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Abstract

This paper is written for physicians and presents basic principles of image reconstruction in nuclear medicine. Both analytical and iterative

methods are discussed without rigorous mathematics. q 2001 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Suppose you are touring Belgium and you have discovered

a unique example of architecture and you would like to share

your experience with your friends back home. You take out

your camera and take a picture of it. In order to get a better

representation of the building, you decide to take more

pictures of it from different angles. This principle applies in

medical imaging, where an accurate internal image is obtained

by combining pictures from different views.

In nuclear medicine, the single photon emission

computed tomography (SPECT) or positron emission tomo-

graphy (PET) camera rotates around the patient, taking

pictures of radioisotope distribution within the patient

from different angles. These ªpicturesº acquired from the

nuclear medicine camera are called projections. The proce-

dure to put the projections together to obtain a patient's

image is called image reconstruction, as shown in Fig. 1.

In most cases, one of two types of algorithms is used in

reconstructing images: analytical and iterative algorithms.

An algorithm is a step-by-step mathematical procedure

implemented on a computer. In nuclear medicine, image

reconstruction is performed in a computer with reconstruc-

tion algorithms.

2. Analytical algorithms

2.1. Filtered backprojection algorithm

Let us consider a special situation in which the image is

two-dimensional (2D) and it consists of only one point with

a certain degree of intensity, as shown in Fig. 2(a), where the

high of the ªpoleº indicates the intensity of the point in the

object (image). A number of projections are taken from

various angles as shown in Fig. 2(b). Assuming that you

are at the point where you have obtained the projections

but you have not assembled them into, how would you

reconstruct the image using those projections? When you

look at the projections, you see a spike. This spike is the sum

of all activity along the projection path. To reconstruct the

image, you must re-distribute the activity in the spike back

to its original path. The problem is that you do not know

where along the path you need to put more activity and

where along the path you need to put less. Before you

give up, you decide to put equal amounts of activity every-

where along the path, and the amount is the high of the

projection spike. You do that for all of projections taken

from every angle, as shown in Fig. 2(c). What you have

just done is a standard mathematical procedure called back-

projection. If you backproject from all angles over 3608, you

will produce an image similar to the one shown in Fig. 2(d).

After backprojection, the image is not quite the same as

the original image, but rather is a blurred version of it. In

order to sharpen the image, we apply special ª®lteringº to

the projections by introducing negative wings before back-

projection. The use of the negative wings results in a clear

image (see Fig. 3). This image reconstruction algorithm is

very common and is referred to as a Filtered Backprojection

Algorithm.

Fig. 4 shows a computer simulation that demonstrates the

®ltered backprojection algorithm in action. Fig. 4(a) shows

the projection sinogram. A sinogram is a way to display the

projections, where projection data at one view are put in one

row of the sinogram and the vertical direction represents the

view angle. A point in the image corresponds to a sine wave
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in the sinogram. After the special ®ltering done by introdu-

cing negative wings, the sinogram shows two dark bands,

which encapsulate each sine wave (see Fig. 4(b)). The back-

projection step is shown in different stages in Fig. 4(c±h). A

perfect image is reconstructed when the backprojection is

performed over 1808.

2.2. Other analytical algorithms

In practice, when radiation photons travel through the

patient's body before reaching the detector, the patient's

body itself attenuates the photons. This attenuation effect

can be handled by a ®ltered backprojection reconstruction

algorithm if we assume that the attenuation is uniform

within the patient.

In SPECT, the collimators cause distance-dependent

blurring, which is shown in Fig. 5. When the object is farther

away from the detector, the more severe the blurring

becomes. In a ®ltered backprojection reconstruction algo-

rithm this problem is handled by something called the

frequency±distance relationship.

In both of the attenuation and distance-dependent blur-

ring compensation cases presented above, the projection

data are ®rst pre-processed, then applied to the ®ltered back-

projection algorithm. The pre-processing step involves a

mathematical procedure called Fourier transform of the

projection sinogram.

The Fourier transform decomposes an image into compo-

nents, which are referred to as frequency components. To

illustrate Fourier transform, let us look at the prism shown in

Fig. 6, where incoming white light is decomposed into

different colors (frequency components). The inverse proce-

dure is to recombine the components into white light. The

prism acts like a Fourier transform operator and the inverse

procedure as an Inverse Fourier transform operator. One can

manipulate the frequency components in the frequency

space (i.e. where the white light is decomposed into differ-

ent colors) as needed for different purposes.

In order to compensate for uniform attenuation, the

projections are multiplied by an exponential function,

which is determined by the object boundary, resulting in

modi®ed sinogram. Then, the Fourier transform of the

modi®ed sinogram is taken. From that the frequency

components are re-mapped according to the attenuation

coef®cient. Following that the Inverse Fourier transform is

taken and the ®ltered backprojection algorithm is used to

reconstruct the image.

In order to compensate for distance-dependent system

blurring, the Fourier transform of the projection data sino-

gram is taken, then the frequency components are ®ltered

according to the frequency±distance principle, which

relates the activity depth to certain frequency components.

Following that the Inverse Fourier transform is taken and

the ®ltered backprojection algorithm is used to reconstruct

the image.

The ®ltered backprojection algorithms also exist for other

imaging geometries, for example, the fan beam geometry as

shown in Fig. 7.

There are other types of analytical algorithms in which

the backprojection is performed ®rst and ®ltering follows.

These types of algorithms are called Backprojection Filter-

ing algorithms.

2.3. Three-dimensional image reconstruction

A three-dimensional (3D) image can be formed by stack-

ing slices of 2D images, as shown in Fig. 8. However, this

approach does not always work. Figs. 9 and 10 show 3D

PET and cone-beam imaging geometries, respectively. We

observe from these ®gures that there are projection rays that

cross multiple image slices. This makes slice-by-slice

reconstruction impossible. Thus, truly 3D reconstruction is

required.
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Fig. 1. Projection data acquired from different views are used to reconstruct the image.



Both ®ltered backprojection and backprojection ®ltering

algorithms exist for truly 3D reconstruction. Such algo-

rithms require parallel plane (or line) measurements from

various directions as shown in Fig. 11.

Recently, rebinning methods have been developed to

convert 3D measurements with rays that traverse transaxial

slices into ªdecomposedº measurements without those

crossing rays, so that ef®cient slice-by-slice 2D reconstruc-

tion is possible.

3. Iterative reconstruction

In nuclear medicine, iterative reconstruction is becoming

popular for the following reasons: (1) it is easy to model and

handle projection noise, especially when the counts are low;

and (2) it is easy to model the imaging physics, such as

geometry, non-uniform attenuation, scatter, and so on.

The basic process of iterative reconstruction is to discre-

tize the image into pixels and treat each pixel value as an

unknown. Then a system of linear equations can be set up

according to the imaging geometry and physics. Finally, the

system of equations is solved by an iterative algorithm. The

setup of equations is shown in Fig. 12. The system of linear

equations can be represented in the matrix form as FX � P;
where each element (Xj) in X is a pixel value, each element

(Pi) in P is a projection measurement, and Fij in F is a

coef®cient that is the contribution from pixel j to the projec-

tion bin i.

The diagram in Fig. 13 shows the basic procedure for

using an iterative algorithm. Each loop in Fig. 13 represents
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Fig. 2. Projection and backprojection.

Fig. 3. In ®ltered backprojection, negative wings are introduced to eliminate blurring.
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Fig. 7. An example of non-parallel beak imaging geometry.

Fig. 9. In 3D PET, projection rays that cross slices are used.

Fig. 4. A computer simulation of a ®ltered backprojection reconstruction.

Fig. 5. Image blurring worsens the farther an object is away from the

detector.

Fig. 6. Illustration of Fourier transform. A prism splits white light and

transforms it into different colors.

Fig. 8. In many cases, a 3D image can be reconstructed by stacking 2D

reconstructions.

Fig. 10. A cone-beam imaging geometry.



one iteration. The initial estimate of the image in an iterative

algorithm is usually a constant. Fig. 14 shows a computer

simulation that demonstrates an iterative algorithm in

action. In this simulation, the projection data contain

noise. As the iterative procedure progresses, the reconstruc-

tion ®rst converges to a recognizable image and then

ªdivergesº to noise. This illustrates the importance of

noise regularization in an iterative algorithm. The simplest

method for regularization is to stop the iteration at a certain

point.

Iterative reconstruction algorithms have several advan-

tages over analytical reconstruction algorithms, because

many imaging physics, such as non-uniform attenuation

and scatter, can be modeled in the matrix F, whereas they

are dif®cult to handle in an analytic algorithm. The most

frequently used iterative algorithm in nuclear medicine

applications is the ML-EM (maximum likelihood expecta-

tion maximization) algorithm. The ML-EM algorithm

solves a set of linear equations, assuming Poisson noise is

present in the projection data. A unique property of the ML-

EM algorithm is that it produces an image with non-nega-

tive pixel values.

4. Summary

Analytic reconstruction algorithms, for example the

®ltered backprojection algorithm, are ef®cient and elegant,

but they are unable to handle complicated factors such as

scatter. Iterative reconstruction algorithms on the other hand

are more versatile but less ef®cient. Ef®cient (i.e. fast) itera-

tive algorithms are currently under development. With rapid

increases being made in computer speed and memory, itera-

tive reconstruction algorithms will be used in more and

more applications and will enable more quantitative recon-

structions.

This tutorial article describes basic principles of image

reconstruction in nuclear medicine. An intuitive approach is

adopted to explain the components in both analytical and

iterative algorithms. In analytical algorithms, the ®ltered

backprojection method is emphasized. Constant attenuation

correction and distance-dependent blurring correction are

brie¯y mentioned. The iterative reconstruction scheme is

illustrated with a ¯ow-chart. A list of references [1±54] is

provided for those readers with further interest in the devel-

opment of image reconstruction.
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Fig. 11. Parallel plane measurements in 3D.

Fig. 12. The image is discretized into pixels and a system of equations is set

up to describe the imaging geometry and physics.

Fig. 13. Flow chart of iterative image reconstruction scheme.

Fig. 14. An example of iterative reconstruction. From left to right, the iteration number is increased in each image.
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