
boundary like in conventional tracking. 	



•  When the replacement mean free path length is larger 
than the voxel size, this leads to fewer real and fictitious 
interactions than voxel boundaries and thus can lead to 
reduced simulation time.	



Rehfeld et al, Phys Med Biol 2009	
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Convolution forced detection 

•  Can be used to estimate the scatter distribution 
quickly	


It is based on an estimate of the detector spatial 
resolution (and biased), but can be very effective	



Photons are forced parallel to the collimator 
hole axis.	


Only the photon weights of these photons are 
calculated and their sum is stored in voxels. 	


Voxels in layers L(x,y) at different distances z 
from the collimator are convolved with an 
appropriate distance dependent collimator 
response that is pre-stored in a table.	
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Hybrid simulations 

•  Combining Monte Carlo simulations with 
analytical models 	



•  For instance, the contribution of the primary 
(unscatter) component to the projections is 
calculated using analytical simulations, while 
the scatter component is calculated using the 
MC approach	



•  Can be pretty accurate for some applications	



Zaidi et al, Med Bio Eng Comput 2007	



X-ray simulations	
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Other optimization tricks 

•  Optimizing the “cuts” in the simulations	



•  Cuts are value below which the particles are 
not tracked anylonger. Can be expressed as an 
energy, or a distance	



•  There is not “magic” rule: cuts should always 
be optimized as a function of the application. 
This is worth it to save computation time	
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Hardware approaches 

•  Parallelization of the code	



•  MC simulations well suited for 
parallelization as particle histories are 
independent from one another.	



•  Still, attention should be paid to the 
initialization of the random seeds not to 
introduce spurious correlations in the data.	



•  Apart from the simulation initialization steps, 
the speed-up factor is close to the number of 
processors that are used. 	
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Options in hardware approaches 

•  Cluster of workstations	



•  Arrays of transputers	



•  Geographically distributed platforms (grids) 
through a grid middleware (does exist for a 
number of MC simulation tools)	



•  And now GPU and clusters of GPU	
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Simulation tools in Emission Tomography and RT 
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Simulation tools in Emission Tomography and RT 

•  Two types of tools : 

-  General purpose tools for modeling particle-matter 
interactions : 

-  Geant4 
-  MCNPX 
-  EGS4/EGSnrc 
-  FLUKA 
-  PENELOPE 
-  … 

-  Dedicated tools 
-  BEAMnrc : Radiation therapy only 
-  Simset : PET and SPECT 
-  SIMIND : SPECT only 
-   SORTEO : PET only 
-  GATE : PET, SPECT, CT, and Radiation Therapy 
- … 
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GEANT4:  a toolbox  

  GEANT4: a toolkit for the simulation of the passage 
of particles through matter	


GEANT4 stands for GEometry ANd Tracking 4 

  GEANT4 is an Opensource software (C++, object-
oriented) widely used in high energy, nuclear and 
accelerator physics, as well as studies in medical and 
space science 

  GEANT4 is developed by an international 
collaboration (a total of 38 institutes contributed), 
organized in 16 working groups 
https://geant4.cern.ch/collaboration/
working_groups.shtml  

  First release in 1998, current release is Geant4.9.5 

  Two reference papers published : 
-  Nuclear Instruments and Methods in Physics Research 
A 506: 250-303, 2003. 
-  IEEE Trans Nucl Sci 53: 270-278, 2006 

  Main resource: http://geant4.cern.ch/ 

A good introduction to GEANT4 :  
http://geant4.web.cern.ch/geant4/UserDocumentation/
UsersGuides/IntroductionToGeant4/html/index.html 
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MCNPX 

  MCNPX: a general-purpose Monte Carlo radiation 
transport code for modeling the interaction of radiation 
with everything.  
MCNPX stands for Monte Carlo N-Particle eXtended. 

  MCNPX is a free software widely used for nuclear 
medicine, nuclear safeguards, accelerator applications, 
homeland security, nuclear criticality, outer space 
applications, deep underground applications, … 

  MCNPX is developed by the Los Alamos 
International Laboratory 

  First release in 1997 
  Current release is MCNPX 2.7 
  MCNPX is written in Fortran 90, runs on PC 
Windows, Linux, and unix platforms, and is fully 
parallel (PVM and MPI) 

  Main resource:  
http://mcnpx.lanl.gov/ 
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EGS4/EGSnrc 

  EGS4: Monte Carlo code for performing simulations of 
the transport of electrons and photons in arbitrary 
geometries 
EGS stands for Electron Gamma Shower. 
Initially developed by the Stanford Linear Accelerator 
Center (SLAC). Now maintained by the KEK, the 
japanese High Energy Accelerator Research Organization 

  EGSnrc is an extended and improved version of the 
EGS4 package originally developed at SLAC. EGSnrc is 
developed by the National Research Council Canada	


-  significant improvements in the implementation of the 
condensed history technique for the simulation of charged 
particle transport and better low energy cross sections 

  EGS4 released in 1984, EGSnrc released in 2000 
EGS4 is written in MORTRAN, EGSnrc is written in C++ 
and runs on Unix, Linux, Windows and, to some extent, 
on Mac OS X.	



  Two reference papers published : 
-  Medical Physics 27: 485-498 , 2000 
-  Medical Physics 27: 499-513 , 2000 

  Main resource:  
http://irs.inms.nrc.ca/software/egsnrc/ 
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FLUKA 

  FLUKA: Fully integrated particle physics Monte Carlo 
simulation package 

  Developed by 16 labs around the world. 
Written in Fortran 77 

  FLUKA can simulate with high accuracy the interaction 
and propagation in matter of about 60 different particles, 
including photons and electrons from 1 keV to thousands 
of TeV, neutrinos, muons of any energy, hadrons of 
energies up to 20 TeV and all the corresponding 
antiparticles, neutrons down to thermal energies and 
heavy ions. The program can also transport polarised 
photons (e.g., synchrotron radiation) and optical photons.  

  Main resource:  
 “The FLUKA code: Description and benchmarking” 
Battistoni et al, Proceedings of the Hadronic Shower 
Simulation Workshop 2006, 
Fermilab 6--8 September 2006, M. Albrow, R. Raja eds., 
AIP Conference Proceeding 896, 31-49, (2007)  

"FLUKA: a multi-particle transport code" 
A. Ferrari, P.R. Sala, A. Fasso`, and J. Ranft, 
CERN-2005-10 (2005), INFN/TC_05/11, SLAC-R-773 
http://www.fluka.org/fluka.php  
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PENELOPE 

  PENELOPE: a Monte Carlo algorithm and computer 
code for the simulation of coupled electron-photon 
transport 
Developed by the Universotry of Barcelona and 
distributed by the Nuclear Energy Agency 

  PENELOPE: acronym for PENetration and Energy 
LOss of Positrons and Electrons (photon simulations were 
introduced later)  

  First version released in 1996, written in Fortran 

  Main resource:  
http://www.nea.fr/abs/html/nea-1525.html	


where all papers can be downloaded.	
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Useful comparison between general purpose codes 

  Slightly out of date but still useful: 
-  Compares the codes in terms of : 

•  general information 
•  geometry capabilities 
•  source 
•  physics capabilities 
•  scoring and results 
•  variance reduction techniques 
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Advantages and limitations of the GP codes 

•  Advantages : 
-  Large community of users 
-  Significant manpower involved in code 
development 
-  Many users: extensive testing of the codes 
-  Documentation, user support and training 

•  Limitations: 
-  Complex as they support many applications 
- No necessarily easy to adapt to one’s own 
application 
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BEAMnrc 

  Monte Carlo simulation system for modelling 
radiotherapy sources which is based on the EGSnrc 
code system for modelling coupled electron and photon 
transport	



  Supported by the National Research Council Canada	



  BEAMnrc released in 2001, works on Linux, Unix, 
Windows, and possibly Mac OSX. Fortran F77 and C	



  Free for non-commercial users	



  Reference paper published : 
-  D. W. O. Rogers, B. A. Faddegon, G. X. Ding, C.-M. 
Ma, J. Wei, and T. R. Mackie, BEAM: A Monte Carlo 
code to simulate radiotherapy treatment units, Medical 
Physics 22: 503-524 , 1995 
-  complete list of publication on the web site 

  Main resource:  
http://irs.inms.nrc.ca/software/beamnrc/ 
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SimSET 

  Dedicated to simulations in SPECT and PET 

  SimSET stands for SIMulation System for Emission 
Tomography 

  Developed by the University of Washington (Robert 
Harrison) 

  First released in 1993, freely available, written in C, 
runs on Unix, Linux, Mas OS 

  Does not explicitly manage time (so specific functions 
to model TOF, random coincidences, some limitations 
regarding the modelling of the scanners 

  Main resource:  
http://depts.washington.edu/simset/html/
simset_main.html	
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Simind 

  Dedicated to simulations in planar scintigraphic 
imaging and SPECT 

  Developped by Professor Michael Ljungberg,  
Lund University, Sweden 

  first released in  

  written in FORTRAN-90, runs on Linux, Mac OS 10,  
and Windows. 

  Main resource:  
Ljungberg, M. and Strand, S.-E. A Monte Carlo 
Program Simulating Scintillation Camera Imaging. 
Comp.Meth.Progr.Biomed. 29, 257-272. 1989
http://www2.msf.lu.se/simind/	
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GATE : a unique tool for modeling ET, CT and RT 

  GATE: Geant4 Application for Emission Tomography, 
Transmission Tomography and Radiotherapy 

  GATE is an Opensource software dedicated to the 
simulation of imaging (SPECT, PET, CT) and 
radiotherapy, and based on the Geant4 toolbox 

   GATE is developed by the international OpenGATE 
collaboration, including 17 labs 

  First release of GATE in May 2004 
  17 releases since that date 
  Currently: GATE V6.1 

  Broad range of applications: 
-  Detector design 
-  Optimisation of acquisition and processing 
protocols 
-  Assessment of quantification methods 
-  Estimation of the system matrix used in 
tomographic reconstruction 
-  Dosimetry 
-  Radiation therapy (conventional and 
hadrontherapy) 
-  … 
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GATE : main technical features (1) 

•  GATE is based on Geant4: http://www.geant4.org  

•  GATE is written in C++ 

•  GATE is user-friendly as simulations can be designed and 
controlled using macros, without any C++ writing 

•  GATE can simulate SPECT, PET and CT scans and 
radiotherapy treatments 

•  GATE is flexible enough to model almost any detector 
design, including prototypes 

•  GATE explicitly models time, hence makes it possible to 
model detector motion, patient motion, radioactive decay, 
optical photon tracking, dead time, time of flight, tracer 
kinetics 

•  GATE can handle analytical or voxelized phantoms 

•  GATE can run on a cluster architecture and on a grid 

•  GATE can be freely downloaded, including sources 

•  GATE can be run on many platforms (Linux, MAC OS, 
Windows) 

•  GATE is also distributed as a virtual image 
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GATE : main technical features (2) 

•  Online documentation (wiki) about GATE, including 
FAQ  

•  Help about the use of GATE can be obtained through the 
gate-user mailing list (more than 1200 subscribers) 

•  Archives of the gate-user posts on 
http://dir.gmane.org/gmane.comp.science.opengate.user 

•  Many commercial or prototype systems have already 
been modeled using GATE and most models have been 
thoroughly validated (list available on 
http://www.opengatecollaboration.org) 

•  The GATE project is mostly based on volunteer 
participation and on the active contribution of GATE 
developers and users 
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GATE resources 

-  GATE URL: http://www.opengatecollaboration.org 

-  GATE user mailing list: 
gate-users@lists.opengatecollaboration.org 

- GATE documentation (wiki): 
To install GATE: 
http://www.opengatecollaboration.org/InstallingGATE 
To use GATE: 
http://www.opengatecollaboration.org/Documentation 

- GATE publications: 
http://www.opengatecollaboration.org/Publications 
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GATE : first reference article 

Jan et al, Physics in Medicine and Biology 2004: 4543-4561 

Article freely available on 
 http://www.guillemet.org/irene/article/gatepmb.pdf 
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GATE : second reference article 

Jan et al, Physics in Medicine and Biology 2011: 881-901 

Article freely available on 
 http://www.guillemet.org/irene/article/jan2011.pdf 
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Comparing code performances 

•  There are papers comparing code performances, 
or validation a code against another 

•  There is no “best” code: the best code depends 
on the intended application 

•  Example of code comparison: 
-  For PET applications: Buvat et al. Unified 
description and validation of Monte Carlo 
simulators in PET. Phys Med Biol 2005 

-  For proton therapy applications: Seravalli et al. 
Monte Carlo calculations of positron emitter 
yields in proton radiotherapy. Phys Med Biol 
2012	



-  For conventional radiotherapy: Comparison of 
GATE/GEANT4 with EGSnrc and MCNP for 
electron dose calculations at energies between 15 
keV and 20 MeV. Phys Med Biol 2011	


… 



ENTERVISION School - Irène Buvat – june 2012 - 86  

Numerical models for patient description 
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Reminder: two types of models 

•  Analytical: the phantom/patient is described 
using a set of geometric primitives (box, 
cylinders, spheres, ellipsoids)	



•  Voxelized description: a series of images (i.e. 
a volume)	



from Handbook in Particle Detection and Imaging, Springer, 2012, p 1106 	
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Analytical models 

•  The MCAT, NCAT, XCAT family 

•  History 

MIRD5	


1969	



dosimétrie	



4D-MCAT	


1999-2001	



SPECT and PET	


cardiac and respiratory motions	



anatomical variability	



4D-NCAT	


2001	



SPECT and PET	


NURBS representation	
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NCAT and XCAT: NURBS representation 

•  NURBS : Non-Uniform Rationale B-Splines  

•  Primitives allowing for modeling complex curves and 3D 
surfaces 

•  Easy to parameterized volumes using (affine) 
transformation applied to control points 

* http://www.nlm.nih.gov/research/visible/visible_human.html 

•  The NURBS primitives have been parameterized (using 
the Rhinoceros software) so as to describe the shapes of 
organs as seen in the « 3D visible human CT »*, after 
manual segmentation of the different organs 
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Most advanced member of the family 

•  The XCAT phantom 

•  Combinaison of NURBS and subdivision surfaces (SD) 

•  Based on the « visible male and female anatomical 
datasets » of the National Library of  Medicine (0.33 x 0.33 
x 1 mm3 sampling for the male model, 0.33 x 0.33 x 0.33 
mm3 sampling for the female model) 

•  More than 9000 anatomical structures 

•  Initially, the NCAT was developed for Nuclear Medicine 
applications. The motivation for the XCAT was to go 
beyond these low spatial resolution applications 
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Principle of the subdivision surfaces 

•  To model structure with an arbitrary topological type  
(brain structure for instance), while NURBS can only model 
such structures by partitioning the model into a large 
collection of individual NURBS surfaces (i.e. many 
parameters). 

Initialisation by a coarse polygon mesh 

A refinement scheme is used to subdivide and smooth the mesh 
to produce a smooth surface representation of the object 



ENTERVISION School - Irène Buvat – june 2012 - 92  

XCAT: modeling of the cardiac motion 

•  Model derived from a dynamic CT (100 image per cardiac 
cycle in the male model, 12 in the female model, using 0.32 
x 0.32 x 0.4 mm voxels sampling) 

•  Includes many anatomical details: coronary vessels, 
papillary muscles, valves 

•  This model can be used to simulate heart contraction, 
torsion, ejection fraction, cardiac twist, heart rates, etc in 
normal and abnormal hearts. 
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Modeling of respiratory motion 

•  Model created based on 30 4D-CT scans, each including 20 
respiratory phases.  
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XCAT: modeling the anatomic variability 

•  The different structures are parameterized. 

•  Parameters can be adjusted to model various anatomical 
models  

•  Bottleneck: manual parameterization (using the Rhinoceros 
software), which is extremely tedious and time-consuming: 
only 30 organs are deformed / 9000 to generate various body 
habitus.   

•  Automatic parameterization still has to be implemented: 
on-going effort using  the Large Deformation Diffeomorphic 
Metric Mapping approach  

2 mois 16 mois 4 ans 6 ans 8 ans 10 ans 12 ans 
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MCAT family: assigning properties  

•  Density and composition: values are derived from the 
CT + anatomical knowledge 

•  For imaging applications: which tracer uptake in 
which organ?  
-  tabulated values in the literature for some tracers 
(FDG in PET for instance*) 
-  values estimated from the distributions of values 
observed in a patient dataset 
-  values estimated from a single scan that one wishes to 
reproduce 

* 
- Ramos et al 2001 FDG-PET standardized uptake values in normal 
anatomical structures using iterative reconstruction segmented attenuation 
correction and filtered back-projection Eur. J. Nucl. Med. Mol. Imaging. 28 
155–164 

- Wang et al 2007 Standardized uptake value atlas: characterization of 
physiological F18-FDG uptake in normal tissues Mol. Imaging. Biol. 9 
83-90 

- Zincirkeser et al, 2007 Standardized uptake values of normal organs on 
F18-FDG positron emission tomography and computed tomography 
imaging J. Int. Med. Res. 35 231-6 
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MCAT family: advantages and drawbacks  

•  Fine anatomical modelling (for instance, arterial tree) 

•  Cardiac and respiratory motions can be easily included  

•  Based on the continuous NURBS representation, images 
can then be obtained for any sampling without any 
approximation 

•  Hard to fit a given patient scan (feasible, but extremely 
tedious*) 

•  The activity / attenuation distribution is piece-wise 
constant (or a structure has to be subdivided so as to 
introduce heterogeneities in it) 

•  Models of lesions have to be developed and combined 
with the phantoms 

* Le Maitre et al 2009 Incorporating patient-specific variability in the simulation of 
realistic F18-FDG distributions for oncology applications Proceedings of the IEEE  
97 2026–2038 
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Phantoms for small animal imaging 

•  Following the NCAT strategy for building a phantom, a 
mouse phantom (MOBY) and a rat phantom (ROBY) 
have also been developed 

•  Note that these phantoms are not free (nor those from 
the NCAT family) 
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Advanced voxelized models 

•  Based on real patient scans 

•  In each voxel: 
-  density can be assigned based on the Hounsfield Units 
of a CT scan of the patient 

-  composition can be assigned by image segmentation 
(bone, lungs, soft tissues, myocardium, aso) 

-  activity in each voxel can be obtained for HIGH-
RESOLUTION real PET or SPECT scan   

-  motion can be modelled based on a gated scan (e.g., 
respiratory gated CT, cardiac gated SPECT) 

PET and SPECT: activity distribution CT: density and composition 
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Voxelized models: advantages and drawbacks 

•  All patients features can be closely reproduced, 
including heterogeneous uptake within an organ 

•  PET, SPECT and CT images are not perfect (limited 
spatial resolution, noisy): errors in the simulation input 
might propagate during the simulation  

Noteworthy: how do the errors in PET and SPECT images 
used to define a voxelized activity distribution propagate 
into simulated PET and SPECT images? 
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Voxelized models: propagation of errors 

•  Noise does NOT propagate 

Patient 
PET scan 

Activity map used 
as an input of an MC 

PET simulation 

Reconstructed 
PET images 
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Voxelized models: propagation of errors 

Spatial resolution slightly deteriorates through 
simulation / reconstruction 

VERY IMPORTANT: when using patient PET or SPECT 
scans to define the input activity distribution of a simulation, 
these images should have a very high spatial resolution, 
regardless of the level of noise, to ensure final spatial 
resolution in the reconstructed images identical to that used 
in real patient scans. 
Hence, images should be reconstructed with a high number of 
iterations 

• Stute et al 2011 Monte Carlo simulations of clinical PET and SPECT scans: impact of 
the input data on the simulated images. Phys. Med. Biol. 56: 6441-6457 



ENTERVISION School - Irène Buvat – june 2012 - 102  

More resources about numerical models 

•  Segars PW, Tsui BMW 2009 Evolution of 4-D 
computerized phantoms for imaging research Proceedings 
of the IEEE 97 1954-1968 

•  Le Maitre et al 2009 Incorporating patient-specific 
variability in the simulation of realistic F18-FDG 
distributions for oncology applications Proceedings of the 
IEEE  97 2026–2038 

•  Zaidi et al 2009 Review of computational 
anthropomorphic anatomical and physiological models 
Proceedings of the IEEE  97 1938-1953 

•  Stute al 2011 Monte Carlo simulations of clinical PET 
and SPECT scans: impact of the input data on the 
simulated images. Phys. Med. Biol. 56: 6441-6457 

•  Stute et al 2012 Realistic and efficient modeling of 
radiotracer heterogeneity in Monte Carlo simulations of 
PET images with tumors. IEEE Trans. Nucl. Sci. 59: 
113-122 

•  http://www.virtualphantoms.org/index.html 	
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Links to numerical phantoms 

•  Zubal anthropomorphic phantom (torso and head) 
http://noodle.med.yale.edu/zubal/   

•  NCAT family 
http://www.bme.unc.edu/~wsegars/phantom.html 

•  Visible Human project 
http://www.virtualphantoms.org/index.html 	
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•  Book: 

- Handbook of anatomical models for radiation 
dosimetry, Xu and Eckerman eds, CRC Press, 2008 

More reading about numerical models 
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Applications of MC simulations in emission imaging 

•  Studying and optimizing detector design to 
maximize performance (e.g;, as a function of 
the detector geometry, time resolution, crystal, 
aso) 

•  Identifying the origin of biases in the images 
and measuring their respective magnitudes 
(scatter, septal penetration, motion, …) 

•  Optimizing acquisition and processing 
protocols (corrections, post-processing) 

•  Assisting image production, for instance 
when used to calculate the system matrix in 
SPECT or PET reconstruction, or when used 
for scatter correction 

•  Determining the accuracy with which 
specific parameters can be estimated from the 
images  
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Applications of MC simulations in X-ray CT 

•  Evaluation of the effect of physical, 
geometrical and design parameters on the 
scanner performance 

•  Estimate physical parameters that cannot be 
measured, like scatter fraction in different 
detector components 

•  Validate corrections, such as scatter 
correction methods, beam hardening 
correction algorithms 

•  Generate data for testing reconstruction 
algorithms in realistic conditions 

•  Absorbed dose calculations to assess the 
radiobiological risks in CT scans 

•  … 
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Applications of MC simulations in radiation therapy 

•  Validation of Treatment Planning System 
(that are not full MC) 

•  Calculation of data for TPS (e.g., dose point 
kernels) 

•  Treatment monitoring in hadrontherapy 

•  Design and commissioning of therapy 
facility 

•  Assisting the design of the nozzle 

•  Simulation of the neutron background 

•  … 
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•  Books: 

- Monte Carlo calculations in nuclear medicine 
Ljungberg, Strand, King eds, IOP, 1998 

More reading about MC simulations 

A new (enhanced) edition of the book is about to 
be published	
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•  Books: 

- Therapeutic Applications of Monte Carlo calculations 
in Nuclear Medicine, Zaidi and Sgouros eds, IOP, 2002 

Useful references (2) 
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•  Books: 

-  Handbook of Particle Detection and Medical Imaging, 
Grupen and Buvat eds, Springer 2012 

Useful references (3) 


