Tomographie d'émission monophotonique et tomographie d'émission de positons

Irène Buvat U678 INSERM Paris

buvat@imed.jussieu.fr http://www.guillemet.org/irene

octobre 2006

Plan du cours

- Introduction
 - Imagerie planaire et imagerie tomographique
 - Principe de la tomographie
- SPECT
 - Principe
 - Types de détecteurs SPECT
 - Evénements détectés en SPECT
- PET
- Principe
- Types de détecteurs PET
- Evénements détectés en PET
- Caractéristiques du PET
- Mesures de transmission
 - Motivation
 - Principe
 - Mesures de transmission en SPECT
 - Mesures de transmission en PET
 - Protocoles d'acquisitions émission / transmission
- Coût et disponibilité des systèmes

Imagerie planaire et imagerie tomographique (1)

Imagerie planaire : projections 2D sous différentes incidences angulaires : intégrale du signal dans la direction de projection

Imagerie tomographique : coupes d'orientation quelconque à travers l'objet : imagerie 3D

Imagerie planaire et imagerie tomographique (2)

Rayons X : Imagerie planaire (2D) = radiographie conventionnelle Imagerie tomographique (3D) = tomodensitométrie (scanner)

Médecine Nucléaire :

Imagerie planaire (2D) = scintigraphie monophonique Imagerie tomographique (3D) =

- Tomographie monophotonique (SPECT)
- Tomographie par Emission de positons (PET)

MN2 : Tomographie d'émission monophotonique et tomographie d'émission de positons - Irène Buvat - octobre 2006 - 4

Principe de la tomographie (Hounsfield, Cormack 1963)

Médecine Nucléaire : acquisition de projections 2D sous différentes incidences angulaires

Principe de la tomographie en médecine nucléaire

rotation du détecteur => ensemble de projections 2D

La tomographie d'émission monophotonique : SPECT

SPECT : principe

acquisition d'images sous différentes incidences angulaires

MN2 : Tomographie d'émission monophotonique et tomographie d'émission de positons - Irène Buvat - octobre 2006 - 8

Notion de sinogramme en SPECT

• Ensemble des lignes de projection correspondant à une coupe

MN2 : Tomographie d'émission monophotonique et tomographie d'émission de positons - Irène Buvat - octobre 2006 - 9

Notion de sinogramme en SPECT

Sinogrammes et projections

Les sinogrammes et les projections contiennent les mêmes informations : ils ne diffèrent que par l'organisation avec laquelle les informations sont représentés.

sinogramme correspondant à la coupe z_i Un sinogramme : toute l'information relative à une coupe, obtenue pour tous les angles de projection.

projection correspondant à l'angle θ

Une projection : l'information relative à toutes les coupes, mais pour une incidence angulaire unique.

On dispose de 64 projections de dimension 128 pixels (dans la direction axiale) x 256 pixels

• Combien de coupes transaxiales peut-on reconstruire sans interpolation ?

128

• Combien de sinogrammes peut-on former à partir de ces projections ?

128

• Quelles sont les dimensions d'un sinogramme ?

64 lignes et 256 colonnes

Détecteurs SPECT : simple tête

- 1 cristal par tête de détection
- typiquement, acquisition de 64 à 128 projections en mode pas à pas ("step and shoot") ou continu

Détecteurs SPECT : double têtes

sensibilité multipliée par deux
proximité des détecteurs de la région à explorer

Sensibilité multipliée par trois

Détecteurs SPECT : mode corps entier

déplacement axial du lit ⇒ images tomographiques "corps entier"

Détecteurs SPECT dédiés à certaines applications

Imagerie du sein

Gamma caméra classique Caméra dédiée

Tornai et al, Duke University Medical Center

Evénements détectés en SPECT

• Proportion de photons diffusés dans la fenêtre spectrométrique d'acquisition

Imagerie SPECT/CT

Localisation de la lésion au niveau du pelvis sur la tête fémorale droite

MN2 : Tomographie d'émission monophotonique et tomographie d'émission de positons - Irène Buvat - octobre 2006 - 20

La tomographie d'émission de positons : PET

Ligne de réponse :

ligne joignant les 2 détecteurs ayant reçu un signal en coïncidence

ligne de coïncidence

Notion de sinogramme en PET

1 ligne du sinogramme : événements enregistrés sur un ensemble de LOR parallèles => 1 projection

l pixel (x, θ) du sinogramme y_i : nombre d'événements enregistrés sur la LOR repérée par la distance d et l'angle θ .

Ensemble de LOR passant par un détecteur situées le long d'une diagonale du sinogramme

PET avec gamma caméra double tête : principe

MN2 : Tomographie d'émission monophotonique et tomographie d'émission de positons - Irène Buvat - octobre 2006 - 24

Caractéristiques du PET avec gamma caméra

- Système versatile
 - possibilité d'effectuer des examens PET et SPECT à partir du même instrument
- Compromis SPECT et PET
 - optimisation difficile du système pour un fonctionnement optimal aux énergies SPECT (<200 keV) et PET (511 keV)
 - ⇒ si cristal épais, bonne efficacité en PET, mais dégradation de la résolution spatiale en SPECT
- Nombreuses coïncidences non détectées : "singles"

⇒ faible sensibilité de détection (e.g., / 5)

MN2 : Tomographie d'émission monophotonique et tomographie d'émission de positons - Irène Buvat - octobre 2006 - 25

PET « dédié » : principe

MN2 : Tomographie d'émission monophotonique et tomographie d'émission de positons - Irène Buvat - octobre 2006 - 26

PET avec détecteurs en anneau

MN2 : Tomographie d'émission monophotonique et tomographie d'émission de positons - Irène Buvat - octobre 2006 - 27

Exemple de PET avec détecteurs en anneau

Caractéristiques du PET avec détecteurs en anneau

• Machines "dédiées"

⇒ configuration optimisée pour le PET

• Paramètres "typiques"

plus de 500 détecteurs par anneau diamètre de l'anneau ~ 80 cm ~ 30 couronnes de détecteurs intervalle entre 2 couronnes ~ 5 mm fenêtre de coïncidence τ ~ 5 - 20 ns

Principe du PET temps de vol

MN2 : Tomographie d'émission monophotonique et tomographie d'émission de positons - Irène Buvat - octobre 2006 - 30

Х

Contraintes liées au PET temps de vol

- Cristal à décroissance temporelle très rapide
 - ⇒ BaF2 (0,8 ns)
 - \Rightarrow fenêtre de coïncidence $\tau \sim 0.4$ 4 ns
- Emission à 10 cm du centre \Rightarrow d1-d2 = 20 cm
 - ⇒ t1-t2 = 667 ps
 - Iocalisation de l'émission avec 10 cm d'imprécision
 - nécessité d'effectuer une reconstruction tomographique adaptée

• 1 tube photomultiplicateur associé à chaque cristal

 simplification de l'électronique pour réduire le temps de traitement des événements
 réduction du temps mort

Exemple de PET temps de vol : TTV03 Orsay

~1980

PI	ET temps de vol	PET classique
	TTV03	Siemens EXACT HR
Diamètre des anneaux (cm)	89	82
Nombre d'anneaux	4 à 6	24
Nombre de détecteurs par anneau	324	784
Dimensions des cristaux (mm)	7 x 18 x 45	2,9 x 5,9 x 30
Cristaux	BaF2	BGO
Résolution spatiale (mm)	5	4
Résolution temporelle	650 ps	-

PET temps de vol dans les années 80

- Faible densité du BaF2 par rapport au BGO (et faible numéro atomique)
- Tubes photomultiplicateurs pas assez rapides, pas suffisamment compacts
- Electronique trop lente

Les travaux sur le PET TOF sont arrêtés dans les années 90

Ce qui a changé récemment

- Electronique GHz devient classique
- Développement de TPM plus compacts
- Nouveaux scintillateurs :

- LSO : 500 ps de résolution temporelle sur un module PET

- LaBr3 : 300 ps
- LYSO
- LuI3

Intérêt du PET temps de vol

Groiselle et al, IEEE MIC Conf Rec 2004

Evénements détectés en PET

Singles : événement détecté à l'intérieur de la fenêtre en énergie, qqsoit son instant d'arrivée par rapport à une fenêtre de coïncidence

Prompt : événement détecté à l'intérieur de la fenêtre en énergie et dans la fenêtre de coïncidence

Multiples : ≥ 2 prompts dans une fenêtre temporelle

Delayed : événements enregistrés dans une fenêtre

temporelle décalée (pour correction de coïncidences fortuites)

Random (fortuit) : événement non coïncident détecté dans la fenêtre de coïncidence

Scattered (diffusé) : prompts issus d'une diffusion Compton Trues : prompts - (scattered + multiples + randoms) • Nombre de coïncidences fortuites

Nb d'événements simples enregistré par le détecteur 1

$$N_{random} = 2 \tau S_1 S_2$$

longueur de la fenêtre de coïncidence

proportionnel au carré de l'activité A vue par le détecteur

- Coïncidences vraies proportionnelles à l'activité A
 ⇒ (fortuits / vrais) proportionnel à A
- Réduction des coïncidences fortuites

 par réduction de la fenêtre de coïncidence
 une correction reste cependant nécessaire

MN2 : Tomographie d'émission monophotonique et tomographie d'émission de positons - Irène Buvat - octobre 2006 - 39

Caractéristiques du PET 2D

- Imagerie 2D
 - reconstruction tomographique "coupe par coupe"
 - ⇒ coupes reconstruites indépendamment

Inconvénients :

- Echantillonnage axial limité (égal à la distance axiale δ entre 2 détecteurs)
- Sensibilité par coupe limitée

• Adjonction de lignes de mesures obliques

 N_c coupes « directes » : plans droits et N_c - 1 coupes intermédiaires : plans croisés soit 2N_c - 1 coupes distantes de δ/2.

Notion de michelogramme

• Tableau décrivant la combinaison des données axiales

MN2 : Tomographie d'émission monophotonique et tomographie d'émission de positons - Irène Buvat - octobre 2006 - 42

Notions de michelogramme et span

• Tableau décrivant la combinaison des données axiales

MN2 : Tomographie d'émission monophotonique et tomographie d'émission de positons - Irène Buvat - octobre 2006 - 43

PET 3D : contrôle des LOR acceptées

Distance maximale des couronnes (DMC) entre lesquelles les LOR sont acceptées

Si toutes les LOR sont acceptées, $DMC = N_c-1$

Sensibilité de détection variable axialement

couronnes de détecteurs A

 $N_c = 16$ DMC = 11

Description complète d'une acquisition PET 3D

couronnes de détecteurs B

couronnes de détecteurs A

 $N_c = 16$ DMC = 15 span = 7

5 segments = 5 directions de projection axiale

- Imagerie réellement tridimensionnelle
 - reconstruction intégrant les lignes de coïncidence inter-coupe
- Augmentation de la sensibilité : plus d'événements sont comptabilisés
 - grâce au retrait des septas
 - grâce à l'augmentation du nombre de lignes de mesures
 - \Rightarrow e.g., multiplication de sensibilité par ~ 5
- Augmentation sensible de la proportion de diffusé
 - 10% à 20% en 2D deviennent 40% à 60% en 3D

- Augmentation sensible de la proportion de fortuits
- Augmentation du temps mort
- Complexité de l'algorithmique de reconstruction accrue

Détecteurs bimodaux PET/CT

• Combinaison d'un tomographe PET et d'un tomodensitomètre

Proof of concept : 1998 (Université de Pittsburgh)

100 cm

MN2 : Tomographie d'émission monophotonique et tomographie d'émission de positons - Irène Buvat - octobre 2006 - 49

Caractéristiques du PET : résolution spatiale

⇒ définitions valables aussi en SPECT

• Libre parcours moyen des positons avant annihilation

Isotope	Parcours moyen dans l'eau (mm)	LMH (mm)
Idéal	0	4*
Fluor 18 : F18	0,6	4,1
Carbone 11 : C11	1,1	4,3
Gallium 68 : Ga68	3,1	5,0

* pour un scanner de résolution idéale = 4 mm

• Non-colinéarité des deux γ émis de (180°±0,6°)

effet dépendant du diamètre d de l'anneau
dégradation de LMH de 1 à 2 mm

• Largeur w des détecteurs : LMH = w/2

⇒ addition des termes en quadrature : limite théorique pour du F18 : LMH ~ $\sqrt{0,6^2 + 1,8^2 + 2,75^2} = 3,34$ mm

Résolution spatiale en PET : non uniformité transverse

• Dans le plan transverse

- positionnement correct positionnement incorrect
 - positionnement incorrect plus probable pour les lignes de coïncidence écartées du centre
 - effet relativement faible (variation de LMH
 1 mm entre le centre et la périphérie du champ de vue)
 - dépend de la taille et de l'arrangement des détecteurs

Résolution spatiale en PET : non uniformité axiale

• Non uniforme axialement

- positionnement d'autant plus incorrect que l'émission est éloignée de l'axe du tomographe
- positionnement d'autant plus incorrect que l'angle d'acceptance entre couronnes est élevé
- \Rightarrow variation de LMH de ~ 1 à 1,5 mm
- dépend de la taille et de l'arrangement des détecteurs et de l'espacement entre couronnes

- Dépend de :
 - nature des cristaux
 - taille et arrangement des cristaux
 - diamètre D de l'anneau de détection (variation en 1/D) ou distance entre les détecteurs plans (angle solide sous tendu par les détecteurs)
 - angle d'acceptance entre couronnes

 présence ou absence de septa entre les couronnes (mode 2D ou 3D) • Mesure caractérisant le niveau de signal utile pour un niveau de "bruit" donné

⇒ s'exprime en nombre de coups (dizaine de kcps)
⇒ non corrélé directement avec la qualité d'image
⇒ dépend de façon complexe de la distribution d'activité présente dans le champ de vue
⇒ diminue quand le temps mort augmente

Graphe tiré de De Dreuille etal, J. Nucl. Med. 2000 (abstract)

Caractéristiques de l'imagerie bimodale PET/CT

- 4/5 machines opèrent en PET 3D seulement
- Différents cristaux : BGO (Discovery LS, GE) LSO (ACCEL, CPS) GSO (Allegro, Philips)
- Scanner spiralé, 2 à 64 couronnes de détecteurs
- Informations anatomiques et fonctionnelles acquises lors de la même session d'imagerie
- Possible fusion des informations anatomiques et fonctionnelles

Exemple d'imagerie bimodale PET/CT

	PET dédié 3D	PET 2 têtes gamma-caméra GCCI
Taux de coïncidences (kcps/s)	> 100	5 à 15
Résolution spatiale (mm)	5	9
Coups par coupe (5 mm)	1 000 000	100 000

Lésions < 1,5 cm de diamètre
 ⇒ GCCI ~ 60% des lésions détectées par PET dédié

Lésions ≥ 1,5 cm de diamètre
 GCCI ~ 96% des lésions détectées par PET dédié

GCCI = Gamma Caméra Coincidence Imaging