
Iterative reconstruction algorithms in nuclear medicine

S. Vandenberghea,*, Y. D'Asselera, R. Van de Wallea, T. Kauppinenb, M. Koolea, L. Bouwensa,
K. Van Laerec, I. Lemahieua, R.A. Dierckxc

aMEDISIP, ELIS, Ghent University, Sint-Pietersnieuwstraat 41 B-9000 Ghent, Belgium
bDepartment of Clinical Physiology and Nuclear Medicine, Kuopio University Hospital, Kuopio, Finland

cNuclear Medicine Department, Ghent University Hospital, De Pintelaan 185 B-9000 Ghent, Belgium

Received 20 April 2000

Abstract

Iterative reconstruction algorithms produce accurate images without streak artifacts as in ®ltered backprojection. They allow improved

incorporation of important corrections for image degrading effects, such as attenuation, scatter and depth-dependent resolution. Only some

corrections, which are important for accurate reconstruction in positron emission tomography and single photon emission computed

tomography, can be applied to the data before ®ltered backprojection. The main limitation for introducing iterative algorithms in nuclear

medicine has been computation time, which is much longer for iterative techniques than for ®ltered backprojection. Modern algorithms make

use of acceleration techniques to speed up the reconstruction. These acceleration techniques and the development in computer processors

have introduced iterative reconstruction in daily nuclear medicine routine. We give an overview of the most important iterative techniques

and discuss the different corrections that can be incorporated to improve the image quality. q 2001 Elsevier Science Ltd. All rights reserved.
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1. Introduction

The goal of Emission Computed Tomography is to

obtain an accurate image of theradioactivity distribution

throughout the patient to extract physiological and patho-

physiological information. In Single Photon Emission

Computed Tomography (SPECT) the gamma camera

rotates around the patient. By using mechanical collima-

tion, which only allows nearly perpendicular incident

photons, the camera takes planar images of the activity

distribution in the patient. These planar images can be

regarded as projection images of the activity distribution,

and are reconstructed with different reconstruction algo-

rithms. In Positron Emission Tomography (PET) [1,2] the

1808 opposed photons, originating from a positron anni-

hilation, are registered by electronic coincidence circuits.

Such a measurement is called a Line-of-Response (LOR).

The raw data set in PET is three-dimensional (3D)

because together with in-plane LORs, oblique LORs

which cross different planes are also accepted. These

LORs are close approximations to line integrals, which

adequately sample the activity distribution. By rebinning

the data to a 2D data set [3,4], the same reconstruction

algorithms [5] as in SPECT can be used. If this is not

done, the image reconstruction becomes more complex

since the 3D object cannot be regarded as a set of inde-

pendent slices anymore. A detailed description of the 3D

reconstruction problem is given in Refs. [6±13]. For

simplicity of notation, we limit this formulas for iterative

reconstruction to 2D cases.

The standard reconstruction algorithm, to calculate the

radioactivity distribution from the projections, is the

Filtered BackProjection (FBP) technique, which is based

on direct inversion of the Radon transform [14]. This inver-

sion is derived for continuous sampling and then discretized

for sampled data. The limited number of projection sets

introduces streak artifacts [15] in the image reconstructions.

Pre®ltering is performed by a ramp ®lter, which is a ®lter

proportional to the frequency and with zero value at the DC

component. The purpose of this ramp ®lter is to remove

blurring from the backprojection step, but the high-

frequency noise of SPECT and PET images are ampli®ed

by this ®lter which results in noisy reconstructions. This

effect can be limited by combining the ramp ®lter with a

low pass ®lter. Despite its disadvantages, FBP is used exten-

sively in nuclear medicine due to its short reconstruction

times.
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2. Iterative reconstruction algorithms

Iterative reconstruction methods incorporate the discrete-

ness of the data from the beginning. The true tracer distribu-

tion f �x; y�; which is discretized as an image of L £ L pixels,

is represented by a vector l�b� �b � 1;¼;B; B � L £ L�: If

we have projections from N angles and M samples per

projection, the acquisition data can be represented by a

1D vector of measurements np�d� �d � 1;¼;D D �
N £ M�: The vectors are related to each other by the follow-

ing relationship:

np�d� �
XB
b�1

p�b; d�l�b� �1�

with p�b; d� the probability of detecting a photon, originat-

ing in voxel b, in detection bin d. These probabilities form a

B £ D matrix, which is often called the projection matrix.

This is a set of linear equations which can be solved for l�b�;
if the probabilities p�b; d� and the measured data np�d� are

given.

The inversion of this set of linear equations is dif®cult

because of the large dimensions of the projection matrix

(typical in SPECT B £ D � �128�2 £ �128 £ 60��: For direct

inversion [16,17] the matrix should be available, but it takes

a lot of memory to store its elements. Moreover, the direct

inversion of such large matrices often results in severe

problems due to numerical instabilities. This makes direct

inversion very dif®cult to implement. Direct inversion meth-

ods are also relatively slow, which has led to the usage of

iterative techniques. An initial estimate l0�b� of the radio-

activity distribution is chosen and the algorithm tries to

improve this estimation at each iteration. From an inter-

mediate estimation lk�b� of the distribution, the forward

projection nk�d� is calculated. This calculation is compared

with the measured projection np�d�: From this comparison

correction terms are derived by backprojection, which are

used to update the previous estimate lk�b� to lk11�b�: By

updating the previous estimate, the nk11�d� becomes more

consistent with np�d� than the previous estimate.

All iterative reconstruction algorithms use this method to

go towards the solution, but they differ from each other in

the way the correction terms are derived and how the update

to the new estimate is calculated. We will discuss the differ-

ent classes of iterative algorithms in Section 2.1 and

describe the best-known iterative algorithm in Section 2.2.

2.1. Classes of iterative algorithms

Iterative algorithms can be classi®ed into two classes.

The ®rst class contains the conventional iterative algebraic

methods, which reconstruct the images by solving the afore-

mentioned set of linear equations (1). Examples are the

Algebraic Reconstruction Technique (ART) [18,19], the

Simultaneous Iterative Reconstruction Technique (SIRT)

[6] and the Iterative Least-Squares Technique (ILST) [20].

The second class contains the iterative statistical recon-

struction methods, which reconstruct images by iteratively

maximizing a likelihood function. They take the noise on

the measurement data into account. Therefore they use a

statistical modeling of the measurement process. The best-

known example is the ML-EM algorithm. The projection

data are Poisson variables with a mean equal to the line

integral, perpendicular to the projection bin, through the

activity distribution. For a large number of photons, the

measured data is relatively close to the value of the line

integral. For low count statistics, the measured data can

have a large deviation of the mean. This is the reason why

analytical algorithms (e.g. FBP), which assume the

measured data are equal to the line integral, perform quite

good in the case of high photon statistics, but bad for low

count acquisitions. The Maximum Likelihood Expectation

Maximization (ML-EM) [21,22] algorithm, which is

described in Section 2.2, takes the Poisson nature of the

data into account.

The statistical algorithms [23,24] can be further subdi-

vided into one group which does not use a priori informa-

tion, and a second group which takes into account a priori

information [25,26]. This is useful to constrain the number

of possible solutions to the ones which are acceptable. The

positivity constraint is the best known. It ensures that all

pixels have a non-negative value, which is reasonable

because they should represent activity distribution. This is

not guaranteed by FBP. There are more sophisticated priors

as Median Root Prior [27,28], mostly used to guarantee

good noise reduction and edge preservation.

Another advantage of the iterative methods is the possi-

bility to incorporate image degrading effects into the projec-

tion matrix p�b; d�: Scatter, attenuation, depth-dependent

resolution and geometrical weighting can be incorporated

into p�b; d�: Including these effects results in a quantitatively

improved reconstruction image. An overview of these

correction possibilities is given in Section 4.

2.2. Incorporation of Poisson statistics

Shepp and Vardi [21,22] incorporated the Poisson nature

of the acquired data in their reconstruction algorithm. If l�b�
is the true trace distribution in pixel b, the measurements

np�d� are Poisson variables with mean equal to

lp�d� �
XB
b�1

p�b; d�l�b� �2�

The goal of the reconstruction algorithm is to ®nd the

distribution l�b� which has the highest probability to have

generated the measured projection data np�d�: The probabil-

ity function is called the likelihood function and is derived

from the Poisson statistics

L�l� �
YD
d�1

e2lp�d� l
p�d�np�d�

np�d�! �3�

To maximize this likelihood Shepp and Vardi used the EM
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algorithm, which yields the following update towards a new

estimation:

lk11�b� � lk�b�
XD
d�1

p�b; d� np�d�XB
b 0�1

p�b 0; d�lk�b 0�
�4�

Taking the Poisson nature of the data into account

improves the reconstructions compared to analytical algo-

rithms, especially for low count data. On the other hand, it

also introduces noise deterioration for a high number of

iterations [29], which will be discussed in the next section.

3. Disadvantages of iterative reconstruction algorithms

3.1. Noise deterioration

Initially the ML-EM algorithm converges towards an

acceptable reconstruction. For higher iteration numbers,

the likelihood still increases but the reconstructions get

more noisy. The reason for this effect are the measurements

which are Poisson random variables. A reconstruction with

projection data which are very similar to the noisy measure-

ment data, will be very noisy because the projector acts as a

smoothing operator. Different techniques for solving this

problem have been investigated. One possible way is to

limit the possible reconstructions to the ones which are

smooth enough. This can be done by requiring the image

to be composed of sieves (Gaussian kernels) [29]. A second

solution is to perform many iterations and post®lter the

reconstruction. A third way is stopping the reconstruction,

based on a stopping rule, before noise deterioration

degrades the image quality of the reconstruction [30±32].

For clinical use, mostly the post®ltering method is used

because the smoothness of the reconstruction can be chosen

by using another cut-off frequency of the ®lter, without

repeating the reconstruction process.

3.2. Calculation time

The ML-EM algorithm has proven to be effective, but

also to be too slow for daily routine. The time needed for

a FBP reconstruction (backprojection of the whole data set)

is approximately half the time needed for one iteration (one

forward projection of the estimate and one backprojection of

the whole data set) of the ML-EM algorithm. Depending on

the settings of the algorithm and the desired convergence,

10±100 iterations are used for one reconstruction. Several

methods have been proposed to speed up the algorithm [33±

36], but none of these made the algorithm accepted in a

clinical environment. Splitting up the measured dataset

into different subsets and using only one subset for each

iteration speeds up the algorithm with a factor equal to the

number of subsets. This method was introduced by Hudson

and Larkin in 1994. Since its introduction, the Ordered

Subsets Expectation Maximization (OS-EM) [37] has

become the most frequently used iterative reconstruction

algorithm in both SPECT and PET. In ML-EM every itera-

tion requires a forward projection of the previous estimation

into all projections (equal to the number of measured projec-

tions). In OS-EM the projection data are divided into

ordered subsets. Each subset contains an equal number of

projections. As an example, if a SPECT acquisition contains

projections from 60 angles, one step of the ML-EM algo-

rithm requires forward projections under 60 angles. In OS-

EM data can be split up in e.g. 6 subsets of 10 angles, so one

iteration step only requires forward projections under 10

different angles. Hudson and Larkin have shown that the

image quality for the same number of iterations in ML-

EM and OS-EM is comparable if the number of subsets is

not too high. This means that for this particular case using

OS-EM instead of ML-EM results in a speed up factor of 6.

Further optimization of the speed is achieved by speeding

up the forward and back projection [38±43].

4. Advantages of iterative reconstruction algorithms

4.1. Improved modeling of the measurement process

In analytical algorithms such as FBP it is assumed that the

measured data are line integrals through the activity object.

Because of the aforementioned Poisson nature of the data

and image degrading effects, such as attenuation and scatter,

this assumption is not satis®ed. The advantage of the

discrete approach for iterative algorithms is that the entire

acquisition process, including the interaction of the photons

with the body, the collimator and the detector, can be incor-

porated directly in the p�b; d�: This is very complicated and

therefore different approximations have been proposed to

reduce the calculation time. Because the incorporation of

these image-degrading effects is different in SPECT and

PET, they will be discussed separately.

4.2. Modeling of the image degrading effects in PET

In PET every LOR has an attenuation coef®cient which is

equal to the total attenuation along this LOR. These attenua-

tion coef®cients can be easily determined by performing a

transmission scan of the patient, with either external posi-

tron emitters or single photon emitters [44]. Correction is

easily done, prior to reconstruction, by dividing the emis-

sion data with the measured attenuation coef®cients.

Also Point Spread Function (PSF) recovery is relatively

easy in PET: the approximation of a position-independent

PSF is quite accurate. The resolution recovery is done by

replacing the projector with a two-stage operator: ®rst the

forward projection is calculated, and in a second step the

projections are smoothed with a convolution mask, approx-

imating the PSF. The backprojector, which is the adjoint of

the projector, is replaced by a smoothing with the convolu-

tion mask followed by the backprojection. In the case of

nuclear medicine imaging, the adjoint of the projector
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reduces to the transposed of the projector since the projec-

tion operator is a real operator. The PSF is mostly approxi-

mated with a Gaussian kernel with width equal to the

FWHM of the system.

Scatter correction is more dif®cult to include in the recon-

struction [45]. Accurate forward modeling of the scattering

needs intensive computations. The most accurate approach

is Monte Carlo simulation, which generates every photon

and follows its path through the body, collimator and detec-

tor. Along its path, the probability of photon±electron inter-

action is calculated. A random generator decides whether or

not this interaction will occur for a photon. To use this in

reconstruction, this process should be simulated for every

patient as the interaction is body-dependent, which is prac-

tically impossible due to the long calculation times. To

reduce processing times, different approaches have been

published with an analytical approach for the scatter PSF.

Empirical curves have been used to achieve a good ®t to the

measured data [46]. Others start from a physical model

which is simpli®ed by different approximations [47].

LORs at larger distance from the center of rotation have a

lower detection probability. If no correction would be

applied for this, the reconstruction of a uniform object

would have lower activity towards the edge of the FOV.

The probability for detection of the LOR can be derived

analytically [48±50]. During reconstruction every forward

projected LOR through the activity object can be weighted

by dividing the forward projected value by the detection

probability. This will result in uniform reconstructions.

This method gives less noisy reconstructions than multiply-

ing the ®nal reconstruction with the inverse of the sensitivity

[51]. This geometrical weighting is more important in dual

or triple gamma camera PET than in full-ring PET [52].

4.3. Modeling of the image degrading effects in SPECT

Due to their depth dependency, attenuation and resolution

correction are more dif®cult to include in iterative recon-

struction for SPECT. There is a lot of interest in the iterative

methods with non-uniform attenuation correction for

SPECT, since there is no analytical method to solve this

effect exactly. To perform non-uniform attenuation correc-

tion, a map of attenuation coef®cients should be available.

This can be made from a Computed Tomography (CT) map

by conversion of the attenuation coef®cients to the energy of

the g-rays of the used radionuclide. The attenuation coef®-

cients m�b� can be measured by equipping the gamma

camera with transmission sources. First a blank scan b�d�;
with no attenuating medium in the FOV, is measured. After-

wards the attenuating object is placed in the FOV and the

same measurement is repeated. This is the transmission

measurement t�d�: The relation with the attenuation coef®-

cients is given by:

t�d� � b�d� e
2

Z
L

m�x� dx

�5�

with L the path from transmission source to detector. This is

converted into the Radon transform of the attenuation map

by:

tp�d� � ln
b�d�
t�d� �6�

which can be reconstructed by standard ®ltered backprojec-

tion or by using iterative methods. The ML-EM has been

used with good results for this reconstruction [53], although

the tp�d� are no longer Poisson distributed. Once these

attenuation coef®cients are reconstructed, they can be used

in the reconstruction of the emission data. In the forward

projection, every pixel should be weighted by the attenua-

tion factor determined by the attenuation map and the

distance to the detector. Therefore each probability p�b; d�
of detecting a photon, originating in voxel b, in detection bin

d is multiplied by an attenuation factor wA�b; d�

wA�b; d� � e
2

Z
b!d

m�x� dx

�7�
with b! d the path from pixel b to detector d. In the back-

projection the transposed operation (attenuated backprojec-

tion) needs to be done.

In SPECT the resolution degrades with increasing distance

from the detector. This depth-dependent blurring, caused by

the collimator acceptance angle, has to be modeled and

included in the projection. One way to model this is to replace

one ray by a bundle of rays (forming an inverse cone) with

origin in the projection bin. This technique is called ray-

tracing. The second (more time-consuming) method is to

rotate [54] the reconstruction matrix to a matrix parallel with

the projection bins and to apply a distance dependent ®lter.

This can be done by convolution in the spatial domain or by

multiplication in the frequency domain. The third method

(rotation and diffusion) is a more ef®cient implementation of

the second method [55]. The reconstruction matrix is also

rotated parallel to the projection bins, afterwards the following

steps are done. The farthest layer is convolved with a small

kernel, this is added to the second farthest layer. This sum is

convolved with another small kernel, this is added to the next

layer. This is repeated until the last layer is reached. This

method is faster because the small kernel convolution is

more ef®cient than the Fast Fourier Transform (FFT) with

multiplication of the second method. The calculation of

these small kernels from the depth-dependent PSF can be

found in Ref. [55].

Scatter correction can be included in iterative reconstruc-

tion in the same way as described in Section 4.2. In SPECT

however, scatter correction is mostly done by subtraction-

based methods [56]. Before reconstruction, the scatter is

estimated from the ratio of two or three energy windows

this is subtracted from the window around the photopeak.

This method is more accurate for SPECT than for PET

because the energy resolution is better. The transmission-

dependent convolution subtraction technique [57,58] can
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estimate the scatter function iteratively if an attenuation

map is available. This method is based on the convolu-

tion-subtraction method [59]. In this method the scatter is

assumed to be a convolution of the invariant scatter function

with the measured projections. This estimate is subtracted

from the measured projection data. Because the invariant

scatter function is only an approximation, this results in

artifacts in high-contrast projection data. This method can

also be implemented in the Fourier domain. The transmis-

sion-dependent convolution-subtraction technique uses the

transmission map to de®ne the inhomogeneous scattering

object. The scatter fractions are estimated for all positions

by using a regression equation. The scatter distribution is

estimated by convolution of the projections with the scatter

function. The scatter fraction of the total events is then

determined for each projection bin by using the narrow-

beam transmission values [56]. These spatially varying scat-

ter functions are used to correct the projection data.

5. Conclusions

The difference between the different classes of iterative

reconstruction techniques, which are used in PET and

SPECT, was described. The main disadvantage (long recon-

struction times) of iterative reconstruction has been mini-

mized by the recent developments in processors and

optimization of the algorithms. This allowed its introduction

into nuclear medicine: ®rst it was used for PET reconstruc-

tion, where the correction for attenuation and PSF are more

easy to include than in SPECT. Further developments in

iterative reconstruction will include the further development

of simultaneous attenuation and emission map reconstruc-

tion [60] and better and faster scatter correction techniques

[61,62].
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