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Learning objectives 

•  How PET, SPECT, CT images are obtained from the signal 
delivered by the scanners  

•  Understand the differences between analytical and iterative 
reconstruction 

•  Knowing key parameters in tomographic reconstruction and 
how they impact the resulting images 

Understanding tomographic reconstruction 

Very different images 
can be obtained from 
the same original data. 
Why ???? 
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Understand the maths and the practice of 
tomographic reconstruction 

What is RAMLA 3D ? Isn’t 
tomographic reconstruction 
always 3D ? 

What is a sinogram ? 

Which number of 
iterations should be 

used in iterative 
methods? 

Your questions … 
What does rebinning 

mean? 

Learning objectives 
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Outline 

•  Introduction 
-  What is tomography? 
- Transmission tomography 
- Emission tomography 
- Why is tomographic reconstruction so difficult? 

•  Basic concepts 
- Projection 
- Radon transform 
- Sinogram 

•  Analytical reconstruction 
- Principle 
- Central slice theorem 
- Filtered backprojection 
- Filters 

•  Iterative reconstruction 
- Principle 
-  Matrix system 
-  MLEM, OSEM, RAMLA, aso 
- Regularization 

•  « Fully 3D » reconstruction 
-  Principle 
-  Rebinning methods 

•  Questions / Discussion 
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Please interrupt and ask questions whenever needed 
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Introduction: what is tomography? 

•  Tomos : slice (greek) 
•  Graphia : writing 

•  Mapping an internal parameter of an “object” using 
cross sections or slices, based on external non-invasive 
measurements AND on computer-assisted calculations 
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•  An approach to probe “objects” that cannot be 
directly sliced or sampled. Many application fields: 

-  non destructive testing 
-  geophysics (geological layers, oceans) 
-  astrophysics 
-  medical imaging 

Introduction: what is tomography? 
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Introduction: everyday tomography (1) 

Mapping from partial views 
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Introduction: everyday tomography (1) 

Mapping from partial views 
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Introduction: everyday tomography (2) 

Mapping from partial views 
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Tomographic reconstruction is a systematic approach to 
solve that sort of problem 

Introduction: everyday tomography (3) 
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Medical tomography: three types 

Emission tomography 

Transmission tomography 

Optical tomography 
(mostly preclinical) 
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Medical imaging 

•  Measurement of emitted or transmitted radiations using 
a CT scanner, a gamma camera, a positron emission 
tomography scanner or a probe (optical tomography) 

•  Data processing to create images from the measured signal 
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Key point 

•  Measurements at different angular positions: different 
views of the same object 
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Medical imaging 

Integral measurements at different angles 

Reconstruction of slices using 3 preferred directions 

3D imaging: any oblique slice can be obtained 

sagittal transaxial coronal 

Data processing 

projections 

measurements= projections	
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Definition of slice orientation 

sagittal transaxial coronal 

transaxial slice 

scanner axis 

coronal 
slice 

sagittal slice 
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Two main types of measurement 

•  Transmission tomography 

measurements	


•  Emission tomography 

measurements	
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Transmission tomography devices 

•  Source external to the patient 

X-ray scanner 

X 

N0 

N 

Gives information on how X-rays are transmitted by or 
travel through the tissues, ie on the attenuation 
properties of the tissues 
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•   Projection of the transmitted radiations 

X-ray source 
Measured 

signal 

If measured signal intensity ~ source signal intensity :  
 ⇒ almost no attenuation: lungs? 

If measured signal intensity <<< source signal intensity : 
 ⇒ lots of interaction between X-rays and matter : tissue 
with high electron density, eg bone ? 

Tomography reconstruction will give you the exact 
attenuation properties of the tissues 

Transmission tomography: a closer look 

??? 
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What is attenuation? 

•  Expressed as an attenuation coefficient, µ, in cm-1 

N = N0 exp (-0.15 x 20) = 0.05 N0, ie 5% 

N0 
N  µ  

N = N0 exp (-µ L) 
Beer-Lambert law 

L 

Which tissue if 45% of 140 keV photons are detected after 
going through 20 cm of tissue? 

N/N0= 0.45 =  exp (- µ x 20)  
 20 µ = - ln 0.45 => µ = 0.04 cm-1 (lungs) 

In water, at 140 keV : µ  = 0.15 cm-1 

What percentage of 140 keV photons after 20 cm of water ? 
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Modeling ET measurements 

•  Attenuation of an X-ray source in a uniform medium 
of attenuation coefficient µ (cm-1) 

N0 

X-ray source Measured 
signal 

N 

N = N0 exp (-µ L) 

L 
µ	


X-ray source 
N0 photons 

Measured 
signal N 

µ	
 µ	
 µ	
 µ	


•  Discrete expression : 

l

N = N0 exp (-µl) exp (-µl) exp (-µl) exp (-µl) 
    = N0 exp(-µl - µl - µl - µl) = N0 exp(-4µl)  
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•  Attenuation of an X-ray source in a non-uniform 
medium 

N0 N 
L 

µ(l)	


X-ray source 

patient 

Measured signal 

N0 

µ1	
 µ2	
 µ3	
 µ4	
 N 

l 

•  Discrete expression: 

N = N0 exp[-µ1l -µ2l -µ3l -µ4l)] 
    = N0 exp[-(µ1+µ2+µ3+µ4)l]  

N = N0 exp(-    µ(l) dl)  
0 

L 

∫	


Modelling ET measurements 

X-ray source Measured 
signal 
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Problem to be solved 

ln       =    µ(l) dl  N0 

N 0 

L 

∫	


N = N0 exp(-    µ(l) dl)  
0 

L 

∫	


•  Find function µ(l), which is the map of 
attenuation coefficients µ in the medium of interest 

N0 N 
L 

µ(l)	


… from integral measurements  

X-ray source Measured 
signal 
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•  Source γ ou β+ within the patient 

Emission tomography devices 

***

detector 

detector 

de
te

ct
or

 detector 

SPECT = single photon computed emission tomography 

*

PET = positron emission tomography 

*

Give information regarding the spatial distribution of 
the source in the body 
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Emission tomography: mesureaments 

0 

D 

∫	
N =     f(l) dl 

•  If no attenuation : sum (=integral) of activity along 
projection lines 

1 1 1 

1 3 1 

1 1 1 

3 

5 

3 

N = a1 + a2 + a3 
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Problem to be solved 

x 

y 

z 

•  3D mapping of the activity concentration within the 
body 
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In summary 

Tomography: estimating the 3D distribution of a 
parameter of interest based on 2D projections 

•  Transmission tomography 
Parameter of interest = µ attenuation coefficient 

•  Emission tomography 
Parameter of interest = radioactivity map = emission map 
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Mathematical formalism 

Measurements are always integral values (in 
Emission and Transmission Tomography) 

ln       =    µ(l) dl  N0 

N 0 

L 

∫	

Known (measured) To be estimated 

0 

D 

∫	
N =     f(l) dl 

Known (measured) To be estimated 

The reconstruction tomography problem obeys the 
same formalism 

in emission and transmission tomography 
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Why is tomography useful? (1) 

•  Provides volumetric information 

The depth of a lesion can be determined 
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•  Increases image contrast 

1 1 1 

1 3 1 

1 1 1 

3 

5 

3 

Example in emission tomography 

Contrast in the projections : (5-3)/3 = 0.66 
Contrast in the slice (cross section): (3-1)/1 = 2 

Contrast = (signal of interest – background signal)/ bkgd signal 

This is a definition of contrast, there are others 

Lesions will be easier to detect in reconstructed slices ! 

Why is tomography useful? (2) 

This is 
supposed to 
be the lesion 
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Reconstruction problem in 3D 

•  Measurement of a set of 2D projections 

detector plan at position θ projection θ	


3D volume of 
interest	


x 
z 

x 

y 

z 

N(x,z) 

Tomographic reconstruction 
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Factorization of the reconstruction problem 

A 3D volume can be seen as a stack of 2D images ���

3D volume	


3D volume reconstructed ���
from a set of 2D images	


1D projections	


Transaxial slice	


2D mapping of a 
parameter	


2D projections	


3D mapping of a 
parameter	


So what has to be understood is ���
 how to reconstruct a 2D slice from a set of 1 D projections	
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2D formalism 

•  A set of 1D projections 

Detector at position θ A line of projection	


transaxial 
slice zi	


x 
z N(x) 

x 

reconstruction of a 2D signal (zi slice) 

 Set of slices zi = volumec of interest 

x 

y 

z 
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Tomographic reconstruction in general 

… is estimating a 3D volume by independent reconstruction 
of a set of 2D slices 

Direct reconstruction of a 3D volume is actually called 
“Fully 3D reconstruction” 
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Why is it so difficult? 

La leçon difficile, William Bouguereau (1825 - 1905) 
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1) Because the solution is non unique 

•  No unique solution : there are ALWAYS several 
signal distributions compatible with the finite  
number of measured projections 

1 projection : several possible solutions 

projection 
direction 

2 projections : several possible solutions 

projection 
direction 

A unique solution would exist only for an infinite 
number of noiseless continuous projections 
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2) Projections are noisy 

•  No exact solution, because the measurements are 
corrupted by noise 

ideal projection noisy projection 

10 11 9 

10 32 10 

11 8 10 

30 

52 

29 

32 

50 

27 

Actual 
measurements 
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An ill-posed inverse problem 

•  Inverse problem :  
We have measurements, we want to determine which 
signal produced the detected measurements 

•  Ill-posed problem : 
The solution is unstable (sampling + noise) : two 
different measurements can lead to significantly 
different solutions 
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Basic concepts 

! 
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Seminal work 

1917 : Johann Radon : “About the determination of 
functions from their integral functions in certain 
directions”, Math. Phys. Klass.	


1887-1956	




Tomographic reconstruction - Irène Buvat – November 2017 - 41 

Projection operator : continuous formalism 

p(u,θ) =    f(x,y) dv 
-∞	


+∞	

∫	


θ	

x 

y 
u = x cosθ + y sinθ	

v = -x sinθ + y cosθ	


v f(x,y) u 

u projection θ	
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•  Calculate the two 2 projections along the green and red 
directions of this activity distribution 

2 2 2 0 

2 10 2 2 

3 2 2 1 

1 2 0 1 

6 

16 

8 

4 

8     16      6        4 

Projection operator : discrete formalism 
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Radon transform 

p(u,θ) =    f(x,y) dv 
-∞	


+∞	

∫	


Set of projections for θ = [0, π ] 
 = Radon transform of f(x,y) 

f(x,y) 

Spatial domain Radon domain 

p(u,θ) 

Tomographic reconstruction : 
Inversion of the Radon transform, i.e.,  

Estimation of f(x,y) from p(u,θ) 
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Sinogram 

sinogram corresponding to slice zi	


Sinogram = signal from slice zi recorded at different 
angles θ  

u 

θ	


θ2	


θ3	


θ1	


t 

slice zi	
tomographic reconstruction 
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Sinogram and projections 

Sinograms and projections contain the same information but 
stored differently 

sinogram corresponding to slice zi	

θ	


A sinogram: all information pertaining to a given slice 
A single sinogram is sufficient to reconstruct a slice 

A projection : information regarding all slices for a given 
projection angle. With a single projection, it is impossible to 
reconstruct a slice 

projection corresponding to angle θ	

u 

z 
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Test 

We record 64 projections of 128 pixels (along the axial 
direction) x 256 pixels  

•  How many transaxial slices can be reconstructed 
without interpolation ?  

•  How many sinograms can we derive from the 
projections?  

•  What are the sinogram dimensions (number of rows 
and number of columns) ? 

 128 

 128 

 64 rows et 256 columns 
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Test 

Emission tomography: 
Is it a projection or a sinogram? 
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Test 

Emission tomography: 
If all projections are identical to this one, what is the 
sinogram corresponding to the slice located at the red 
line position? 
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Test 

Emission tomography: 
What is the reconstructed signal corresponding to 
this sinogram? 
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Test 

Emission tomography: 
What is the reconstructed signal corresponding to 
this sinogram? 
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Summary 
•  Introduction 

-  What is tomography? 
- Transmission tomography 
- Emission tomography 
- Why is tomographic reconstruction so difficult? 

•  Basic concepts 
- Projection 
- Radon transform 
- Sinogram 

•  Tomography consists in estimating cross section 
images from measured projections 

•  To perform tomography, several views of the object of 
interest recorded at different angles are required 

•  A projection element is the integral of the signal along 
a projection line, a projection is the set of projection 
elements recorded at a given angle, the set of all 
projections is the Radon transform of the object of 
interest 

•  In a projection, different signals overlap and contrast 
is reduced 

•  Tomographic reconstruction consists in estimating the 
signal of interest that yielded the measured projections 
using a mathematical algorithm. It is an ill-posed 
problem.  
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Two approaches for tomographic reconstruction 

•  Analytical methods 

•  Discrete or iterative methods 

R[f(x,y)] =     p(u,θ) dθ ∫	

0 

π	


p = R f 
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Analytical methods: introduction 

•  Consist in an analytical inversion of the Radon transform 
= solving integral equations 

•  The tomographic reconstruction problem is expressed 
using a continuous formalism 

•  THE analyical method that is always used 

FBP : Filtered BackProjection 

•  FBP is FAST 

•  FBP is available on all commercial scanners (X-ray 
scanners, SPECT and PET devices) 
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Backrojection operator : continuous formalism 

f*(x,y) =    p(u,θ) dθ	

0	


π	


∫	

Beware: backprojection does NOT invert the Radon 
transform 

θ	

x 

y 

v 

u = x cosθ + y sinθ	

v = -x sinθ + y cosθ	


f(x,y) u 

u projection θ	

p(u,θ) 
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Backrojection operator : discrete formalism 

•  Calculate the backprojection of the measured green and 
red projections 

6 

16 

8 

4 

8     16      6        4 

6 

16 

8 

4 

1.5 1.5 1.5 1.5 

4 4 4 4 

2 2 2 2 

1 1 1 1 

2 4 1.5 1 

2 4 1.5 1 

2 4 1.5 1 

2 4 1.5 1 

8     16      6        4 
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Backrojection operator : discrete formalism 

6 

16 

8 

4 

1.5 1.5 1.5 1.5 

4 4 4 4 

2 2 2 2 

1 1 1 1 

2 4 1.5 1 

2 4 1.5 1 

2 4 1.5 1 

2 4 1.5 1 

8     16      6        4 

1.75 2.75 1.5 1.25 

3 4 2.75 2.5 

2 3 1.75 1.5 

1.5 2.5 1.25 1 

Mean: 

2 2 2 0 

2 10 2 2 

3 2 2 1 

1 2 0 1 

Original image: 

Backprojection does NOT invert the Radon transform 

tumor / bckgd ratio 
= 10 / 1 = 10 

tumor / bckgd ratio 
= 4 / 1.5 = 2.6 
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Backprojection limitations 

u 

f*(x,y) =    p(u,θ) dθ	

0	


π	


∫	


backprojection 
     streak artefacts  

due to the limited number of projections 

original image 
number of projections 

1 3 4 

16 32 64 
Backprojection does NOT invert the Radon transform 
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Filtered backprojection: principle 

backprojection 

u 

f*(x,y) =    p(u,θ) dθ	

0	


π	


∫	


u 

f*(x,y) =    p(u,θ) dθ	

0	


π	


∫	

filtered projection	


filtered backprojection 
reduction of streak artefacts 

Exact inversion of the Radon transform ! 
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Which filter? 

The filter that makes it possible to accurately invert the 
Radon transform can be theoretically derived using the 
central slice theorem 

This theorem establishes the relationship between the 
projections and the object in the Fourier domain 

Simple relationship 
in the Fourier domain 
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Central slice theorem 

θ	


u 

p(u,θ) 

TF 1D 
θ	


ρ	


P(ρ,θ) 

y 

x f(x,y) 

projection 

TF 2D 
θ	


ρx 

ρ	


ρy 

F(ρx, ρy) 

ζ	


P(ρ,θ) = F(ρx, ρy) 
ζ=0 

1D FT of a projection with respect to u 
=  

2D FT of the signal to be reconstructed 

a(ρ,θ) 

a(ρ,θ) 

Central slice: slice 
through the 
referential origin  
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Central slice theorem: demonstration 

p(u,θ) =   f(x,y) dv 
-∞	


+∞	

∫	


1D FT 
P(ρ,θ) =   p(u, θ)e-i2πρu du 

-∞	


+∞	

∫	


P(ρ,θ) =          f(x,y)e-i2πρu du dv =          f(x,y)e-i2π(xρx + yρy) dx dy  
-∞	


+∞	

∫	

-∞	


+∞	

∫	


-∞	


+∞	

∫	

-∞	


+∞	

∫	


Change of variables :  (u,v)        (x,y) 

ρx = ρ cos θ"
ρy = ρ sin θ	

du.dv = dx.dy θ	


x 

y 

v 

u = x cosθ + y sinθ	

v = -x sinθ + y cosθ	


u 

1D FT of a projection with respect to u 
=  

2D FT of the signal to be reconstructed 
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Filtered backprojection: principle 

If P(ρ,θ) is known for all angles θ between 0 and π, the FT 
of the object can be reconstructed, hence the object can be 
estimated  

θ1	


ρ	

P(ρ,θ1) 

θ2	
 θ3	


ρx 
θ	


ρ	


ρy 

F(ρx, ρy) 
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Filtered backprojection: need for a filter 

ρx 
θ	


ρ	


ρy 

F(ρx, ρy) 

ρx 

ρy 

Points are irregularly sampled in the Fourier space : the 
density of points is proportional to 1/|ρ|: low frequency 
signal is therefore weighted more. This introduces a blur 
in the reconstructed images when using backprojection 
only. A correction (filter) for this irregular sampling is 
needed to avoid that blur. 	
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Filtered backprojection: demonstration 

P(ρ,θ) = F(ρx, ρy) 

f(x,y)  =          F(ρx,ρy)ei2π (xρx + yρy) dρx dρy  
-∞	


+∞	

∫	

-∞	


+∞	

∫	


FT-1 

Change of variable : (ρx, ρy)      (ρ, θ) 

ρx = ρ cos θ"
ρy = ρ sin θ	

ρ = (ρx

2 + ρy
2)1/2 

dρx.dρy = ρ.dρ.dθ	

u = x cosθ + y sinθ 	


f(x,y) function 
=  

backprojection of the filtered projections 

0	


π	

∫	

-∞	


+∞	

∫	
 =    P(ρ,θ) |ρ|ei2πρu dρ dθ  

-∞	


+∞	

∫	

-∞	


+∞	

∫	


CST 

 =          P(ρ,θ)ei2π(xρx + yρy) dρx dρy 

0	


π	

∫	


-∞	


+∞	

∫	


filtered projections ramp filter 

 =     p’(u,θ) dθ   with p’(u,θ) =     P(ρ,θ) |ρ|ei2πρu dρ  
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Filtered backprojection algorithm 

f(x,y)  =     p’(u,θ) dθ   with p’(u,θ) =     P(ρ,θ) |ρ|ei2πρu dρ  
0	


π	

∫	


-∞	


+∞	

∫	


1D Fourier 
transform 

P(ρ,θ) 
filtering 

|ρ| P(ρ,θ) 

inverse Fourier 
transform 

p’(u,θ) 

f(x,y) 
reconstructed slice 

backprojection 

p(u,θ) 
sinogram 
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Summary 

•  Analytical reconstruction 
- Principle 
- Central slice theorem 
- Filtered backprojection 
- Filters (next) 

•  Backprojection is a key ingredient to tomographic 
reconstruction : this operation redistributes the signal 
measured in the projection to the image space. Yet, 
because the spatial domain space and the Fourier space 
are not sampled identically, backprojection images 
include low frequency streak artefacts  

•  An exact inversion of the Radon transform is feasible 
based on the Central Slice Theorem, accounting for the 
differences in sampling in the spatial domain space and 
Fourier space 
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Why is the ramp filter not sufficient? 

ramp filter 

f(x,y)  =     p’(u,θ) dθ   with p’(u,θ) =     P(ρ,θ) |ρ|ei2πρu dρ  
0	


π	

∫	


-∞	


+∞	

∫	


ramp filter 

0                    0.8 

1 

0 

|ρ| 

amplification of high frequencies	


ρ	


|ρ|	


High frequencies = details in the images (high 
spatial resolution requires high frequency 
information)  
But also noise !  
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Why is the ramp filter not sufficient? 

ramp filter 

f(x,y)  =     p’(u,θ) dθ   with p’(u,θ) =     P(ρ,θ) |ρ|ei2πρu dρ  
0	


π	

∫	


-∞	


+∞	

∫	


|ρ| |ρ|w(ρ) 

apodization window 

w(ρ) |ρ|w(ρ) 1 

0 0                    0,8 

1 

0 0                    0,8 
Hann 

apodization 
window 

resulting 
Hann filter ramp filter 

0                    0,8 

1 

0 

|ρ| 

w(ρ) = 0.5.(1+cosπρ/ρc)  if ρ < ρc"
        = 0                       "if ρ ≥ ρc 

Fourier 
domain 

Noise control	
Lower spatial 
resolution	




Tomographic reconstruction - Irène Buvat – November 2017 - 69 

Usual filters : Hann filter 

•  ramp filter 

ensures the highest spatial resolution at the expense 

of noise 

•  Hann filter   


affects intermediate frequencies 

w(ρ) = 0.5.(1+cosπρ/ρc)  si ρ < ρc"
        = 0                       "si ρ ≥ ρc 

Cut-off frequency ρc  

0.5                0.4                0.3               0.2                0.1 


the lower the cut-off frequency, 
the lower the high frequency recovery, i.e., 
the smoother the image 



Tomographic reconstruction - Irène Buvat – November 2017 - 70 

Usual filters : Butterworth filter 

•  ramp filter  

•  Butterworth filter   

order n, ρc=0.25  

10                  8                   6                   4                   2 


the higher the order 
 the lower the high frequency recovery 
 the smoother the images 

w(ρ) = 1/[1+(ρ/ρc)2n]  if ρ < ρc 


2 parameters : ρccut-off and order n 
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Usual filters : Butterworth filter 
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Filtering: implementation tricks 

•  Fourier filtering 

Convenient property :  
A multiplication in the Fourier space is equivalent to a 
convolution in the spatial domain 

P(ρ,θ) . W’(ρ)  

p(u,θ) ⊗ w’(u)  
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Filtering: several possible implementations 

p’(u,θ) 

FT 

P(ρ,θ) 
filtering 

|ρ| P(ρ,θ) 
FT-1 

f(x,y) 
reconstructed slice 

backprojection 

p(u,θ) 
sinogram 

⊗ h(u) 

•  Spatial filtering 

•  Fourier filtering 

Convenient property :  
A multiplication in the Fourier space is equivalent to a 
convolution in the spatial domain 
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Principle of a 1D spatial filtering 

1      1     10     1      1 

Original projection 

Filter 

-0.5    2    -0.5 

Filtered projection 

1    -3.5   19   -3.5    1 
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Example of filtering in the projection space 

•  Calculate the filtered backprojection with the (-0.5 ; 2 ; 
-0.5) filter of the measured projections (repeat the edge 
values) 

6 

16 

8 

4 

8     16      6        4 

1 

25 

6 

2 

0.25 0.25 0.25 0.25 

6.25 6.25 6.25 6.25 

1.5 1.5 1.5 1.5 

0.5 0.5 0.5 0.5 

1 6.25 0.5 0.75 

1 6.25 0.5 0.75 

1 6.25 0.5 0.75 

1 6.25 0.5 0.75 

4     25      2       3 

1 

25 

6 

2 

4     25       2       3 
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0.62 3.25 0.4 0.5 

3.6 6.25 3.37 3.5 

1.25 3.87 1 1.1 

0.75 3.37    0.5 0.62 

Mean : 

2 2 2 0 

2 10 2 2 

3 2 2 1 

1 2 0 1 

Original image : 

1 

25 

6 

2 

0.25 0.25 0.25 0.25 

6.25 6.25 6.25 6.25 

1.5 1.5 1.5 1.5 

0.5 0.5 0.5 0.5 

1 6.25 0.5 0.75 

1 6.25 0.5 0.75 

1 6.25 0.5 0.75 

1 6.25 0.5 0.75 

4     25      2       3 

tumor / bckdg ratio 
= 10 / 1 = 10 

tumor / bckdg ratio 
= 6.25 / 1.4 = 4.5 

Example of filtering in the projection space 
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2D spatial filter 

•  Filtering the reconstructed images 

p’(u,θ) 

FT 

P(ρ,θ) 
filtering 

|ρ| P(ρ,θ) 
FT-1 

f(x,y) 
reconstructed slice 

p(u,θ) 
sinogram 
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2D spatial filter 

backprojection 

p(u,θ) 
sinogram 

f’(x,y) 

f(x,y) 
reconstructed slice 

⊗ g(x,y) 
spatial filtering 

•  Filtering the reconstructed images 
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Principle of a 2D spatial filte 

0       0     0       0      0 

0       0     0       0      0 

0       0     10     0      0 

0       0     0       0      0 

0       0     0       0      0 

Original image 

Filter 

0       1     0 

1       2     1 

0       1     0 

1/6 

0       0     0       0      0 

0       0    1.7     0      0 

0     1.7   3.3   1.7     0 

0       0    1.7    0      0 

0       0     0       0      0 

Filtered image 



Tomographic reconstruction - Irène Buvat – November 2017 - 80 

Usual filter : Gaussian filter 

•  Ramp filter  

•  Gaussian filter (spatial domain)   

FWHM = 2   2ln2 σ (pixel)  

0                    1                   2                   3                   4 

c(x) = (1/σ  2π).exp[-(x-x0)2/2σ2]   


the larger the FWHM (or σ), 
 the smoother the images  
 the lower the high frequency recovery 

Sets the spatial extent of the filter 
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Filter implementation: summary 
beak, penguins, bellybutton, birds, flowers , clouds, snow, horse 
ear, mountain. 

There are several manners to implement a given filter: the 
same filter implemented differently might yield small 
differences in the results 
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What is the best filter? 

•  A given filter is not adapted to all situations 

Koch et al, J Nucl Med 2005 

The filter and filter parameters should ideally be 
optimized as a function of the imaging task (eg, 
lesion detection, parameter estimate from the image), 
of the statistics in the raw data, aso 
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Correlated noise in FBP images 

Original slice 
noiseless 

Original noise 
with Poisson noise  

added 
 (1 M events) 

Original noise 
with Poisson noise  

added 
(100 000 events) 

Non spatially correlated noise 

Reconstructed slice 
FBP 

Reconstructed slice 
FBP 

Reconstructed slice 
FBP 

Correlated noise 

Correlated noise may look like signal ! 

The filtering step introduces noise correlation in the 
reconstructed images 
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Analytical reconstruction: discussion 

•  Fast, easy to implement 

•  Linear (twice the projection values, twice the 
reconstructed values)  

•  Spatial resolution / noise trade-off can be tuned using the 
filter 

•  Yet, includes many approximations: 
-  line integral model (assumes that the detector spatial 
resolution is ideal, Dirac) 

Alternative approach: discrete or 
iterative reconstruction 

u projection θ	


-  no modelling of the noise in the projection data 
-  no modelling of the physics (photon attenuation 
and scattering) 
-  data are noisy and sampled, solution is thus neither 
accurate nor unique 
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Summary (2) 
•  Analytical reconstruction 

- Principle 
- Central slice theorem 
- Filtered backprojection 
- Filters 

•  Theoretically exact Radon transform inversion is 
possible using a Ramp filter. If the data were continuous 
and noiseless, the filtered backprojection algorithm 
would then provide the exact solution.  

•  The ramp filter cannot be used alone on real data, that 
are always noisy and discrete. An apodization window 
is used, usually resulting in a low pass filter (Hann, 
Gaussian), than can be tuned using 1 or 2 parameters 
and implemented in the spatial or Fourier domain. 

•  Filtered backprojection remains an approximate 
solution to tomographic reconstruction, because of a 
number of underlying assumptions that are not satisfied 
in real data (noiseless projections, continuous 
projections, perfect spatial resolution of the detector, no 
particle matter interactions except when the particle is 
detected) 
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Two approaches for tomographic reconstruction 

•  Analytical methods 

•  Discrete or iterative methods 

R[f(x,y)] =     p(u,θ) dθ ∫	

0 

π	


p = R f 
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Iterative reconstruction: introduction 

•  Discrete expression of the problem using matrix and 
vectors 

r11             r14  

r41                    r44 

p1 
p2 

p3 
p4  

f1 
f2 

f3 
f4  

=

•  Inversion of the corresponding system of equations 
using an iterative approach 
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Discrete formalism 

pi 

projection 

fk f1 f2 

f3 f4 

p1 p2 

p3 

p4 

p1  =  r11 f1 + r12f2 + r13f3 + r14 f4 
p2  =  r21 f1 + r22f2 + r23f3 + r24 f4  
p3  =  r31 f1 + r32f2 + r33f3 + r34 f4  
p4  =  r41 f1 + r42f2 + r43f3 + r44 f 4 

In the real world: 
large system of equations 
128 projections 128 x 128 

2 097 152 equations with as many unknown values 
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Matrix expression of the inverse problem 

p1  =  r11 f1 + r12 f2 + r13 f3 + r14 f4 
p2  =  r21 f1 + r22 f2 + r23 f3 + r24 f4  
p3  =  r31 f1 + r32 f2 + r33 f3 + r34 f4  
p4  =  r41 f1 + r42 f2 + r43 f3 + r44 f 4 

r11   r12   r13  r14  
r21   r22   r23  r24 
r31   r32   r33  r34 
r41   r42   r43  r44 

p1 
p2 

p3 
p4  

f1 
f2 

f3 
f4  

=

p = R f 
projections object to be 

reconstructed 
projection 
operator  


Problem: find f given p and R 
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What is R ? 

pi 

projection 

fk 

p = R f 

R described the projection process, ie how a 
signal from the image contributes to a 

projection measurement: 
R models the forward problem 

rik : probability that an « event » emitted in 
voxel k be detected in pixel i 

R = projection operator = system matrix 
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Dimension of the problem 

p = R f 
projections object to be 

reconstructed 
system matrix 

•  Example :  256 projections of 64 rows (axial direction) and 
128 columns (projection element) 

 - To reconstruct one slice: 
   equations 
   unknowns 
            R is a                   matrix 

p1  =  r11 f1 + r12f2 + … + r1F fF 
p2  =  r21 f1 + r22f2 + … + r2F fF  
… 
pP  =  rP1 f1 + rP2f2 + … + rPF fF 

r11             r1F  

rP1                    rPF 

p1 
p2 

… 
pP  

f1 
f2 

… 
fF  

=

128 x 256 
128 x 128 

(128 x 256 ; 128 x 128) 
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What does R model? 

•  Modelling of the detection geometry 

Two aspects 

•  Modelling of the physics 
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Modelling of the detection geometry 

•  First: model of the distribution of voxel intensity: describes 
the contribution of a voxel to a projection bin 

0 
1 
0 
0 

the simplest: Dirac model 

the most convenient 
computationally speaking: 

line length model 

l 

exact model 
= uniform model 

projection 
element 
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Modelling of the detection geometry 

•  Second: model of the detector geometry (collimation) 

parallel geometry 

fj"
rij=	

ri’j=	


pi	
pi’	


rij=	

rij’=	


fan beam geometry 

fj	


fj’	


pi	


α ≠0 
0 

0 
α ≠0 
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Modelling the physics in R (1) 

•  Photon attenuation (SPECT and PET) 

f1 f2 

f3 f4 

p1 p2 
p3 

p4 

    p1  =   g11 f1 exp(-µ1d1) 
  + g13f3  exp(-µ3d3-2 µ1d1) 

µ 

d3 

d1 

geometric contribution 

In that case: 
r11 = g11 exp(-µ1d1) 
r13 =  g13  exp(-µ3d3-2 µ1d1) 

map  
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Modelling the physics in R (2) 

without scatter modelling : 
p1 = r11 f1 + r13 f3  

with scatter modelling: 
p1 = r11 f1 + r12 f2 + r13 f3  + r14 f4  

f1 f2 

f3 f4 

p1 p2 

•  Scattering (SPECT and PET) 
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Modelling the physics in R (3) 

without point spread function (PSF) modelling 
p1 = r11 f1 + r13 f3  

with PSF modelling : 
p1 = r11 f1 + r12 f2 + r13 f3  + r14 f4  

f1 f2 

f3 f4 

p1 p2 

•  Detector response 

PET SPECT 
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Modelling the physics in R (4) 

-  modelling of the patient respiratory motion in R 
(research) 
-  modelling the mean free positron path in PET 
(research) 

•  Even more advanced R models 

No theoretical limitations: we could a priori model all 
phenomena impacting the R element values, that is the 
probability that a photon emitted in voxel k be 
detected in projection bin i 
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R operator 

pi 

projection 

fk 

f1 f2 

f3 f4 

p1 p2 

p1= f1 + f3 
p2= f2 + f4 
p3= f1 + f2 
p4= f3 + f4 

=R 
1   0   1   0 
0   1   0   1 
1   1   0   0 
0   0   1   1 

p3 

p4 
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In practice 

=R 
1   0   1   0 
0   1   0   1 
1   1   0   0 
0   0   1   1 

4 3 

2 1 

6 4 

7 

3 

Please calculate the projections of (4 3 2 1) : 

p1 
p2 

… 
pP  

4 
3 
2 
1  

=
1   0   1   0 
0   1   0   1 
1   1   0   0 
0   0   1   1 

6 
4 
7 
3 

This exactly corresponds to: 
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Backprojection operator 

f1 f2 

f3 f4 

p1 p2 

pi 

backprojection 

fk 

f*1= p1 + p3 
f*2= p2 + p3 
f*3= p1 + p4 
f*4= p2 + p4 

p3 

p4 

1   0   1   0 
0   1   1   0 
1   0   0   1 
0   1   0   1 

= Rt 



Tomographic reconstruction - Irène Buvat – November 2017 - 102 

Solution of the inverse problem 

p = R f 

    vs p 
comparison 

pn  ^ fn+1 

correction factor 
cn 

fn=0 

initial estimate of the 
object 

p = R f 

pn  ^ 
projection corresponding 

to the fn estimates 

Finding a solution f mimizing a distance d(p,Rf), p and R 
being known 

usually pn - p or p/pn 
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Two classes of iterative methods 

•  Algebraic methods   

- conventional iterative methods used to solve a 

linear equation system 	

  - minimization of ||p - R f||2  
  - ART, SIRT, ILST, conjugate gradient, etc 

•  Statistical methods   

 - Bayesian estimate 
  - account for the noise in the data (Poisson, 

Gaussian) 
  - maximize a likelihood function 
  - MLEM, OSEM, RAMLA, DRAMA 



Tomographic reconstruction - Irène Buvat – November 2017 - 104 

Example of algebraic method: ART 

•  Algebraic reconstruction technique 

1 2 

3 4 7 

3 0 0 

0 0 

f0 

comparison 
using subtraction 

4 6 0 0 4 6 

5 

5 2 3 

2 3 

f1 

2 

-2 

1 2 

3 4 

f2 

0+2 0+3 

0+2 0+3 

backprojection of 
the differences 

comparison 
using subtraction 

2-1 3-1 

2+1 3+1 

backprojection of 
the differences 
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Let’s try! 

2 

8 

0 0 

0 0 

f0 

4 6 
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Solution using ART 

0 0 

0 0 

f0 

comparison 
using subtraction 

0 0 4 6 

5 

5 2 3 

2 3 

f1 

-3 

+3 3.5 4.5 

0.5 1.5 

f2 

0+2 0+3 

0+2 0+3 

backprojection of 
the differences 

comparison using 
substraction 2+1.5 3+1.5 

2-1.5 3-1.5 

backprojection of 
the differences 

2 

8 

4 6 
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Limitations of algrebraic methods 

•  They do not account for the noise present in the projections 

•  They do not include any prior on the solution 

Statistical methods offer an appealing alternative as 
they can model the statistical properties of: 
-  the measured projections 
-  the object to be reconstructed  
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Why is it so important to model noise? 

•  in SPECT, PET and CT, Poisson noise (counting)  

•  PET Gemini TF 
-  44 rings of 644 crystals LSO (4 mm x 4 mm x 22 mm) 
-  ~ 4 E8 lines of response defined by 2 crystals 

Injection of ~ 10 mCi = 370 MBq  
5 min acquisition 

Number of β+ desintegrations =  370 E6 x 5 x 60 = 1.11 E11 

Attenuation effect: exp(-0.097 x 30) = 0.0544 
      is 6 E9 coincidences arriving on the detector 

Detector efficiency (2%)  
      is 1.2 E8 detected coincidences 

Ie 1.2 E8/ 4 E8 = 0.3 coincidence per LOR !  
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Most used statistical method: MLEM 

•  MLEM = Maximum Likelihood Expectation Maximization 

•  Assumes that the measured data follow a Poisson statistics 

Consistent with the properties of SPECT and PET data 

This means that if projections are pre-processed before 
reconstruction, MLEM assumption is no longer valid !  

1781-1840 
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•  Update formula (demonstration is lengthy): 
fn+1 = fn . Rt [ p / pn  ] 

MLEM algorithm 

error projection 

p/pn 
comparison 

^ fcorr 
backprojection 

fn=0 

initial estimate 

p = R f 

pn  ^ 
projection corresponding 

to estimate fn 
error image 

fn+1 = fn . fcorr 

multiplication of the current 
estimate by the error image 
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MLEM algorithm 

Properties:	


 * solution is always positive or zero 
 * slow convergence (>100 iterations required) 
 * iterative images widely used in the clinics (in its 

accelerated OSEM version)   
 * NON linear! 

Non linearity is counter intuitive.  

 * bias (over estimation of low values) in regions 
with low signal (due to the non negativity constraints 
inherent to MLEM) 



Tomographic reconstruction - Irène Buvat – November 2017 - 112 

Example 

FBP (Hamming) MLEM	

(32 itérations) 

Reconstructed images 

Variance 

Bias (f-f)  ^	
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•  OSEM = Ordered Subset Expectation Maximisation 

•  Sorting the P projections in ordered subsets 
   Exemple :  

Acceleration of MLEM : OSEM 

8 projections 

2 subsets of 4 projections 

or 

4 subsets of 2 projections 
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•  Using MLEM on the subsets (example of 2 subsets): 

        - iteration 1 :  
 estimation of f1 from f0 and projections p1  

 corresponding to subset 1   
    f1 = f0 . Rt [ p / p1 ]    
 estimation of f’1 from f1 et projections p’1 

  corresponding to subset 2 

    f’1 = f1 . Rt [ p / p’1 ] 

   
- iteration 2 :  

 estimation of f2 from f’1 and projections p2 

  corresponding to subset 1 

    f2 = f’1 . Rt [ p / p2 ]    
 estimation of f’2 from f2 and projections p’2 

  corresponding to subset 2 

    f’2 = f2 . Rt [ p / p’2  ] 
etc. 

OSEM 

OSEM using S subsets and I iterations   
⇔  SI iterations of MLEM 

but S times faster !!! 

Beware: use at least 4 projections per subset! 
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Example of OSEM results 

MLEM  1                16               24              32               40    iter. 

OSEM  1                  4                 6                8                  10  iter. 
4 subsets 

OSEM    1                2                  3                 4                  5 
8 subsets 

OSEM has to be described using a number of subsets 
and a number of iterations 
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5 components to be defined: 

•  description of the f signal representation model  
-  usually a matrix of voxels 
-  but can be overlapping functions like « blobs » 

•  system matrix R 
-  describes the forward model 
-  models the geometry and the physics of the 
acquisition 

•  data model for p 
-  statistical properties of the data (Poisson, Gauss) 

•  objective function to be optimized to solve p=Rf for f 
-  maximum likelihood  
-  maximum a posteriori 
-  weighted least squares 
-  … 

•  optimization strategy to optimize the objective function 
-  expectation maximization 
-  descent algorithm 
-  … 

Components of an iterative reconstruction algorithm 

Each iterative algorithm can be described using these 5 
components and varies as a function of these choices 
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•  RAMLA (row action maximum likelihood 
algorithm) is a OSEM-type algorithm with: 
-  a number of subsets equal to the number of 
projections 
+ a relaxation parameter to control noise  

Many iterative algorithms have been proposed  

•  DRAMA, SAGE, SMART, Conjugate gradients, … 

•  Voxel grid is mostly used for f description, but 
Philips also used blobs (3D Gaussian functions) 
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•  The higher the number of iterations, the better the high 
frequencies recovery 

Properties of iterative methods 

OSEM    1                2                 3                 4                 5 
8 subsets 

•  The number of iterations sets the trade-off between 
spatial resolution and noise (similar to the filter in FBP) 

•  The number of iterations should always be sufficient to 
converge, and then regularization should be applied to 
reduce noise (see later) 
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Properties of iterative methods 

•  How to choose the number of iterations? 
 - convergence towards the solution followed 

by divergence to the amplification of noise 
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Regularization 

Makes the solution close to what is expected 

unlikely likely 

Penalizes unlikely solution and favors  
likely ones using priors 
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Three approaches for regularization 

•  Reduce the dimension of the problem, ie the 
number of unknown to be estimated 
-  using blob functions 
-  using time-dependent basis functions in 
dynamic imaging … 

- solution without regularization: 
 minimisation of d(p,Rf) 

- regularized solution: 
 minimisation of d1(p,Rf) + λd2(f,fapriori) 

•  Variational regularization: 

•  Empirical methods: 
-  post-filtering 
-  early stop of iterations 
-  filtering between iterations  
-  … 
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Example 

•  Introduction of priors derived from a CT or an MR 

Baete et al, IEEE Trans Med Imaging 2004 

Regularization can yield great visual results, but 
the parameters they require are difficult to adjust 

automatically 
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Analytical or iterative reconstruction (1) 

PET 

FBP 

OSEM 
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•  Iterative algorithm with respect to FBP   
 * no streak artefacts 
 * possible modelling of the physics in R 
 * easy management of complicated geometry for 

which no FBP variant exists  
 * possible modelling of the statistical properties 

of the measured data 
 * possible introduction of priors 

 * longer computation time  
 * non linear for some of them 
 * some other artefacts (noise correlation) 

Analytical or iterative reconstruction (2) 
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•  Current trends towards iterative algorithms:   
 * because modelling the physics is extremely appealing 
 * because of the flexibility in what can be 

modelled within R (complicated detector geometry)  
 * GPU implementation makes iterative 

reconstruction fast 

 * system matrix still to be improved (motion, 
positron path, collimator penetration in SPECT, aso) 
  * hot topic: efficient and robust regularization 

Analytical or iterative reconstruction (3) 
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Companies are now developing iterative reconstruction 
in X-ray CT, while it was used only in SPECT and PET 
so far. Why? 

Iterative reconstruction in X-ray CT  
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Beyond 2D reconstruction… 

Solution : « fully 3D reconstruction » 
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Three types of fully 3D reconstruction 

•  Analytical method 
 3D FBP : extension of the 2D FBP   

•  Methodes of rebinning 
 rearrangement of the 3D data to make  
 2D reconstruction algorithms applicable 

•  Iterative methods 
 estimation of a « fully 3D » matrix system 
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Analytical 3D reconstruction 

•  3D FBP : extension of 2D FBP 

-  accounts for data redundancy 

axial collimation 

LOR 

no axial collimation 

more LOR  
(better sensitivity) 
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Central slice theorem in 3D 

x 

y 

z 

object = f(x,y,z) 

u 
v 

w 
projection = p(u,v,φ,θ) 

Similar to the 2D version 

FT 3D 

FT 2D 

ρx 

ρy 

ρz 

P(ρ,θ) = F(ρx, ρy , ρz) 
ψ=
0 

P(ρ,ζ,φ,θ) 

ρ	

ζ	
 ψ	
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… but 3D FBP requires “complete” data 

complete projection 
incomplete projection 
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3D backprojection using incomplete data 

•  Reconstruction of a first estimate of f using 2D FBP 

•  Once the data are complete, use 3D FBP 

•  Extraction of the 2D data (disregarding the oblique LOR) 

•  Estimation of the truncated data by forward projection 
of the estimated f 

•  Merging the estimated f and the available measurements 
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3D backprojection using incomplete data 

•  This is the classical method of 3D reprojection (3DRP, 
3D reprojection method, Kinahan and Rogers, IEEE 
Trans Nucl Sci 1989) 
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Rebinning methods 

•  Using R2 sinograms (R number of detector rings), 
estimation of 2R-1 sinograms corresponding to direct slices 

... ... 

Δr=0 Δr=-1 Δr=1 Δr=-(R-1) Δr=(R-1) 

R direct slices 

rebinning 
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Single slice rebinning 

r_rebin = (r1+r2)/2 

r1 r2 
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Multi slice rebinning 

r1 r2 
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FORE 

FOurier REbinning (1995) 

Oblique sinograms are resampled in the 2D Fourier 
domain to reassign events to direct slices 

After rebinning 

Use of a 2D reconstruction method (either FBP or 
iterative) 
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Rebinning 

•  Also called 2.5 D reconstruction. Why ?  
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Iterative discrete methods 

•  Identical to 2D reconstruction 

•  Challenges : 

-  size of R (> 10 million LOR in 3D PET ) 

-  accurate estimate of R in 3D to account to all physics and 
geometry effects (scatter, detector response function, axially 
variable sensitivity, aso) 

p = R f 
projections object to be 

reconstructed 
system matrix 
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Why is « fully 3D » reconstruction appealing? 

FORE-FBP 3D Ramla 

Joel Karp, University of Pennsylvanie 
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PET reconstruction using time of flight 

What does that change? 

+ 

Without TOF, no information regarding the annihilation point on the LOR 

d1 

d2 

+ 

Δt 

If Δt = 0, d1 = d2, annihilation 
took place at the exact center of 
the LOR 

*
d1 

d2 

+ 

10 cm 

Δt 

If Δt = 667 ps, d1-d2=20cm, 
annihilation took place 10 cm 
off-centered  

The precision with which Δt, hence d1-d2, can be measured is limited 
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PET reconstruction using time of flight 

A priori regarding the location of the 
annihilation on the LOR can be modelled 
during backprojection 

pi 

Backprojection without prior 

fk 

pi 

fk 

Backprojection with prior 

The reconstructed signal will thus be 
concentrated on smaller regions from 
which it is likely it has been emitted: 
increase in contrast to noise ratio (less 
background activity) 
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Historical data 

•  1956 : Bracewell : demonstration of the 
relationships between Fourier transform and 
Radon transform 

•  1963 : first applications to medical tomography 
-  Kuhl, prof of radiology : first images 

obtained by backprojection  
-  Cormack, physicist : application of 

Radon results to X-ray acquisitions 

•  1970 : publication of the first CT image 

•  1970-73 : design of the first CT scanner by 
Cormack and Hounsfield 

•  1979 : Cormack et Hounsfield won the Nobel 
prize in Medicine 

•  1917 : Johann Radon : “About the determination of 
functions from their integral functions in certain directions”  
Mathematic work, no application 

1919-2004 

1924-1998 

1929- 

1921-2007 
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Which method for which application? 

•  X-ray CT  
 * FBP thanks to excellent signal to noise ratio in the data 
 * but iterative reconstruction is entering this application 
field to decrease the dose required to get excellent images : 
« low dose » CT  

•  SPECT 
* FBP only for a long time (before OSEM was invented) 
* Now : iterative algorithms, in particular OSEM, to:  

 - reduce streak artefacts, 
 - improve quantitative accuracy 
 - better deal with low stat (10 000 less events 
 than in CT) 
 - current computers and GPU make iterative 
 reconstruction usable in the clinics 

•  PET 
* FBP, MLEM, OSEM, RAMLA 
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What you should now know 

•  Key aspects in tomography: 

-  differences between emission tomography and transmission 
tomography 

-  the fact that the mathematical problem is actually exactly the 
same in emission and trasmission tomography 

-  the function that is reconstructed in CT, PET and SPECT 

-  why tomography gives more information than planar 
imaging 

-  why tomograhic reconstruction is an ill-posed problem 

-  that there are two families of reconstruction methods, and 
how they differ 

-  the difference between reconstruction and “fully 3D 
reconstruction” 
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What you should now know 

•  Reconstruction techniques: 

-  differences between projections and sinograms 

-  principle of filteted backprojection 

-  the role of the filter in FBP 

- why the Ramp filter is not sufficient 

- how the parameter filter can affect the resulting images 

-  the principle of iterative reconstruction 

-  the parameters that can be changed in iterative 
reconstruction to improve image quality / accuracy 

-  what is a system matrix 

-  the principle of OSEM / MLEM  

-  the properties of MLEM and OSEM  

-  the 3 types de fully 3D reconstruction  

-  what is the rebinning in TEP 
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To know more ... 

•  Analytic and iterative reconstruction algorithms in 
SPECT. Journal of Nuclear Medicine 2002, 43:1343-1358 

•  J. Qi and R. Leahy, Iterative reconstruction techniques in 
emission tomography,	

Topical review, Phys. Med. Biol. , vol. 51 (2006), R541-
R578 

•  Articles you can download on: 
http://www.guillemet.org/irene/equipe4/cours.html 

•  Kinahan PE, Defrise M, and Clackdoyle R. Analytic 
image reconstruction methods. In: Emission Academic 
Press, 2004	

•  Zeng GL, Medical Image reconstruction: a conceptual 
tutorial, Springer, 2009 

Short articles 

Books 
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Your questions 


