Principles of PET: reconstruction / simulations

UNIVERSITÉ

Irène Buvat Imagerie Moléculaire In Vivo (IMIV) UMR 1023 Inserm / CEA / Université Paris Sud, ERL 9218 CNRS CEA – Service Hospitalier Frédéric Joliot Orsay, France

> irene.buvat@u-psud.fr http://i2bm.cea.fr/dsv/i2bm/shfj/imiv http://www.guillemet.org/irene

Outline

- Why does PET require tomographic reconstruction?
- Basics
- Tomographic reconstruction methods
- From tomographic reconstruction to Monte Carlo simulations
- Conclusions

Why tomographic reconstruction ? (1)

Why tomographic reconstruction ? (2)

• How to get meaningful images ?

LOR $i_1, E_1, E'_1, t_1, LOR i_2, E_2, E'_2, t_2, \dots$

a list of events (list mode)

Why tomographic reconstruction ? (2)

• How to get meaningful images ?

a sinogram

LOR $i_1, E_1, E'_1, t_1, LOR i_2, E_2, E'_2, t_2, \dots$

a list of events (list mode)

Toward tomographic reconstruction

• To be able to go from the sinogram (or list mode) to the image...

a sinogram

LOR $i_1, E_1, E'_1, t_1, LOR i_2, E_2, E'_2, t_2, \dots$

a list of events (list mode)

... one first have to understand how the object produces a sinogram

The direct (forward) problem in PET

The PET detector measures a set of "projection" data: integrals of annihilations along certain directions, called Lines of Response (LOR).

LOR measurements = projections

direct problem

unknown spatial distribution of annihilations

The mathematical formulation of the relationship between the unknown parameters and the measurements is the direct problem.

Inverse problem

Tomographic reconstruction is the inversion of the direct problem.

LOR measurements = projections

inverse problem unknown spatial

distribution of annihilations

Inverse problem: estimating the 3D map of the annihilation points from the measured data.

Is that easy ? No, still an active area of research since the mid 50's

La leçon difficile, William Bouguereau (1825 - 1905)

Why so difficult ? An ill-posed inverse problem

• Limited angular sampling

• Measurements are noisy

2 projections

... several solutions for any finite number of projections

Simplified approach: factorization of the reconstruction problem

Reconstructing 2D images from a set of 1D measurements

a 1D projection is a set of parallel LOR

Simplified approach: factorization of the reconstruction problem

Then repeating this for all slices and stacking the slices to get a 3D volume

"Fake" 3D reconstruction as it is actually a set of 2D reconstructions

Varenna workshop - Irène Buvat - September 7th, 2015 - 13

State of the art is now fully 3D reconstruction

3D images from a set of 2D measurements

Still, for educational purpose, explaining reconstruction in 2D is easier

Modelling the direct problem

This is the transaxial slice to be reconstructed

 $u = x \cos\theta + y \sin\theta$ $v = -x \sin\theta + y \cos\theta$

Projection: mathematical expression

The 2D Radon transform

$$p(u,\theta) = \int_{-\infty}^{+\infty} f(x,y) \, dv$$

set of projections for $\theta = [0, \pi]$ = Radon transform of f(x,y) $R[f(x,y)] = \int_{0}^{\pi} p(u,\theta)d\theta$

All detected signal associated with 1 slice

The sinogram is the Radon transform of the image

Varenna workshop - Irène Buvat - September 7th, 2015 - 17

Key notion 3: backprojection

Tackling the inverse problem

 $u = x \cos\theta + y \sin\theta$ $v = -x \sin\theta + y \cos\theta$

$$f^*(x,y) = \int_0^\pi p(u,\theta) \, d\theta$$

Beware: backprojection is not the inverse of projection !

Reconstruction methods

Varenna workshop - Irène Buvat – September 7th, 2015 - 19

Two approaches

Analytical approaches

$$f^*(x,y) = \int_0^\pi f'(u,\theta) d\theta$$

- Continuous formulation
- Explicit solution using inversion formulae or successive transformations
- Direct calculation of the solution
- Fast
- Discretization for numerical implementation only

2 Discrete approaches

 $p_i = \sum_i r_{ij} f_j$

- Discrete formulation
- Resolution of a system of linear equations or probabilistic estimation
- Iterative algorithms
- Slow convergence
- Intrinsic discretization

Analytical approach: central slice theorem

 $P(\rho,\theta)=F(\rho_x,\rho_y)$

 $-\infty -\infty$

1D FT of p with respect to u = **2D FT of f** in a given direction

Analytical approach: filtered backprojection (FBP)

 $P(\rho,\theta) = F(\rho_x,\rho_y)$

Filtered backprojection: algorithm

Filtered backprojection: beyond the Ramp filter

Analytical approaches

Discrete approaches

$$f^*(x,y) = \int_0^\pi p'(u,\theta) d\theta$$

- Explicit solution using inversion formulae or successive transformations

- Direct calculation of the solution
- Fast
- Discretization for numerical implementation only

$$\mathbf{p}_i = \sum_j r_{ij} \mathbf{f}_j$$

- Discrete formulation
- Resolution of a system of linear equations or probabilistic estimation
- Iterative algorithms
- Slow convergence
- Intrinsic discretization

Discrete approach: model

Varenna workshop - Irène Buvat – September 7th, 2015 - 26

Discrete approach: calculation of R

```
p = R f R models the direct problem
```

- Geometric modelling
 - intersection between each pixel and each LOR

- Physics modelling
 - spatial resolution of the detector
 - particle interactions (scatter, photoelectric absorption)

• Algebraic methods

Statistical approaches

$$p_i = \sum_j r_{ij} f_j$$

- Generalized inverse methods

- Bayesian estimates
- Optimization of functionals
- Account for noise properties

Iterative algorithm used in discrete methods

Minimisation of $||p - R f||^2$

p = R f

Several minimisation algorithms are possible to estimate a solution:

e.g., SIRT (Simultaneous Iterative Reconstruction Technique) Conjugate Gradient ART (Algrebraic Reconstruction Technique)

e.g., additive ART:

$$f_{j}^{n+1} = f_{j}^{n} + (p_{i} - p_{i}^{n}) r_{ij} / \sum_{k} r_{ik}^{2}$$

p = R **f**

Probabilistic formulation (Bayes' equation):
 proba(f|p) = proba(p|f) proba(f) / proba(p)

probability of obtaining f likelihood of p prior on f prior on p when p is measured

Find a solution f maximizing proba(p|f) given a probabilistic model for p

e.g., if **p** follows a Poisson law: $proba(p|f) = \prod_{k} exp(-\overline{p}_{k}).\overline{p}_{k}{}^{p}{}_{k}/p_{k}!$

MLEM (Maximum Likelihood Expectation Maximisation):

 $f^{n+1} = f^n \cdot R^t(p/p^n)$

OSEM (accelerated version of MLEM)

Regularization

Set constraints on the solution f based on a prior

Solution f: trade-off between the agreement with the observed data and the agreement with a prior

Regularization for analytical methods

Filtering

$$f(x,y) = \int_{-\infty}^{\pi} \int_{-\infty}^{+\infty} \frac{P(\rho,\theta) w(\rho)}{P(\rho,\theta)} w(\rho) \rho l \rho l e^{i2\pi\rho u} d\rho$$

Ramp filter

Butterworth filter

Regularization for discrete methods

Minimisation of $||p - Rf||^2 + \lambda K(f)$

 λ controls the trade-off between agreement with the projections and agreement with the prior

Examples of priors:

f smooth f having discontinuities

Conjugate Gradient gives MAP-Conjugate Gradient (Maximum A Posteriori) MLEM gives MAP-EM

Simulations

How can simulations be used in reconstruction ?

Advantages of using Monte Carlo simulations

Precise modelling of most phenomena involved in PET:

 emission of positron followed by annihilation
 stochastic interactions between particles and patient tissues
 stochastic interactions within the detector materials
 electronic response of the detector

• Fully 3D

If R is accurate, then the reconstructed images will be more accurate than with an approximate R

Principle of MC simulations in PET

random number generator and sampling of probability density functions

From a practical point of view

• Monte Carlo codes modelling particle-matter interactions can be used (Geant4, EGS4, MCNPx, FLUKA, etc)

• Or, codes dedicated to MC simulations of Emission Tomography (easier to use for modelling PET acquisitions):

GATE: <u>http://www.opengatecollaboration.org</u> SimSET: <u>http://depts.washington.edu/simset/html/simset_main.html</u> PeneloPET: <u>http://nuclear.fis.ucm.es/penelopet/</u> Sorteo: <u>http://sorteo.cermep.fr</u>

Limitations of using MC simulations to estimate R

- In fully 3D, the R matrix is huge, typically >10¹³ entries
 - / factorize the matrix into several components
 - use compression techniques for storage
 - take advantage of symmetries in the scanner
 - set to 0 entries with a very low probability
- To get a sound estimate of each R entry, many events have to be simulated
 use MC simulations to parameterize analytical functions that fit
 the imaging system response
 set to 0 entries for which the statistical robustness is not ensured
 - design fast dedicated MC codes using simplifying assumptions

• Such a detailed R is not so easy to invert: not sparse, not well-conditioned, lengthy convergence of the iterative algorithm

- use a hybrid approach that uses the most accurate R only at some
 - iterations

Great Idea 🖌 Got The Tools 🖌 Is It Worth It 💽

- It depends on the detector design and radionuclides of interest
- Yes for "dirty" radionuclides with complicated decay schemes, ie lodine 124, Yttrium 90
- Yes to correct for positron range for isotopes with a high positron ranges (high Emax), such as Rubidium 82 in cardiac imaging
- Yes when detector response is hard to model analytically
- Yes to get an accurate estimate of scatter in highly heterogeneous media
- No otherwise, analytical models, sometimes tuned based on MC simulations, work rather well in most applications

What else MC simulations can be used for in PET?

Guidance for detector design: simulating before building
Parameterization of
analytical models for
corrections (scatter,
non stationary PSF)
Protocol optimization:
determining the
impact of various
detector/acquisition
parameters

Evaluating the accuracy of quantification in PET: in silico experiments provide the ground truth

Calculating R for image reconstruction

- Designing a new PET detector is only part of the work
- The detector has to be associated with an efficient reconstruction procedure
- Today, iterative reconstructions are preferred:
 - more flexible to model non-standard detector geometry,
 - elegantly incorporate corrections for attenuation, detector response, scatter (possibly positron range and patient motion)

• Monte Carlo simulations can assist PET image reconstruction as it can guide the design of the R matrix system

• Monte Carlo simulations are part of the toolbox of PET scientists, as they contribute to all steps of PET research (detector design, reconstruction, corrections, protocol optimization, assessment of quantification)

Additional resources

A more detailed course regarding simulations (3 h !): <u>http://www.guillemet.org/irene/coursem/ENTERVISION_Simulations.pdf</u>

Several courses regarding tomographic reconstruction in PET and SPECT:

http://www.guillemet.org/irene/cours

Announcements

GATE training course 6-8 October 2015 in Orsay, France

Check <u>http://www.opengatecollaboration.org</u> for registration Training tab Registration will close this Wednesday (September 9th)

Principles of PET: reconstruction / simulations

Irène Buvat Imagerie Moléculaire In Vivo (IMIV) UMR 1023 Inserm / CEA / Université Paris Sud, ERL 9218 CNRS CEA – Service Hospitalier Frédéric Joliot Orsay, France

> irene.buvat@u-psud.fr http://i2bm.cea.fr/dsv/i2bm/shfj/imiv http://www.guillemet.org/irene

