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Learning objectives

Understanding tomographic reconstruction

« How PET, SPECT, CT images are obtained from the signal
delivered by the scanners

» Understand the differences between analytical and iterative
reconstruction

* Knowing key parameters in tomographic reconstruction and
how they impact the resulting images

Very different images
can be obtained from
the same original dwta.
Why ?2?22?
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Learning objectives

Understand the maths and the practice of
tomographic reconstruction

What is RAMLA 3D ? Isn t
tomographic reconstruction
always 3D ?

What is a sinogram ?

Which number of
iterations should be
used in iterative
methods?

O
K

What does rebinning

mean? Your questions ...
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Outline

e Introduction
- What is tomography?
- Transmission tomography
- Emission tomography
- Why 1s tomographic reconstruction so difficult?

* Basic concepts
- Projection
- Radon transform
- Sinogram

 Analytical reconstruction
- Principle
- Central slice theorem
- Filtered backprojection
- Filters

e [terative reconstruction
- Principle
- Matrix system
- MLEM, OSEM, RAMLA, aso

- Regularization

 « Fully 3D » reconstruction
- Principle
- Rebinning methods

* Questions / Discussion
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Please interrupt and ask questions whenever needed
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Introduction: what 1s tomography?

» Tomos : slice (greek)
 Graphia : writing

* Mapping an internal parameter of an “object” using
cross sections or slices, based on external non-invasive
measurements AND on computer-assisted calculations
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Introduction: what 1s tomography?

« An approach to probe “objects” that cannot be
directly sliced or sampled. Many application fields:
- non destructive testing
- geophysics (geological layers, oceans)
- astrophysics
- medical imaging
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Introduction: everyday tomography (1)

Mapping from partial views
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Introduction: everyday tomography (1)

Mapping from partial views
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Introduction: everyday tomography (2)

Mapping from partial views
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Introduction: everyday tomography (3)

T e

Tomographic reconstruction 1s a systematic approach to
solve that sort of problem
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Medical tomography: three types

Emission tomography

Transmission tomography

Optical tomography
(mostly preclinical)
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Medical imaging

« Measurement of emitted or transmitted radiations using
a CT scanner, a gamma camera, a positron emission
tomography scanner or a probe (optical tomography)

 Data processing to create images from the measured signal
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Key point

» Measurements at different angular positions: different
views of the same object
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Medical imaging

measurements= projections

a4

1 AN

N~

Integral measurements at different angles

projections

Data processing

sagittal transaxial coronal

Reconstruction of slices using 3 preferred directions

3D imaging: any oblique slice can be obtained
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Definition of slice orientation

transaxial slice

sagittal slice

seanner axis

slice

sagittal transaxial coronal
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Two main types of measurement

 Transmission tomography

measurements

a4

~

7

* Emission tomography

measurements

Ll
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Transmission tomography devices

 Source external to the patient

N
X-ray scanner

Gives information on how X-rays are transmitted by or
travel through the tissues, ie on the attenuation
properties of the tissues
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Transmission tomography: a closer look

* Projection of the transmitted radiations

Measured
signal

If measured signal intensity ~ source signal intensity :
=> almost no attenuation: lungs?

If measured signal intensity <<< source signal intensity :

=> lots of interaction between X-rays and matter : tissue
with high electron density, eg bone ?

Tomography reconstruction will give you the exact
attenuation properties of the tissues
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What 1s attenuation?

» Expressed as an attenuation coefficient, u, in cm!

L

N=N,exp (-u L)
Beer-Lambert law

In water, at 140 keV : u =0.15 cm’!

What percentage of 140 keV photons after 20 cm of water ?

N =N,exp (-0.15 x 20) = 0.05 N, 1e 5%

Which tissue if 45% of 140 keV photons are detected after
going through 20 cm of tissue?

N/Ny=0.45 = exp (- u x 20)
20 w=-1n0.45=>u=0.04 cm! (lungs)
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Modeling ET measurements

e Attenuation of an X-ray source in a uniform medium
of attenuation coefficient u (cm-1)

X 3 Measured
-ray source .
signal
N, N
N=Nyexp (-uL)
* Discrete expression :
X-ray source Measured
N, photons signal N

N = Ny exp (-ué) exp (-uf) exp (-ué) exp (-ué)
=N, exp(-uf - ul - ul - uf) = N, exp(-4uf)
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Modelling ET measurements

* Attenuation of an X-ray source in a non-uniform
medium

Measured
X-ray source signal
N, N

e Discrete expression:
patient

BEnn
4

N = Ny exp[-uf-wl-usl-u,f)]
= Ny exp[-(utu,Tustuy)]

Measured signal
X-ray source

N

L
N =Nyexp(- [u(® do
0
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Problem to be solved

- Find function u(¢), which is the map of
attenuation coefficients u in the medium of interest

Measured
X-ray source 3 signal
N, N

N =Nyexp(- [0 d
0

I 0 L (6) d¢

n— =

N j;“

... from integral measurements
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Emission tomography devices

 Source y ou 3+ within the patient

/- detector \
— o
I :
5 g
\’ detector '/

SPECT = single photon computed emission tomography

PET = positron emission tomography

Give information regarding the spatial distribution of
the source in the body
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Emission tomography: mesureaments

* [f no attenuation : sum (=integral) of activity along
projection lines

i i I 3
| 3 " 5
| | 1 3

N=a, +a,+a,

D
sz;f(é) d
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Problem to be solved

3D mapping of the activity concentration within the
body
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In summary

Tomography: estimating the 3D distribution of a
parameter of interest based on 2D projections

* Transmission tomography
Parameter of interest = p attenuation coefficient

e Emission tomography
Parameter of interest = radioactivity map = emission map
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Mathematical formalism

k)%

Measurements are always integral values (in
Emission and Transmission Tomography)

& L
In— =j; w(é) d¢
T

Known (measured) To be estimated

N= [ 1(¢) d¢
| f(}(;)

Known (measured) To be estimated

The reconstruction tomography problem obeys the
same formalism
in emission and transmission tomography
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Why 1s tomography useful? (1)

* Provides volumetric information

source

N

The depth of a lesion can be determined
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Why 1s tomography useful? (2)

* Increases i1mage contrast {@7

57

Contrast = (signal of interest — background signal)/ bkgd signal
\

This 1s a definition of contrast, there are others

Example in emission tomography

| I = 3
i 3 " 5
I I Fr 3

Contrast in the projections : (5-3)/3 = 0.66
Contrast in the slice (cross section): (3-1)/1 =2

Lesions will be easier to detect in reconstructed slices !
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Reconstruction problem 1n 3D

* Measurement of a set of 2D projections

A

projection 0 detector plan at position 0

/7 «——

/4

3D volume of
interest

A

N(x,2)

y

. .Y
) Tomographic reconstruction
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Factorization of the reconstruction problem

A 3D volume can be seen as a stack of 2D images

W 2D projections

3D mapping of a
parameter

1 Transaxial slice

3D volume

3D volume reconstructed
from a set of 2D images

So what has to be understood is
how to reconstruct a 2D slice from a set of 1 D projections
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2D formalism

A set of 1D projections

A line of projection Detector at position 0

W —— Ay,

> X

transaxial
slice z,

m) rcconstruction of a 2D signal (z slice)

Set of slices z, = volumec of interest
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Tomographic reconstruction in general

... 1s estimating a 3D volume by independent reconstruction
of a set of 2D slices

Direct reconstruction of a 3D volume is actually called
“Fully 3D reconstruction”
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Why 1s 1t so difficult?

La legon difficile, William Bouguereau (1825 - 1905)
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1) Because the solution 1s non unique

* No unique solution : there are ALWAYS several
signal distributions compatible with the finite
number of measured projections

1 projection : several possible solutions

projection n
direction

2 projections : several possible solutions

projection \:| n \:I

direction

— B —

LI LI

- A unique solution would exist only for an infinite
number of noiseless continuous projections
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2) Projections are noisy

* No exact solution, because the measurements are
corrupted by noise

Actual

measurements
1O 11 9 > 30 32
101321101 52 50
g 8 01— 29 27

D
BN N

nb d’événements /pixel nb d’événements /pixel

30 30

20 20)

10 101

0 40 ) 60 ) 80 pixel 0 40 ) 60 ) 80 pixel
1deal projection noisy projection
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An 1ll-posed mverse problem

VEISE problems

* Inverse problem :
We have measurements, we want to determine which
signal produced the detected measurements

e [1l-posed problem :

The solution 1s unstable (sampling + noise) : two
different measurements can lead to significantly
different solutions
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Basic concepts
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Seminal work

1887-1956

1917 : Johann Radon : “About the determination of
functions from their integral functions in certain
directions”, Math. Phys. Klass.
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Projection operator : continuous formalism

rojection 0
proj I J

u=x cosO + y sin0

v =-x sinb + y cosO

\% f(x,y) u

v

400
p(u,0) = f f(x,y) dv
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Projection operator : discrete formalism

« Calculate the two 2 projections along the green and red
directions of this activity distribution

2 2 2 01" 6
2 012 1> 16
3 2 2 I 38

1 2 0 1 4
v ' v v
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Radon transform

+00
p(u,0) = f f(x,y) dv

Set of projections for 0 = [0, 7 ]

= Radon transform of {(X,y)
f(x,y) — p(u,0)
Spatial domain Radon domain

Tomographic reconstruction :
Inversion of the Radon transform, 1.e.,
Estimation of f(x,y) from p(u,0)
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Sinogram

Sinogram = signal from slice 7. recorded at different
angles 0

6 v "
sinogram corresponding to slice

tomographic reconstruction _
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Sinogram and projections

Sinograms and projections contain the same information but
stored differently

0 ’
sinogram corresponding to slice z;

A sinogram: all information pertaining to a given slice
A single sinogram is sufficient to reconstruct a slice

A

projection corresponding to angle 0

A projection : information regarding all slices for a given
projection angle. With a single projection, it is impossible to
reconstruct a slice
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Test

We record 64 projections of 128 pixels (along the axial
direction) x 256 pixels

 How many transaxial slices can be reconstructed
without interpolation ?

128

 How many sinograms can we derive from the
projections?

128

» What are the sinogram dimensions (number of rows
and number of columns) ?

64 rows et 256 columns

)

y’
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Test

Emission tomography:
Is it a projection or a sinogram?
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Test

Emission tomography:

If all projections are identical to this one, what is the
sinogram corresponding to the slice located at the red
line position?
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Test

Emission tomography:
What is the reconstructed signal corresponding to
this sinogram?
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Test

Emission tomography:
What is the reconstructed signal corresponding to
this sinogram?
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Summary

* Introduction
- What is tomography?
- Transmission tomography
- Emission tomography
- Why is tomographic reconstruction so difficult?

* Basic concepts
- Projection
- Radon transform
- Sinogram

5

e Tomography consists in estimating cross section
1images from measured projections

 To perform tomography, several views of the object of
interest recorded at different angles are required

* A projection element is the integral of the signal along
a projection line, a projection is the set of projection
elements recorded at a given angle, the set of all
projections 1s the Radon transform of the object of
interest

* In a projection, different signals overlap and contrast
1s reduced

» Tomographic reconstruction consists in estimating the
signal of interest that yielded the measured projections
using a mathematical algorithm. It is an ill-posed
problem.
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Two approaches for tomographic reconstruction

* Analytical methods

JT

mwmpi@wme

» Discrete or iterative methods

p=RT
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Analytical methods: introduction

 Consist 1in an analytical inversion of the Radon transform
= solving integral equations

 The tomographic reconstruction problem is expressed
using a continuous formalism

* THE analyical method that is always used

FBP : Filtered BackProjection

* FBP 1s FAST

* FBP is available on all commercial scanners (X-ray
scanners, SPECT and PET devices)
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Backrojection operator : continuous formalism

R
B

4 Sl e

u=x cosO +y sin0
v =-x sinb + y cos0

\% f(x,y) u

v

JC
*(x,y) =] p(u,0) do
7

Beware: backprojection does NOT invert the Radon
transform
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Backrojection operator : discrete formalism

« Calculate the backprojection of the measured green and

red projections

6

16

8

4

8§ 16 6 4

“TIS5[15 (1515 6 2 4 | 115 |
—4—+4+4 4+ 16 | 2| 4|15 1
—t2 2+ 21+ 2 ] 2 4 115 1
——1 1 1 t 4 2 4 | 115 |
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Backrojection operator

- discrete formalism

“TI153[15 (1515 6 2 4 11
dadlalalal 62| 4
dodtotlolol o | 2] 4|1
< 1 i 1 i 4 2 1 |1
8 16 6
1.75/2.75] 1.5 |1.25
3 2.7512.5

Mean:
/ beked ratio 2| 3 L7515
/15=26 1.5 [25 |1.25]| 1
2 2 2 0
Original image: 2 |10 | 2 2
/ bekgd ratio 302 2] 1
/1=10 i ) 0 )

Backprojection does NOT invert the Radon transform
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Backprojection limitations

JC
[ e ;:;:;:;:;:;:;El;;z:z:5:5:5:5:5:5:5:5:5_ *(x,y) = | p(u,0) dO
\_/ J

backprojection
» streak artefacts
due to the limited number of projections

number of projections
original image

16 32
Backprojection does NOT invert the Radon transform
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Filtered backprojection: principle

JC
*(x,y) = [ p(u,0) dO
J

backprojection

JU
fFx,y) =1 p(u,0) do
J

filtered projection

filtered backprojection
reduction of streak artefacts
Exact inversion of the Radon transform !
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Which filter?

The filter that makes it possible to accurately invert the
Radon transform can be theoretically derived using the
central slice theorem

This theorem establishes the relationship between the
projections and the object in the Fourier domain

Simple relationship
in the Fourier domain

I
v
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Central slice theorem

1D FT of a projection with respect to u

2D FT of the signal to be reconstructed
P(p,0) = Flp. py)|

p(u,0)
u
TF 1D
.................... 0.
projection
yA pyu
C
K\\ a(p,@/)/,x 0
TF 2D
e >

X Px
Central slice: slice /
through the F(p, py)

referential origin
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Central slice theorem: demonstration

oo ID FT oo
p(u,0) = f f(x,y) dv > P(p,0) = f p(u, B)e 2P dy
-00 =00

»

Y4
u=x cosO +y sin0
v =-Xx sinB +y cosO

\%
.\ u
P, =pcosH
P, =p sin 6
0 R du.dv = dx.dy
X
Change of variables : (u,v) — (X,y)
+00 400 +00 _+00
P(p,0) = f(x,y)e %" du dv = f(x,y)e 20, +¥0,) dx dy
1) 14

1D FT of a projection with respect to u

2D FT of the signal to be reconstructed
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Filtered backprojection: principle

If P(p,0) 1s known for all angles 6 between 0 and i, the FT
of the object can be reconstructed, hence the object can be
estimated

F(py O)
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Filtered backprojection: need for a filter

py A

F(p,, py)

Points are irregularly sampled in the Fourier space : the
density of points is proportional to 1/|p|: low frequency
signal 1s therefore weighted more. This introduces a blur
in the reconstructed images when using backprojection
only. A correction (filter) for this irregular sampling 1s
needed to avoid that blur.
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Filtered backprojection: demonstration

P(p,0) = F(py, py)

FT-!

+00 400

} |
fxy) =[ [F(pop,)e=ee.r3e) dp, dp,

-0 =00

CST

+00 400

:f f P(p,0)etm0x >0y dp, dp, Px=pcosH
-0 =00 ,
. py,=psinb
Change of variable : (p,, p,) = (p, 6) p=(p2+ py2)1/2
| dp,.dp, = p.dp.d®

T+ | .
:f fP(p,G) plei2u dp dO u=x cos +y sinf
0% -

T +00 |
= [(’(@0)d0 withp'(w.0) =" [P(p.0) ple”™ dp
0 -0

T T

filtered projections ramp filter

f(x,y) function

backprojection of the filtered projections
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Filtered backprojection algorithm

T +© .
f(x,y) = f p’(u,0) d® with p’(u,0) = f P(p,0) |ple*™" dp
0 -0

sinogram reconstructed slice
p(u,0) f(x,y)
lt[r)arljgt}cl)?mer backprojection

inverse Fourier
transform

filtering ,
P(p,0) > |p[ P(p,0) *p’(u,0)
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Summary

* Analytical reconstruction
- Principle
- Central slice theorem
- Filtered backprojection

« Backprojection is a key ingredient to tomographic
reconstruction : this operation redistributes the signal
measured in the projection to the image space. Yet,
because the spatial domain space and the Fourier space
are not sampled 1dentically, backprojection images
include low frequency streak artefacts

» An exact inversion of the Radon transform 1s feasible
based on the Central Slice Theorem, accounting for the
differences in sampling in the spatial domain space and
Fourier space
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Why 1s the ramp filter not sufficient?

T +00
fixy) = [ p'0)d0 withp’(w6)= [P(p.6) |pje™ " dp
0 -0 T

ramp filter

amplification of high frequencies

| 1. [d

ramp filter

High frequencies = details in the images (high
spatial resolution requires high frequency
information)

But also noise !
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Why 1s the ramp filter not sufficient?

TT +00 .
fix,y) = f p’(u,0) d6 with p’(u,0) = f P(p,0) p|e™ dp
0 ~00 t

1. Pl

[d

ramp filter

ramp filter

= IplvTv(p)

apodization window

1. w(p) 1 lplw(p)
: Lower spatial
| resolution
Ry
OOIIIII 098 OO:::.I ,
Hann resulting
apodization = —— Hann filter

window

w(p) = 0.5.(1+cosmp/p,) 1f p <p, Fourier

=0

if p>p, domain
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Usual filters : Hann filter

 ramp filter
m) cnsures the highest spatial resolution at the expense
of noise

 Hann filter

w(p) = 0.5.(1+cosmp/p,) s1p <p.
=0 SLP 2P,
m) affects intermediate frequencies

0.5 0.4 0.3 0.2 0.1

Cut-off frequency p,

m) the lower the cut-off frequency,
the lower the high frequency recovery, i.e.,
the smoother the image
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Usual filters : Butterworth filter

 ramp filter

* Butterworth filter

w(p) = 1/[1+(p/p.)"] if p <pq

=) ) parameters : p cut-off and order n

order n, p_=0.25

mm) the higher the order
the lower the high frequency recovery
the smoother the images
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Usual filters : Butterworth filter

14 1
Butterworth Ramp Butterworth Ramp
0.8 1 035 4
8 06 8 06
5 50% Level g 50% Level
e T D A e T T T T T T T T . "
E E
< 04 < 04
Cut-Off: 40% Cut-Off: 60%
Order: 5 Order: 5
0.2 1 0.2 4
Multiplied Multiplied
0 T T = T T 0 T T T T t
0% 20% 40% 60% 80% 100% 0% 20% 40% 60% 80% 100%
Frequency (% of Nyquist Freq.) Frequency (% of Nyquist Freq.)
14
Butterworth Ramp
0.8 1
8 06
£ 50% Level
S S —— e EREENE
E
= 04
Cut-Off: 40%
Order: 3
0.2 1
Multiplied
0 T T T T t
0% 20% 40% 60% 0% 100%

Frequency (% of Nyquist Freq.)
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Filtering: implementation tricks

* Fourier filtering

)

A

Convenient property :
A multiplication in the Fourier space 1s equivalent to a
convolution in the spatial domain

P(p,0) . W’(p)

|

p(u,0) ® w’(u)
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Filtering: several possible implementations

* Fourier filtering

Convenient property :

A multiplication in the Fourier space 1s equivalent to a
convolution in the spatial domain

sinogram reconstructed slice
p(u,0) f(x,y)

A

® h(u) backprojection

FT

v

filtering FT- ,
P(p,0) " |pl P(p,0) *p’(u,0)

* Spatial filtering
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Principle of a 1D spatial filtering

Original projection

1 (1 (101 |1

Filter

-0.5] 2 ‘-O.S

Filtered projection

‘ 1 (-3.5]19 |-3.5] 1

v
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Example of filtering in the projection space

» Calculate the filtered backprojection with the (-0.5 ; 2 ;'

-0.5) filter of the measured projections (repeat the edge

values)

8 16

16

A

A

-
b
U
S

N
Uy

&
b
Uy

i
[\
U

D
o
Un
o)

o
n

o
\®)
(V)

o)
o
On

A

p—
W
p—

n

ok
W

WY
Wn

A

D
Un

P

Un

P

Un

D

U

25

25 2 3
1 16.25] 0.5(0.75
1 16.25| 0.5]0.75
1 16.25| 0.5]0.75
1 6.25] 0.5|0.75
4 25 2 3

25
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Example of filtering in the projection space

“10.25[0.25(0.25[0.25
«—1625162516251625
15115115115
- A~ o n - n -
h J.J U.JD U.JD v.JD
Mean :
tumor / bckdg ratio
=6.25/1.4=45

Original image :

tumor / bckdg ratio
=10/1=10

1 1 16.25 ] 0.5(0.75
25 1 16.25| 0.5]0.75
6 1 16.25| 0.5]0.75
2 1 16.25] 0.5/0.75
4 25 2 3
0.62(3.25/0.4 | 0.5
3.6 |16.25(3.37| 3.5
1.25(3.87| 1 | 1.1
0.7513.37| 0.5]0.62
2 2 2 0
2 |10 | 2 2
3 2 2 1
1 2 0 1
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2D spatial filter

e Filtering the reconstructed images

sinogram reconstructed slice
p(u,0) f(x,y)
FT
! filtering FT-! ,
P(p,0) " [Pl P(p.0) *p’(u,0)
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2D spatial filter

e Filtering the reconstructed images

sinogram reconstructed slice
p(u,0) f(x,y)

spatial filtering
® g(x.,y)

backprojection
7 (x.y)
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Principle of a 2D spatial filte

Original image

O 0[O0 | 0] O
0] 0|0 ] 0] O
O 0[10] 0] O
O 0[O0 | 0] O
O 0[O0 | 0] O
Filter
0 10
1/6 | 1 2|1
0 10
Filtered image
O 0[O0 | O] O
O| 017} 0| O
0 |1.7(33|1.7]| O
O 0(1.7{0 |O
0| 0[O0 | 0] O
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Usual filter : Gaussian filter

e Ramp filter

 Gaussian filter (spatial domain)

c(x) = (I/OV;).GXP[—(X—XO)Z/ZOZ]

0 1 2 3 4
FWHM =2V 2In2 o (pixel)
?

Sets the spatial extent of the filter

m) the larger the FWHM (or 0),
the smoother the images
the lower the high frequency recovery

v

57
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Filter implementation: summary

There are several manners to implement a given filter: the
same filter implemented differently might yield small
differences in the results

'umtunow 'JD2

25J0Y 'MOUS ‘SpNo|d ' suamo|4 ‘spJiq ‘uotingA||2q ‘suinbuad ‘ypaq
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What is the best filter?

* A given filter 1s not adapted to all situations

FBP FBP FBP
Butterworth 5* order Butterworth 5 order Butterworth 5 order
0.6 cycles/cm 0.9 cydes/cm 1.0 cycles/cm

Koch et al, J Nucl Med 2005

The filter and filter parameters should i1deally be
optimized as a function of the imaging task (eg,
lesion detection, parameter estimate from the image),

of the statistics in the raw data, aso {'@

57
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Correlated noise in FBP images

The filtering step introduces noise correlation in the
reconstructed images

Original slice Original noise Original noise
noiseless with Poisson noise with Poisson noise
added added
(1 M events) (100 000 events)

Non spatially correlated noise

Reconstructed slice  Reconstructed slice  Reconstructed slice
FBP FBP FBP

Correlated noise
Correlated noise may look like signal !
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Analytical reconstruction: discussion

* Fast, easy to implement

* Linear (twice the projection values, twice the
reconstructed values)

* Spatial resolution / noise trade-off can be tuned using the
filter

* Yet, includes many approximations:
- line integral model (assumes that the detector spatial
resolution 1s 1deal, Dirac)

projection 0

- no modelling of the noise in the projection data

- no modelling of the physics (photon attenuation
and scattering)

- data are noisy and sampled, solution is thus neither
accurate nor unique

m) Alternative approach: discrete or
iterative reconstruction
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Summary (2)

* Analytical reconstruction
- Principle
- Central slice theorem
- Filtered backprojection
- Filters

5

* Theoretically exact Radon transform inversion 1s
possible using a Ramp filter. If the data were continuous
and noiseless, the filtered backprojection algorithm
would then provide the exact solution.

e The ramp filter cannot be used alone on real data, that
are always noisy and discrete. An apodization window
1s used, usually resulting in a low pass filter (Hann,
Gaussian), than can be tuned using 1 or 2 parameters
and implemented in the spatial or Fourier domain.

» Filtered backprojection remains an approximate
solution to tomographic reconstruction, because of a
number of underlying assumptions that are not satisfied
in real data (noiseless projections, continuous
projections, perfect spatial resolution of the detector, no
particle matter interactions except when the particle is
detected)
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Two approaches for tomographic reconstruction

* Analytical methods

JT

mwmpi@wme

» Discrete or iterative methods

p=RT
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Iterative reconstruction: introduction

* Discrete expression of the problem using matrix and
vectors

pl rl 1 ........................ r14 fl

Pa|=| f,

P3| | f,
_p 4_ _r g — r44 _f4_

* Inversion of the corresponding system of equations
using an iterative approach
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Discrete formalism

P D,

projection

p; = ryftrph trpati .,
Py = 1y fy H ity Ty 1y £y
p; = 13§ Hrppty F sty g, oy
Py = 1y Byt t 1y + 1y 1y

In the real world:
large system of equations
128 projections 128 x 128

2 097 152 equations with as many unknown values
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Matrix expression of the inverse problem

py=rpfitrp bttt
Py =ty fiHrp h o i1,y
p; =y Gt bt i+,
Py =ty fitrphtrgfitoyt,

Pi| |t T2 Iz Tha| | 1
Pa| =21 T2 To3 Togf | f,
ps| |31 32 133 T34 | £,
Ty Typ Tyn T
a1 Tap Ty3 Tyy
P4 | 1 LE,

~Rf
R

projections  projection  object to be
operator  reconstructed

m) Problem: find f given p and R
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What is R ?

e
|
=
=

v

projection

R described the projection process, ie how a
signal from the image contributes to a
projection measurement:

R models the forward problem

1, : probability that an « event » emitted in
voxel k be detected in pixel i

R = projection operator = system matrix
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Dimension of the problem

~Rf
R

projections system matrix object to be

reconstructed
_ (1. _I' ........................... I' 1 [
p = rpfitrph+ et P N i £y
Py = Iy By T b+ .+ ety P> f
pP = rPl fl + rP2f2 + ...+ rPF fF _pP_ _rPl ........................... ' rPf _fF_

e Example : 256 projections of 64 rows (axial direction) and
128 columns (projection element)
- To reconstruct one slice:
128 x 256 equations

128 x 128 unknowns
Risa (128 x 256 ; 128 x 128) matrix
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What does R model?

Two aspects

* Modelling of the detection geometry

. . = = "
Bunlunbanud
(] u = . u
- w o .
| ] [] FuEgEy

s X
e 3
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Modelling of the detection geometry

* First: model of the distribution of voxel intensity: describes
the contribution of a voxel to a projection bin

projection
(" element

exaéf“model
= uniform model

the mo_st"ébnvenient
computationally speaking:
ine length model
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Modelling of the detection geometry

* Second: model of the detector geometry (collimation)
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Modelling the physics in R (1)

 Photon attenuation (SPECT and PET)

dil| g

geometric contribution

\ l
P1 ~ 1 exp(-u,d,)
t g3f5 exp(-u;d;-2 uyd,)

u map

In that case:
1 = g exp(-u,dy)
3= g3 exp(-usds-2 wd))
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Modelling the physics

in R (2)

e Scattering (SPECT and PET)

Py, P2

AN

—

f; | ]
T

~4

without scatter modelling :
py =1, i+ 151
with scatter modelling:

p=r;f+

SPRER SER Rl SR
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Modelling the physics in R (3)

* Detector response

without point spread function (PSF) modelling
p =1, 131

with PSF modelling :
py=ryfitrpth ot

IHHIH@IHIHIH

PET SPECT
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Modelling the physics in R (4)

* Even more advanced R models

- modelling of the patient respiratory motion in R
(research)

- modelling the mean free positron path in PET
(research)

No theoretical limitations: we could a priori model all
phenomena impacting the R element values, that is the
probability that a photon emitted in voxel k be
detected in projection bin 1
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R operator

projection
P P2

A i A

-F\
p U

- Y
’
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In practice

R:

S = O =
S = = O
—_—0 O
_—0 = O

Please calculate the projections of (432 1) :

6 [P 1 010 (|4

4 P15 01 0 1 |]3

7 ... 1 10 0 ||2

3 |pp 001 1] 1

This exactly corresponds to:
| 6 | 4 |

3 > 7

2 11 > 3
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Backprojection operator

v

Ipi

backprojection
P P2

0

0 = Rt
1

1_

O —_=O =
—_—0 = O
OO =
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Solution of the inverse problem

p=RT

Finding a solution f mimizing a distance d(p,Rf), p and R
being known

initial estimate of the

object
fh=0
p=Rf{
" comparison correction factor
A A ct
p" " p'vsp -

A

projection corresponding
to the " estimates

N N
usually p* - p or p/p"

Tomographic reconstruction - Iréne Buvat — November 2017 - 102



Two classes of iterative methods

* Algebraic methods
- conventional iterative methods used to solve a
linear equation system

- minimization of llp - R flI?
- ART, SIRT, ILST, conjugate gradient, etc

« Statistical methods
- Bayesian estimate
- account for the noise in the data (Poisson,
Gaussian)

- maximize a likelihood function
- MLEM, OSEM, RAMLA, DRAMA
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Example of algebraic method: ART

 Algebraic reconstruction technique

6
A
37
21Tt 713

0 O 6 4

comparison P3| P2

0 | o | usingsubtraction 6 +310+2

backprojection of
the differences

3127195 32+t 2
31T 215 3211 -2
£1 comparison

using subtraction backprpject1on of
the differences
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Let’s try!
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Solution using ART

6 4
2
8
0 0 6 4
0 0 comparison pr3|p+2
0 0 using subtraction 6 +3 6+2

backprojection of
the differences

comparison using |3 192719 -3
substraction

32 +3

backprojection of
the differences

31T 275
31727175
f1
1.510.5
4.513.5
2
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Limitations of algrebraic methods

* They do not account for the noise present in the projections

* They do not include any prior on the solution

.‘
S5

Statistical methods offer an appealing alternative as
they can model the statistical properties of:

- the measured projections

- the object to be reconstructed

)

A

57
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Why 1s 1t so important to model noise?

* in SPECT, PET and CT, Poisson noise (counting)

\ T

 PET Gemini TF
- 44 rings of 644 crystals LSO (4 mm x 4 mm x 22 mm)
- ~ 4 E8 lines of response defined by 2 crystals

Injection of ~ 10 mCi =370 MBq
5 min acquisition

Number of f+ desintegrations = 370 E6 x 5 x 60 =1.11 E11

Attenuation effect: exp(-0.097 x 30) = 0.0544
is 6 E9 coincidences arriving on the detector

Detector efficiency (2%)
1s 1.2 E& detected coincidences

Ie 1.2 E&/ 4 E8 = 0.3 coincidence per LOR !
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Most used statistical method: MLEM

* MLEM = Maximum Likelithood Expectation Maximization

» Assumes that the measured data follow a Poisson statistics

1781-1840
Consistent with the properties of SPECT and PET data

This means that 1f projections are pre-processed before
reconstruction, MLEM assumption is no longer valid !
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MLEM algorithm

» Update formula (demonstration is lengthy):
frtl=mMm R p/p" ]

initial estimate

=0
fril=fu_feom
multiplication of the current
p= Rf estimate by the error image
Y comparison backprojection
VAN AN
pn > p /pn > frorr
projection corresponding l l
to estimate
error projection error image
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MLEM algorithm

y’

Properties:

* solution 1s always positive or zero

* slow convergence (>100 iterations required)

* 1terative images widely used 1n the clinics (in its
accelerated OSEM version)

* NON linear!

Non linearity is counter intuitive.

* bias (over estimation of low values) in regions
with low signal (due to the non negativity constraints
inherent to MLEM)
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Example

FBP (Hamming) MLEM
(32 1térations)

Variance
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Acceleration of MLEM : OSEM

* OSEM = Ordered Subset Expectation Maximisation

* Sorting the P projections in ordered subsets
Exemple :

8 projections

‘—’l/\
— N S

2 subsets of 4 projections

‘ ‘_/ AN
_ VRN

4 subsets of 2 projections
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OSEM

« Using MLEM on the subsets (example of 2 subsets):

- 1teration 1 :
estimation of f! from f° and projections p!
corresponding to subset 1
fl=1 R [p/p!]
estimation of f’! from f! et projections p'!

corresponding to subset 2
fl=fl . Rt[p/p!]

- 1teration 2 :
estimation of f2 from f’! and projections p?
corresponding to subset 1
f2=f1. R [ p/p?]
estimation of 2 from f2 and projections p 2
corresponding to subset 2
f2=f2 . Rt[p/p? ]
etc.

OSEM using S subsets and I iterations
< Sl iterations of MLEM
but S times faster !!!

Beware: use at least 4 projections per subset!
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Example of OSEM results

OSEM 1 4 6 8 10 iter.
4 subsets

OSEM 1 2 3 4 5
8 subsets

OSEM has to be described using a number of subsets
and a number of iterations
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Components of an 1terative reconstruction algorithm

5 components to be defined:

* description of the f signal representation model
- usually a matrix of voxels
- but can be overlapping functions like « blobs »

e system matrix R
- describes the forward model
- models the geometry and the physics of the
acquisition

* data model for p
- statistical properties of the data (Poisson, Gauss)

* objective function to be optimized to solve p=Rf for
- maximum likelihood
- maximum a posteriori
- weighted least squares

e optimization strategy to optimize the objective function
- expectation maximization
- descent algorithm

Each iterative algorithm can be described using these 5
components and varies as a function of these choices
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Many 1terative algorithms have been proposed

* RAMLA (row action maximum likelihood {@
algorithm) is a OSEM-type algorithm with: /
- a number of subsets equal to the number of

projections

+ a relaxation parameter to control noise

« DRAMA, SAGE, SMART, Conjugate gradients, ...

 Voxel grid 1s mostly used for f description, but
Philips also used blobs (3D Gaussian functions)
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Properties of iterative methods

 The higher the number of iterations, the better the high
frequencies recovery

OSEM 1 2 3 4 5
8 subsets

* The number of iterations sets the trade-off between
spatial resolution and noise (similar to the filter in FBP)

» The number of iterations should always be sufficient to
converge, and then regularization should be applied to
reduce noise (see later)
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Properties of iterative methods

* How to choose the number of iterations?
- convergence towards the solution followed
by divergence to the amplification of noise

likelihood

\ reconstruction error

~
~ -

v

iteration
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Regularization

unlikely likely

Penalizes unlikely solution and favors
likely ones using priors
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Three approaches for regularization

* Empirical methods:

- post-filtering

- early stop of iterations

- filtering between iterations

e Variational regularization:
- solution without regularization:
minimisation of d(p,Rf)

- regularized solution:
minimisation of d;(p,Rf) + Ady(£.f, ;)

* Reduce the dimension of the problem, 1€ the
number of unknown to be estimated

- using blob functions

- using time-dependent basis functions in
dynamic imaging ...
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Example

e Introduction of priors derived from a CT or an MR

ML-EM post smoothed A-MAP

Baete et al, IEEE Trans Med Imaging 2004

Regularization can yield great visual results, but
the parameters they require are difficult to adjust
automatically
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Analytical or iterative reconstruction (1)

PET
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Analytical or iterative reconstruction (2)

e [terative algorithm with respect to FBP (“‘
* no streak artefacts )&

* possible modelling of the physics in R

* easy management of complicated geometry for
which no FBP variant exists

* possible modelling of the statistical properties
of the measured data

* possible introduction of priors

* longer computation time
* non linear for some of them
* some other artefacts (noise correlation)
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Analytical or iterative reconstruction (3)

* Current trends towards iterative algorithms:

* because modelling the physics is extremely appealing

* because of the flexibility in what can be
modelled within R (complicated detector geometry)

* GPU implementation makes iterative
reconstruction fast

* system matrix still to be improved (motion,
positron path, collimator penetration in SPECT, aso)
* hot topic: efficient and robust regularization

v

y’
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Iterative reconstruction in X-ray CT

Companies are now developing iterative reconstruction
in X-ray CT, while it was used only in SPECT and PET
so far. Why?
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Beyond 2D reconstruction...

Solution : « fully 3D reconstruction »
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Three types of fully 3D reconstruction

)

A

* Analytical method
3D FBP : extension of the 2D FBP

* Methodes of rebinning
rearrangement of the 3D data to make
2D reconstruction algorithms applicable

» [terative methods
estimation of a « fully 3D » matrix system
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Analytical 3D reconstruction

* 3D FBP : extension of 2D FBP

- accounts for data redundancy

axial collimation—>| | I I I

more LOR
(better sensitivity)
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Central slice theorem 1n 3D

Similar to the 2D version

projection = p(u,v,$,0)
W

P(p,C,$,0)

Px

object = f(x,y,2) P P(p,8) =F(pyw Py, P,)
w:

0
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. but 3D FBP requires “complete” data

complete projection

incomplete projection
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3D backprojection using incomplete data

 Extraction of the 2D data (disregarding the oblique LOR)
» Reconstruction of a first estimate of f using 2D FBP

 Estimation of the truncated data by forward projection
of the estimated f

* Merging the estimated f and the available measurements

» Once the data are complete, use 3D FBP
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3D backprojection using incomplete data

* This 1s the classical method of 3D reprojection (3DRP,
3D reprojection method, Kinahan and Rogers, IEEE
Trans Nucl Sc1 1989)

64 IEEE Tramsactions on Nuclear Science, Vol. 36, No. |, February 1989

ANALYTIC 3D IMAGE RECONSTRUCTION USING ALL DETECTED EVENTS
P.E. Kinahan* and J.G. Rogers

TRIUMF, 4004 Wesh

k Mall, Vas , B.C,, Canada VOT 2A3

Abstract

We present the rmlhc‘ totmga previously presented
Igorithm for three.di 3 reconstruction that uses
lllpmrq id ts detected by a PET volume-
imaging scanner. By using two iterations of an analytic filter-
b-dpm,«tm method, the algorithm is not constrained by
q % of a spatially invariant detector point spread
function, which Limits normal analytic techniques. Removing
this constraint allows the incorporation of all detected events,
regardiess of ortentation, which improves the statistical quality
of the final reconstructed image.
1 et

In & previous paper’ we outlined an algorithm for direct
three-di | image ruction that wses all detected
events from a posi Jumetric imaging (PVIP A
PVI anlike con | ring tomographs, does not
bave interslice septa to prevent the detection of cross-plane
events, which greatly § the ativity of the seanner,
This paper peesents the results of testing the algorithm with
Monte Carlo generated data and does not coasider the effect of
attenuation oc increased scatter fraction.?

In digeet three-di woaal image uction , projec-
tion data that has been acquired in three dimensons is used
to uct & three-ds sanal picture of an object. Such
direct reconstruction contrasts with the more common indirect
method of using a stacked set of paralld two-dimensonal re-
constructed umages to build up a three-dimensional picture.

Om the last decade, several algorithms for direct three-
dim ! image uction have been developed. These
algorithms can be divided into theee categories: analytic, itera-
tive, and series methods. The latter two methods have the ad.
vaatage of being able to incorporate @ priers knowledge or take
adwantage of symmetries in the object being reconstructed. The
major dn'b-doﬂbne methods is the relatively large amount
of ded to perform a direct reconstruction.

ll npombk!ofnﬂh« divide analytic direct three-dimen-
sional image reconstruction methods into two casses: nor-

by using large area position sensitive detectors.’’~** Either
method results in a scanner that can detect eross-plane gamma
ray events, which are often treated as redundant data. The
uiwmmloumqumud:o‘lhendmd.mdun-pm-
ble is that the signal to-noise ratio depends on event
mdthenumuydlhemmﬂnxtdwwm&th
mumber of events incorporated into the projections, Normal di-
rect methods take advantage of the extra information and use
same of the cross plane events to improve the signal-to-noise ra-
ti0. None of these earlier methods, bowever, can use all of the
data measured by a PV1 b of the requirement
of shift-invariance,

The Shift-lnvariance C

A common thread among the direct analytic three-dimen-
sional algorithms cited above is the use of the Fourier-coavolu-
tion thearem to invert the following linear equation,

ﬁ!)-//f!(x')h(mx')dx'.

where f(x) is the original three-d sonal d funets
that is to be recovered, 9[:)nlbelhmd:mmmlhdwv
Jjeetion of the measured projections, and A(x,x") is the point
spread function (PSF) of the detector systemn. The function
A(x,x") is the response of the detector at x to a point souree lo-
cated at x'. If A(x, x’) has the form A(|x—x"|), then the response
of the detector system is said to be spatially shift-invarinnt, that
is the detectors response, at x, only depends on the distance
from the source at X’, and not on the spatial location of x.
Figure 1 shows a cross section of & detector in the shape
of o hollow sphere of radius Rp that is truncated at the top and
the bottom. Also shown is & spherical object of radius R that
contains the density function f(x) such that f(x) « 0 for | x |>
Ro. A point source located at the centre of the object will have
mote detected coincidence events than a point source Jocated
at the top of the object because of the difference in subtended

mal direct methods, which are subject to the ints of
shift-invariance as described beldow, and extended direct meth-
ods, which are not. Normal direct methods, such as those de-
veloped by Orlov? Pele,*, Colsher,® Scharr et ol,* and our
earlier work,” are based on extensions to three dimensions
of the well-understood case of analytic two-dimensional image
reconstruction.” The main difference between two-dimensional
and three-dimensional analytic image recomstruction is that
the complete set of projections peeded to reconstruct & two-
dimensional image is also two dimensional, whereas a com-
plete set of projections for a three.di 1 object is four-
dimnensional, and thus can contain redundant information. This
type of four-Emensional projection is characteristic of volume-
imaging scanners.

A PVI scanner can be formed by either removing the in-
terslice septa from a coaventional multi-ring tomograph,'® or
«Present address : Dept. of Bioengineering, Univ. of Peassylvania,
Philadelphia, PA 191046392

detector solid angle. C ly, the app brightness of &
point depends on its position, thus making the detector
P spatially variant.
Edge of FOV 2

Fig. 1. Cross section of a detector aad an object being scanned, show-
ing the polar angle # of a gamma.ray eveat and the FOV defined by
Ro. Ro, and ¢.

0015-9499/99/0000.0564501 .00 © 1989 IEEE
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Rebinning methods

* Using R? sinograms (R number of detector rings),
estimation of 2R-1 sinograms corresponding to direct slices

[—
.

Ar=(R-1) Ar=1 Ar=0 Ar=-1  Ar=-(R-1)
L N N

VVYVVYVYV VY

rebinning

{ﬁ] R direct slices
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Single slice rebinning

r_rebin = (r1+r2)/2
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Multi slice rebinning
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FORE

FOurier REbinning (1995) {@

5

Oblique sinograms are resampled in the 2D Fourier
domain to reassign events to direct slices

After rebinning

Use of a 2D reconstruction method (either FBP or
iterative)
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Rebinning

 Also called 2.5 D reconstruction. Why ?
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Iterative discrete methods

 [dentical to 2D reconstruction

~Rf
R

projections system matrix object to be
reconstructed

* Challenges :
- size of R (> 10 million LOR in 3D PET )
- accurate estimate of R in 3D to account to all physics and

geometry effects (scatter, detector response function, axially
variable sensitivity, aso)
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Why 1s « fully 3D » reconstruction appealing?

FORE-FBP 3D Ramla

A
Q r
i BOB{+4)

J Ly
J-‘ : L
bk % B
e . 278

- 2/sp1

Joel Karp, University of Pennsylvanie
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PET reconstruction using time of flight

What does that change?

If At=0, d1 = d2, annihilation If At= 667 ps, d1-d2=20cm,
took place at the exact center of  annihilation took place 10 cm
the LOR off-centered

The precision with which At, hence d1-d2, can be measured is limited
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PET reconstruction using time of flight

A priori regarding the location of the
annihilation on the LOR can be modelled
during backprojection

.....

H

Ipi Ipi

Backprojection without prior ~ Backprojection with prior

The reconstructed signal will thus be
concentrated on smaller regions from
which 1t 1s likely it has been emitted:
increase in contrast to noise ratio (less
background activity)
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Historical data

* 1917 : Johann Radon : “About the determination of
functions from their integral functions in certain directions”
Mathematic work, no application

e 1956 : Bracewell : demonstration of the
relationships between Fourier transform and
Radon transform

* 1963 : first applications to medical tomography
- Kuhl, prof of radiology : first images
obtained by backprojection
- Cormack, physicist : application of
Radon results to X-ray acquisitions =

* 1970 : publication of the first CT image

* 1970-73 : design of the first CT scanner by
Cormack and Hounsfield

e 1979 : Cormack et Hounsfield won the Nobel

prize in Medicine N 2
1924-1998

1919-2004
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Which method for which application?

e X-ray CT

* FBP thanks to excellent signal to noise ratio in the data
* but iterative reconstruction is entering this application
field to decrease the dose required to get excellent images :
« low dose » CT

* SPECT
* FBP only for a long time (before OSEM was invented)
* Now : iterative algorithms, in particular OSEM, to:
- reduce streak artefacts,
- Improve quantitative accuracy
- better deal with low stat (10 000 less events
than in CT)
- current computers and GPU make iterative
reconstruction usable in the clinics

« PET
* FBP, MLEM, OSEM, RAMLA
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What you should now know

« Key aspects in tomography:

- differences between emission tomography and transmission
tomography

- the fact that the mathematical problem is actually exactly the
same in emission and trasmission tomography

- the function that is reconstructed in CT, PET and SPECT

- why tomography gives more information than planar
imaging

- why tomograhic reconstruction is an ill-posed problem

- that there are two families of reconstruction methods, and
how they differ

- the difference between reconstruction and “fully 3D
reconstruction”
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What you should now know

« Reconstruction techniques:

- differences between projections and sinograms

- principle of filteted backprojection

- the role of the filter in FBP

- why the Ramp filter 1s not sufficient

- how the parameter filter can affect the resulting images
- the principle of iterative reconstruction

- the parameters that can be changed in iterative
reconstruction to improve image quality / accuracy

- what is a system matrix

- the principle of OSEM / MLEM

- the properties of MLEM and OSEM

- the 3 types de fully 3D reconstruction

- what is the rebinning in TEP
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To know more ...

Short articles

 Analytic and iterative reconstruction algorithms in
SPECT. Journal of Nuclear Medicine 2002, 43:1343-1358

e J. Q1 and R. Leahy, Iterative reconstruction techniques in
emission tomography,

Topical review, Phys. Med. Biol. , vol. 51 (2006), R541-
R578

* Articles you can download on:
http://www.guillemet.org/irene/equipe4/cours.html

Books

» Kinahan PE, Defrise M, and Clackdoyle R. Analytic

image reconstruction methods. In: Emission Academic
Press, 2004

e Zeng GL, Medical Image reconstruction: a conceptual
tutorial, Springer, 2009
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Your questions
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