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Outline 

•  Why does PET require tomographic reconstruction? 

•  Basics 

•  Tomographic reconstruction methods 

•  From tomographic reconstruction to Monte Carlo simulations 

•  Conclusions 
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Why tomographic reconstruction ? (1) 

•  What does a PET system detect? 

LOR i1, E1, E’1, t1, LOR i2, E2, E’2, t2, … 	


events stored as sinograms	


a list of events (list mode)	


Do you recognize a brain ?	
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•  How to get meaningful images ? 

LOR i1, E1, E’1, t1, LOR i2, E2, E’2, t2, … 	


a sinogram	


a list of events (list mode)	


?	


Why tomographic reconstruction ? (2) 
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•  How to get meaningful images ? 

a sinogram	


using 
tomographic 

reconstruction 	


Why tomographic reconstruction ? (2) 

LOR i1, E1, E’1, t1, LOR i2, E2, E’2, t2, … 	


a list of events (list mode)	
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•  To be able to go from the sinogram (or list mode) to the image… 

a sinogram	


using 
tomographic 

reconstruction 	


Toward tomographic reconstruction 

LOR i1, E1, E’1, t1, LOR i2, E2, E’2, t2, … 	


a list of events (list mode)	


 … one first have to understand how the object produces a sinogram  



Varenna workshop  - Irène Buvat – September 7th,  2015  - 7 

The direct (forward) problem in PET 

The PET detector measures a set of “projection” data: integrals of 
annihilations along certain directions, called Lines of Response (LOR). 

unknown spatial 
distribution of 
annihilations 

LOR measurements = projections 

The mathematical formulation of the relationship between the unknown 
parameters and the measurements is the direct problem. 

direct problem 
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Inverse problem 

Tomographic reconstruction is the inversion of the direct problem.  

inverse problem 

Inverse problem: estimating the 3D map of the annihilation points from 
the measured data.  

unknown spatial 
distribution of 
annihilations 

LOR measurements = projections 
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Is that easy ? No, still an active area of research since the mid 50’s 

La leçon difficile, William Bouguereau (1825 - 1905) 
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Why so difficult ? An ill-posed inverse problem 

•  Limited angular sampling 

Ill-posed: no unique and accurate solutions,  
several solutions compatible with the measurements 

1 projection 

projection 
direction 

2 projections 

Noisy 

•  Measurements are noisy 

No noise 

signal intensity 

spatial direction 

… several 
solutions for any 
finite number of 
projections	
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Basics 
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Simplified approach: factorization of the reconstruction problem 

3D images from a set of 2D measurements 

3D cartography of a 
parameter 

another 1D projection 

a 1D projection is a set of parallel LOR 

a 1D projection 

2D map of the 
annihilation points 

Reconstructing 2D images from a set of 1D measurements 

transaxial slice 
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Simplified approach: factorization of the reconstruction problem 

Then repeating this for all slices and stacking the slices to get a 3D volume 

3D cartography of a 
parameter 

“Fake” 3D reconstruction as it is actually a set of 2D reconstructions 

3D map of the 
annihilation points 

transaxial slice 
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State of the art is now fully 3D reconstruction 

3D images from a set of 2D measurements 

3D cartography of a 
parameter 
3D map of the 
annihilation points 

3D images from a set of 2D measurements 

Still, for educational purpose, explaining reconstruction in 2D is easier 
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Key notion 1: projection 

p(u,θ) =    f(x,y) dv 
-∞	


+∞	

∫	


Modelling the direct problem 

u = x cosθ + y sinθ 
v = -x sinθ + y cosθ	


θ	

x 

y 
v f(x,y) 

u 
u projection θ	


This is the transaxial 
slice to be reconstructed	
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Projection: mathematical expression 

u projection θ	


p(u,θ) =    f(x,y) dv 

-∞	


+∞	

∫	


The 2D Radon transform 

set of projections for θ = [0, π ] 
 = Radon transform of f(x,y) 

R[f(x,y)] =     p(u,θ)dθ 
0 

π	


∫	
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Key notion 2: sinogram 

All detected signal associated with 1 slice 

u 

θ	


θ1	


u 
θ2	


θ3	


The sinogram is the Radon transform of the image 



Varenna workshop  - Irène Buvat – September 7th,  2015  - 18 

Key notion 3: backprojection 

f*(x,y) =    p(u,θ) dθ	


0 

π	


∫	


Tackling the inverse problem 

u = x cosθ + y sinθ 
v = -x sinθ + y cosθ	


θ	

x 

y 
v f(x,y) 

u u projection θ	


Beware: backprojection is not the inverse of projection ! 

p(u,θ) 
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Reconstruction methods 
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Two approaches 

➊ Analytical approaches 

- Continuous formulation 
- Explicit solution using inversion 
formulae or successive transformations  
-  Direct calculation of the solution 
-  Fast 
-  Discretization for numerical 
implementation only 

f*(x,y) =    p’(u,θ) dθ	

0 

π	


∫	


➋ Discrete approaches 

- Discrete formulation 
- Resolution of a system of linear 
equations or probabilistic estimation 
-  Iterative algorithms 
-  Slow convergence 
-  Intrinsic discretization 

pi = Σ rij fj  j 
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Analytical approach: central slice theorem 

p(u,θ) =    f(x,y) dv!
-∞	


+∞	

∫	


-∞	

P(ρ,θ) =    p(u,θ) e-i2πρu du!∫	


+∞	

Fourier transform"

θ	

x 

y
v u 

u = x cosθ + y sinθ	

v = -x sinθ + y cosθ	

ρx = ρ cosθ!
ρy = ρ sinθ	

du.dv = dx.dy 

1D FT of p with respect to u = 2D FT of f in a given direction 

P(ρ,θ) =           f(x,y) e-i2π(xρx+yρy) dx.dy !

-∞	
 -∞	


+∞	
+∞	

∫	
 ∫	


p(u,θ)!

P(ρ,θ) =           f(x,y) e-i2πρu du.dv!
-∞	


+∞	


-∞	


+∞	

∫	
 ∫	


P(ρ,θ) = F(ρx,ρy) !
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Analytical approach: filtered backprojection (FBP) 

P(ρ,θ) = F(ρx,ρy) !

f(x,y) =             F(ρx,ρy) ei2π(xρx+yρy) dρx.dρy  
-∞	


+∞	


-∞	


+∞	

∫	
 ∫	


=              P(ρ,θ)  ei2π(xρx+yρy) dρx.dρy !
-∞	


+∞	


-∞	


+∞	

∫	
 ∫	


=           P(ρ,θ) |ρ|ei2πρu dρ. dθ !
0 

π	
 +∞	

∫	
 ∫	


=      p’(u,θ) dθ      with    p’(u,θ) =     P(ρ,θ) |ρ|ei2πρu dρ	


-∞	


0 

π	


∫	

-∞	


+∞	

∫	


Ramp filter 

θ	

x 

y
v u 

u = x cosθ + y sinθ	

ρx = ρ cosθ!
ρy = ρ sinθ	

ρ = (ρx

2 + ρy
2)1/2!

ρ dρxdρy = ρdρdθ!
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Filtered backprojection: algorithm 

P(ρ,θ)!

1D-FT"

p’(u,θ)!
FT-1"

f(x,y)!

backprojection"

reconstructed image"

f(x,y) =      p’(u,θ) dθ       with    p’(u,θ) =     P(ρ,θ) |ρ|ei2πρu dρ	

0 

π	


∫	


sinogram"

p(u,θ)!

|ρ| P(ρ,θ)!
filtering"

Ramp filter 

∫	

-∞	


+∞	
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Filtered backprojection: beyond the Ramp filter 

f(x,y) =      p’(u,θ) dθ      with   p’(u,θ) =     P(ρ,θ) |ρ|ei2πρu dρ	

0 

π	


∫	
 ∫	

-∞	


+∞	


ρ	

0                0.8!

|ρ|w(ρ)	


0!

1!

ρ	


|ρ|!

0               0.8!

1!

0!

|ρ|w(ρ)	


high frequency amplification noise noise control 

loss of spatial resolution 
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Two approaches 

➊ Analytical approaches 

- Continuous formulation 
- Explicit solution using inversion 
formulae or successive transformations  
-  Direct calculation of the solution 
-  Fast 
-  Discretization for numerical 
implementation only 

f*(x,y) =    p’(u,θ) dθ	

0 

π	


∫	


➋ Discrete approaches 

- Discrete formulation 
- Resolution of a system of linear 
equations or probabilistic estimation 
-  Iterative algorithms 
-  Slow convergence 
-  Intrinsic discretization 

pi = Σ rij fj  j 
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Discrete approach: model 

pi!

fj!

r11                   r14  

r41                             r44 

p1 
p2 
p3 
p4  

f1 
f2 
f3 
f4  

= p = R f 

f1! f2!

f3! f4!

p1 p2 
p3 

p4 
p1  =  r11f1 + r12f2 + r13f3 + r14f4 
p2  =  r21f1 + r22f2 + r23f3 + r24f4  
p3  =  r31f1 + r32f2 + r33f3 + r34f4  
p4  =  r41f1 + r42f2 + r43f3 + r44f4 

system matrix:"
probability that an event 
emitted in j be detected 

in LOR i"Given p and R, estimate f"
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Discrete approach: calculation of R 

•  Geometric modelling   
- intersection between each pixel and each LOR 

fj!

p = R f R models the direct problem 

•  Physics modelling 
- spatial resolution of the detector 
- particle interactions (scatter, photoelectric absorption) 

rij=1!
ri’j=0!

pi!pi’!
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Two classes of discrete methods 

➊ Algebraic methods 

- Generalized inverse methods 

➋ Statistical approaches 

- Bayesian estimates 
- Optimization of functionals 

-  Account for noise properties 

pi = Σ rij fj  j 
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Iterative algorithm used in discrete methods 

f 0 

f 1 correction 

p = R f 

p = R f 

p ^	
 comparison p ^	
 versus p 

define the iterative method: 
additive if f n+1 = f n + c n 

multiplicative if f n+1 = f n . C n 
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Algebraic methods 

Minimisation of ||p - R f||2 

p = R f 

Several minimisation algorithms are possible to estimate a solution: 

e.g., SIRT (Simultaneous Iterative Reconstruction Technique) 
Conjugate Gradient 

ART (Algrebraic Reconstruction Technique) 

e.g., additive ART: 

fjn+1 = fjn + (pi - pi
n) rij/Σrik

2 
k 



Varenna workshop  - Irène Buvat – September 7th,  2015  - 31 

Statistical methods 

Probabilistic formulation (Bayes’ equation): 
 proba(f|p) = proba(p|f) proba(f) / proba(p) 

p = R f 

probability of obtaining f 
when p is measured 

likelihood of p prior on f prior on p 

Find a solution f maximizing proba(p|f) given a probabilistic model for p 

fn+1 = fn . Rt(p/pn) 

e.g.,  if p follows a Poisson law: proba(p|f) = Π exp(-pk).pk 
pk /pk! 

 MLEM (Maximum Likelihood Expectation Maximisation): 

and  OSEM (accelerated version of MLEM) 

k 
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Regularization 
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Regularization 

Set constraints on the solution f based on a prior 

Solution f: 
trade-off between  

the agreement with the observed data 
and 

the agreement with a prior 



Varenna workshop  - Irène Buvat – September 7th,  2015  - 34 

Regularization for analytical methods 

Filtering 

f(x,y) =           P(ρ,θ) w(ρ)|ρ|ei2πρu dρ	

0 

π	


∫	
 ∫	

-∞	


+∞	


Ramp filter Butterworth filter 
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Regularization for discrete methods 

Minimisation of ||p - R f||2 + λ K(f) 

 λ controls the trade-off between"
agreement with the projections and agreement with the prior"

proba(f|p) = proba(p|f) proba(f) / proba(p) 

prior on f, i.e. proba(f) non uniform 

 Examples of priors: 
 f smooth 
 f having discontinuities 

Conjugate Gradient gives MAP-Conjugate Gradient (Maximum A Posteriori) 
MLEM gives MAP-EM 
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Simulations 
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How can simulations be used in reconstruction ? 

p = R f 
modelling R using numerical (Monte Carlo) simulations 

of the imaging procedure 

stochastic modelling 
of physical interactions  

tissue density  
and composition 

+ 
cross-section tables of 

radiation interaction 
+  

model of the detector 

probability that an 
“event” in j be detected 

in LOR i 

j 

i 
Rij 

R	
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Advantages of using Monte Carlo simulations 

•  Precise modelling of most phenomena involved in PET: 
o  emission of positron followed by annihilation 
o  stochastic interactions between particles and patient tissues 
o  stochastic interactions within the detector materials 
o  electronic response of the detector 

•  Fully 3D 

If R is accurate, then the reconstructed images will be  
more accurate than with an approximate R	
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Principle of MC simulations in PET 

β+ source:  
geometry, decay (Emax), 
activity (kBq/mL), period, 
decay time, annihilation 

random number generator and sampling of probability density functions	


β+	


photons: 
1. acolinearity, direction 
2. interactions in medium 
3. interactions in the detector 

single photons: 
1. energy deposit 
2. light sharing 
3. position calculation 
4. energy calculation 

coincidences: 
1. coincidence time window 
2. delayed window 

dead time energy 
window 

storage 
listmode 

data 

LOR i1, E1, E’1, t1, LOR i2, E2, E’2, t2, … 	
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From a practical point of view 

•  Monte Carlo codes modelling particle-matter interactions can be 
used (Geant4, EGS4, MCNPx, FLUKA, etc) 

•  Or, codes dedicated to MC simulations of Emission Tomography 
(easier to use for modelling PET acquisitions):  

GATE: http://www.opengatecollaboration.org 
SimSET: http://depts.washington.edu/simset/html/simset_main.html 
PeneloPET: http://nuclear.fis.ucm.es/penelopet/ 
Sorteo: http://sorteo.cermep.fr 

GATE 
(56%) Geant4 

(20%) 

Simind (4%) 
Sorteo(3%) 
SimSET (4%) 

PeneloPET (2%) 
Others  
(10%) 

Fluka (3%) 

Statistics from IEEE MIC 2013	
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•  To get a sound estimate of each R entry, many events have to be simulated 
 - use MC simulations to parameterize analytical functions that fit 
  the imaging system response 
 - set to 0 entries for which the statistical robustness is not ensured 
 - design fast dedicated MC codes using simplifying assumptions 

Limitations of using MC simulations to estimate R 

•  Such a detailed R is not so easy to invert: not sparse, not well-conditioned, 
lengthy convergence of the iterative algorithm 

- use a hybrid approach that uses the most accurate R only at some 
iterations  

•  In fully 3D, the R matrix is huge, typically >1013 entries 
 - factorize the matrix into several components 
 - use compression techniques for storage 
 - take advantage of symmetries in the scanner 
 - set to 0 entries with a very low probability 
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Is it worth it? 

•  It depends on the detector design and radionuclides of interest  

•  Yes for “dirty” radionuclides with complicated decay schemes, ie Iodine 124, 
Yttrium 90 

•  Yes to correct for positron range for isotopes with a high positron ranges 
(high Emax), such as Rubidium 82 in cardiac imaging 

•  Yes when detector response is hard to model analytically 

•  Yes to get an accurate estimate of scatter in highly heterogeneous media 

•  No otherwise, analytical models, sometimes tuned based on MC 
simulations, work rather well in most applications 
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What else MC simulations can be used for in PET? 

Evaluating the accuracy of 
quantification in PET: 
in silico experiments provide 
the ground truth 

Guidance for detector design: simulating before building 

Parameterization of 
analytical models for 
corrections (scatter, 
non stationary PSF) 

Protocol optimization: 
determining the 
impact of various 
detector/acquisition 
parameters	


Calculating R for image 
reconstruction 
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Conclusions 

•  Designing a new PET detector is only part of the work 

•  The detector has to be associated with an efficient reconstruction 
procedure 

•  Today, iterative reconstructions are preferred: 
-  more flexible to model non-standard detector geometry, 
-  elegantly incorporate corrections for attenuation, detector 
response, scatter (possibly positron range and patient motion)  

•  Monte Carlo simulations can assist PET image reconstruction as it 
can guide the design of the R matrix system 

•  Monte Carlo simulations are part of the toolbox of PET scientists, 
as they contribute to all steps of PET research (detector design, 
reconstruction, corrections, protocol optimization, assessment of 
quantification)  
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Additional resources 

A more detailed course regarding simulations (3 h !): 
http://www.guillemet.org/irene/coursem/ENTERVISION_Simulations.pdf 

Several courses regarding tomographic reconstruction in PET and 
SPECT: 
http://www.guillemet.org/irene/cours 
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Announcements 

GATE training course 6-8 October 2015 in Orsay, France 

Check http://www.opengatecollaboration.org for registration 
Training tab 

Registration will close this Wednesday (September 9th) 
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